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Does Maxwell’s hypothesis of air saturation near
the surface of evaporating liquid hold at all
spatial scales?
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The classical model of evaporation of liquids hinges on Maxwell’s assumption that the air
near the liquid’s surface is saturated. It allows one to find the evaporative flux without
considering the interface separating liquid and air. Maxwell’s hypothesis is based on
an implicit assumption that the vapour-emission capacity of the interface exceeds the
throughput of air (i.e. its ability to pass the vapour on to infinity). If this is indeed so, then
the air adjacent to the liquid would get quickly saturated, justifying Maxwell’s hypothesis.
In the present paper, the so-called diffuse-interface model is used to account for the
interfacial physics and thus derive a generalised version of Maxwell’s boundary condition
for the near-interface vapour density. It is then applied to a spherical drop floating in air. It
turns out that the vapour-emission capacity of the interface exceeds the throughput of air
only if the drop’s radius is rd � 10 µm, but for rd ≈ 2 µm, the two are comparable. For
rd � 1 µm, evaporation is interface-driven, and the resulting evaporation rate is noticeably
smaller than that predicted by the classical model.

Key words: condensation/evaporation, drops

1. Introduction

Consider a liquid drop floating in the air and evaporating. In its simplest formulation,
this problem was examined more than 140 years ago by Maxwell (1877, 1890), and its
more elaborate versions are still explored now. Several of these are relevant to the present
study: Sobac et al. (2015), Cossali & Tonini (2019) and Finneran (2021) argued that the
dependence of the fluid’s properties on the temperature can affect the evaporation rate
strongly; Talbot et al. (2016) examined transient deviations of drop evaporation from the
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quasi-steady regime; Finneran, Garner & Nadal (2021) showed that the transient effects
can cause a noticeable departure from the so-called ‘d2 law’ (stating that the time of a
drop’s evaporation is proportional to its diameter squared); Long, Micci & Wong (1996),
Landry et al. (2007), Jakubczyk et al. (2012), Hołyst et al. (2013), Hołyst, Litniewski &
Jakubczyk (2017), Rana, Lockerby & Sprittles (2018, 2019) and Zhao & Nadal (2023)
showed that the ‘d2 law’ can be violated by out-of-equilibrium gas kinetics. A more
detailed review of the recent literature on evaporating drops can be found in Sazhin (2017).

Most work on evaporation has been based on Maxwell’s hypothesis that the air near the
drop’s surface – or, more generally, near any liquid/air interface – is close to saturation.
This allows one to solve the problem without knowing anything about the interfacial
dynamics. The only exceptions are models accounting for the so-called Knudsen layer –
a layer where the out-of-equilibrium kinetics plays a part (e.g. Rana et al. 2018, 2019; Zhao
& Nadal 2023).

The physics behind Maxwell’s hypothesis becomes clear if evaporation is viewed as a
two-tier process: first, the interface emits molecules of the liquid into the air; second, the
air passes them on to infinity. If the former emits more vapour than the latter can pass
on, then the vapour accumulates near the drop – bringing the adjacent air layer close to
saturation and the interface close to thermodynamic equilibrium. As a result, the interface
reduces vapour emission in line with the air throughput. In terms of this mechanism,
Maxwell’s hypothesis amounts to an assumption that the vapour-emission capacity of the
interface exceeds the throughput of air.

Maxwell could not have tested this assumption, as there were no quantitative models of
interfaces at the time. Two such models exist now: the Enskog–Vlasov kinetic equation
(de Sobrino 1967; Grmela 1971; Grmela & Garcia-Colin 1980a,b; Frezzotti, Gibelli &
Lorenzani 2005; Barbante, Frezzotti & Gibelli 2015; Frezzotti & Barbante 2017; Frezzotti
et al. 2018; Benilov & Benilov 2018, 2019a,b; Struchtrup & Frezzotti 2022) and the
diffuse-interface model (see a review by Anderson, McFadden & Wheeler 1998). The
latter is much simpler, thus it makes a better starting point.

The diffuse-interface model (DIM) is based on two assumptions regarding the van der
Waals force.

(i) Van der Waals interactions are pairwise – hence the net force affecting a molecule is
an algebraic sum of the forces exerted by the other molecules.

(ii) The thickness of the interface is much greater than the spatial scale of van der Waals
interactions.

Admittedly, assumption (ii) does not hold well at room temperature, in which case the
interfacial thickness rarely exceeds the molecular size by an order of magnitude (e.g.
Liu, Harder & Berne 2005; Verde, Bolhuis & Campen 2012; Pezzotti, Galimberti &
Gaigeot 2017; Pezzotti, Serva & Gaigeot 2018; Dodia et al. 2019; and references therein).
Thus the DIM should be viewed as a means to estimate qualitatively the importance of
interfacial dynamics for evaporation, whereas quantitative predictions should be left to the
Enskog–Vlasov kinetic equation (which can handle thin interfaces). These two models are
to each other what the first term of a Taylor series is to the exact value of the function.

The DIM has been used many times before – for phase transitions in ferroelectrics
(Ginzburg 1960), spinodal decomposition (e.g. Cahn 1961; Lowengrub & Truskinovsky
1998), crystal growth (e.g. Collins & Levine 1985; Tang, Carter & Cannon 2006; Heinonen
et al. 2016; Philippe, Henry & Plapp 2020), solidification (e.g. Stinner, Nestler & Garcke
2004; Nestler, Garcke & Stinner 2005), polymers (e.g. Thiele, Madruga & Frastia 2007;
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Madruga & Thiele 2009), electrowetting (e.g. Lu et al. 2007), contact lines in liquids
(e.g. Pismen & Pomeau 2000; Ding & Spelt 2007; Yue, Zhou & Feng 2010; Yue & Feng
2011; Sibley et al. 2014; Ding et al. 2017; Borcia et al. 2019; Zhu et al. 2019, 2020),
Faraday instability (e.g. Borcia & Bestehorn 2014; Bestehorn et al. 2021), Rayleigh–Taylor
instability (e.g. Zanella et al. 2020, 2021), cavitation (e.g. Petitpas et al. 2009), nucleation
(e.g. Magaletti, Marino & Casciola 2015; Magaletti et al. 2016; Gallo, Magaletti &
Casciola 2018; Gallo et al. 2020), liquid films (e.g. Benilov 2020, 2022a), tumour
growth (e.g. Frigeri, Grasselli & Rocca 2015; Rocca & Scala 2016; Dai et al. 2017),
classification of data (e.g. Bertozzi & Flenner 2012, 2016), and so on. The DIM has also
been applied to evaporation and condensation (e.g. Pomeau 1986; Barbante, Frezzotti &
Gibelli 2014; Benilov 2022a,b, 2023b), but only in application to liquids evaporating into,
or condensating from, their own vapour, not air.

In the present paper, the DIM is used to examine evaporation of liquids into air under
‘normal conditions’, i.e. when the temperature is between 15 ◦C and 35 ◦C, and the
air pressure is at 1 atm. A generalised Maxwell boundary condition is derived for this
case; to facilitate its use without going into the detail of the derivation, this condition is
summarised here.

The following notation will be used: ρ1 is the density of the liquid or its vapour, ρ2 is
that of air. Outside the drop, the air is almost homogeneous, i.e. ρ2 ≈ ρ

(a)
2 . Let ρ

(v.sat)
1 (T)

be the saturated vapour density at a temperature T , and let ρ(l.sat)
1 (T) be the matching liquid

density. Introduce also the vapour-in-the-air diffusivity D, the shear and bulk viscosities
of air, μs and μb, respectively, and the specific gas constant Ri of the liquid or its vapour
(i = 1), or the air (i = 2). The interface as a whole is characterised by its curvature C and
surface tension σ .

All these parameters are macroscopic, i.e. they characterise the fluid as a continuum,
whereas the Korteweg matrix Kij is a microscopic characteristic. It describes the
intermolecular (van der Waals) force due to the liquid–liquid (K11), air–air (K22)
and liquid–air (K12 = K21) interactions. Macroscopically, Kij determine the capillary
properties of the fluid and thus can be deduced from measurements of its surface tension
(see Appendix B). The numerical values of Kij determined this way for water and air are
presented later, in (3.12).

Let ρ
(+)
1 be the macroscopic vapour density immediately outside the interface, and

let (n · ∇ρ1)
(+) be its normal derivative (where n is directed towards the air). Then the

generalised Maxwell boundary condition has the form

ρ
(+)
1 = ρ

(v.sat)
1 exp

[
−R2

R1
ξ A(ξ) + σC

ρ
(l.sat)
1 R1T

]
, (1.1)

where ξ is the relative vapour flux,

ξ = −D(n · ∇ρ1)
(+)

E0
, (1.2)

and the parameter

E0 = K1/2
22 ρ

(a)5/2
2 (R2T)1/2

4
3μs + μb

(1.3)

will be referred to as the ‘vapour-emission capacity’ of the interface. Physically, E0 is
determined by a narrow zone at the outskirts of the interface, driven by the van der Waals

971 A20-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

66
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.667


E.S. Benilov

force, pressure gradient and viscosity. The location of this zone suggests that it is a DIM
analogue of the Knudsen layer, i.e. the Knudsen layer plus the van der Waals force – which
is an order-one effect in the DIM, but is neglected by the standard Hertz–Knudsen kinetic
model.

The universal non-dimensional function A(ξ) that appears in (1.1) is also a characteristic
of the above-mentioned zone at the outskirts of the interface. It can be approximated by
the expression

A(ξ) =
2
5 ln(ξ + 3.2867) − 0.81571

ξ + 3.2867
+ 1.3074

(ξ + 3.2867)7/5 , (1.4)

obtained through a combination of asymptotics, numerics and curve fitting (see
Appendix C).

The term involving the curvature C in condition (1.1) describes the Kelvin effect, i.e. the
shift of the saturated vapour pressure near a curved surface (e.g. Eggers & Pismen 2010;
Colinet & Rednikov 2011; Rednikov & Colinet 2013, 2017, 2019; Morris 2014; Janeček
et al. 2015; Saxton et al. 2017). If the interface is flat (C = 0) and its vapour-emission
capacity exceeds the diffusive flux,

E0 � |−D(n · ∇ρ1)
(+)|, (1.5)

then (1.1) reduces to the classical Maxwell boundary condition.
This paper has the following structure. In § 2, Maxwell’s boundary condition is reviewed

briefly in application to evaporation of floating drops. Its generalised version is derived
in § 3, and applied to drops in § 4. In § 5, the proposed model is compared to the
Hertz–Knudsen kinetic model, and further applications of the former are outlined.

2. The classical model

2.1. Formulation
Consider a mixture of two fluids with partial densities ρi, where i = 1, 2. The first fluid
will be referred to as either ‘liquid’ or ‘vapour’ (depending on the phase it is in), and the
second fluid will be referred to as ‘air’.

Under the assumption of spherical symmetry, ρi generally vary with the radial
coordinate r and time t. In the classical model, however, one assumes that inside the drop

ρ1 = ρ
(l)
1 , ρ2 = 0 if r ∈ (0, rd), (2.1)

where ρ
(l)
1 is a known constant, and the drop’s radius rd depends on t.

Outside the drop, both densities do vary. The air density is much larger than that of the
vapour, but their variations are of the same order (as, physically, the pressure should be
spatially uniform). As a result, the variations of ρ2 are relatively weak, so one assumes

ρ2 = ρ
(a)
2 if r ∈ (rd, ∞), (2.2)

where the dry-air density ρ
(a)
2 is a known parameter. Note that, physically, ρ(l)

1 and ρ
(a)
2 are

inter-related by the requirement that the pressure difference between the inside and outside
of the drop equals the capillary correction due to the curvature of the interface.

The classical model of evaporation also involves the liquid’s thermal conductivity κ(l),
air’s thermal conductivity κ(a), saturated vapour density ρ

(v.sat)
1 , vaporisation heat Δ, and
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Maxwell’s hypothesis of saturation near liquid/air interface

vapour-in-the-air diffusivity D. The dependence of these parameters on the temperature T
is supposed to be known.

The classical model is usually combined with the quasi-steady approximation, based on
an assumption that the diffusivity and thermal conductivity are sufficiently large (which
they are indeed for water under normal conditions). Then the term ∂ρ1/∂t in the diffusion
equation and the term ∂T/∂t in the heat-conduction equation can both be neglected. The
simplest version of the classical model also neglects the Stefan flow (which carries the
vapour away from the surface of the liquid), the Soret effects (the mass flux due to the
temperature gradient), and the Dufour effect (the heat flux due to the density gradient).

Then, for the spherically symmetric case, one obtains

∂

∂r

(
r2 ∂T

∂r

)
= 0 if r ∈ (0, rd), (2.3)

∂

∂r

(
r2 ∂ρ1

∂r

)
= 0,

∂

∂r

(
r2 ∂T

∂r

)
= 0 if r ∈ (rd, ∞). (2.4)

At the drop’s centre, the usual boundary condition applies:

∂T
∂r

= 0 at r = 0. (2.5)

To formulate the boundary conditions at the drop’s surface, introduce

T(±) = lim
r→rd±0

T,

(
∂T
∂r

)(±)

= lim
r→rd±0

∂T
∂r

, (2.6a,b)

where (+) and (−) mean ‘just outside’ and ‘just inside’ the drop, respectively. Then the
continuity of the temperature and heat flux imply

T(−) = T(+) at r = rd, (2.7)

κ(l)
(

∂T
∂r

)(−)

− κ(a)

(
∂T
∂r

)(+)

= ṙdρ
(l)
1 Δ at r = rd, (2.8)

where

ṙd = drd

dt
. (2.9)

As discussed in the Introduction, the classical model assumes the Maxwell boundary
condition for the vapour density at the drop’s surface, i.e.

ρ1 = ρ
(v.sat)
1 at r = rd, (2.10)

and the following conditions should be imposed on the vapour–air mixture far away from
the drop:

ρ1 → ρ
(a)
1 , T → T(a) as r → ∞. (2.11)

To ensure that the liquid is evaporating – not condensating or being in equilibrium – let
the vapour at infinity be undersaturated:

ρ
(a)
1 < ρ

(a.sat)(a)
1 , (2.12)
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Figure 1. The temperature dependencies of the saturated vapour density ρ
(v.sat)
1 , vapour-in-the-air diffusivity

D, thermal conductivity κ(a) of the air, and vaporisation heat Δ (all non-dimensionalised on their reference
values): (1) ρ

(v.sat)
1 (T)/ρ

(v.sat)
1 (25 ◦C), (2) D(T)/D(25 ◦C), (3) κ(a)(T)/κ(a)(25 ◦C), and (4) Δ(T)/Δ(25 ◦C).

Curves (1)–(4) correspond to the empirical formulae of Wagner & Pruss (1993), Engineering ToolBox (2018),
White (2005) and Lindstrom & Mallard (1997), respectively.

where ρ
(a.sat)(a)
1 = ρ

(a.sat)
1 (T(a)). Finally, the velocity of the drop’s (receding) surface is

related to the evaporative flux by

ρ
(l)
1 ṙd = D ∂ρ

∂r
at r = rd. (2.13)

Boundary-value problem (2.3)–(2.13) governs ρ1(r, t), T(r, t) and rd(t).

2.2. The dependence of ρ
(v.sat)
1 on T

One’s experience with raindrops sitting on ones’s skin suggests that evaporative cooling
does not exceed several degrees. This seems to enable one to neglect the dependence
of the external parameters on the temperature – say, ‘freeze’ them at T = T(a). Such
an approximation is indeed applicable to all parameters but one – namely, the saturated
vapour density ρ

(v.sat)
1 .

This claim is illustrated for water in figure 1. One can see that the relative change of
ρ

(v.sat)
1 across the room temperature range exceeds those of the remaining parameters.
In this paper, the dependence ρ

(v.sat)
1 (T) is approximated by Antoine’s equation

(Antoine 1888). If written in terms of the density – as opposed to the pressure, as in the
original formulation – it takes the form

ρ
(v.sat)
1
ρA

= TA

T
exp

(
−TA

T

)
, (2.14)
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Maxwell’s hypothesis of saturation near liquid/air interface

where, for water,
ρA = 6.6326 × 104 kg m−3, TA = 5292 K. (2.15a,b)

These values have been obtained by fitting (2.14) to the high-accuracy IAPWS empirical
formula (Wagner & Pruss 1993) for the room temperature range. The relative deviation of
the two formulae is less than 0.23 %, which is much better than the accuracy of Antoine’s
equation with ρA and TA taken from a thermodynamics handbook.

Not only does Antoine’s equation provide an accurate approximation, but it also has
physical meaning. As shown by Benilov (2020), (2.14) describes the generic van der Waals
fluid in the low-temperature limit – i.e. when T is much closer to the freezing point than
to the critical point. Observe also that TA is large, which is what makes the dependence of
ρ

(v.sat)
1 on T strong.
Equation (2.14) can be rearranged conveniently using a reference temperature (as done

by Sobac et al. 2015). Choosing that to be T(a), one obtains

ρ
(v.sat)
1

ρ
(v.sat)(a)
1

= T(a)

T
exp

(
−TA

T
+ TA

T(a)

)
, (2.16)

where ρ
(v.sat)(a)
1 is the saturated vapour density at infinity. One can further assume (T(a) −

T)/T(a) � 1 and reduce (2.16) to

ρ
(v.sat)
1 = ρ

(v.sat)(a)
1 exp

[
TA

T(a)2 (T − T(a))

]
. (2.17)

Observe that even if T is close to T(a), the expression in the square brackets can still be
order-one (because TA � T(a)).

2.3. Solution of boundary-value problem (2.3)–(2.13)
Equations (2.3)–(2.4) can be solved readily as

T = const1 + const2
r

if r ∈ (0, rd), (2.18)

ρ1 = const3 + const4
r

, T = const5 + const6
r

if r ∈ (rd, ∞), (2.19)

where the constants of integration can be fixed via boundary conditions (2.5)–(2.11):

const1 = T(a) + rdṙd
ρ

(l)
1 Δ

κ(a)
, const2 = 0, const3 = ρ

(a)
1 ,

const4 = rd

[
ρ

(v.sat)
1

(
T(a) + rdṙd

ρ
(l)
1 Δ

κ(a)

)
− ρ

(a)
1

]
, const5 = T(a),

const6 = r2
dṙd

ρ
(l)
1 Δ

κ(a)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.20a–f )

Recalling (2.16) for ρ
(v.sat)
1 and (2.13) for ṙd, one obtains

ρ
(l)
1

Dρ
(v.sat)(a)
1

ṙdrd︸ ︷︷ ︸
diffusion

+ exp
TAρ

(l)
1 Δ

T(a)2κ(a)
ṙdrd︸ ︷︷ ︸

non-isothermality

= H, (2.21)
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where

H = ρ
(a)
1

ρ
(v.sat)(a)
1

(2.22)

is the relative humidity of air far away from the drop.
Ordinary differential equation (2.21) determines rd(t); the terms on its left-hand side are

labelled according to their physical meanings.
Equation (2.21) yields the following expression for a drop’s time of evaporation:

te = r2
d(0)

xρ(l)
1

2Dρ
(v.sat)(a)
1

, (2.23)

where rd(0) is the drop’s initial radius, and x is the solution of the non-dimensional
algebraic equation

−x + exp(−αx) = H, (2.24)

with

α = TADρ
(v.sat)(a)
1 Δ

T(a)2κ(a)
. (2.25)

Formula (2.23) is often referred to as the ‘d2 law’, where d is the drop’s diameter.
It is instructive to estimate α for, say, the midpoint of the room temperature range,

T(a) = 25 ◦C, and pressure 1 atm. Letting the liquid be water, one can use the NIST online
calculator (Lindstrom & Mallard 1997) to obtain

ρ
(l)
1 = 997.05 kg m−3, ρ

(v.sat)(a)
1 = 0.023075 kg m−3, Δ = 2441.7 kJ kg−1,

(2.26a–c)
whereas for air, Engineering ToolBox (2003, 2009, 2018) yield

ρ
(a)
2 = 1.184 kg m−3, κ(a) = 0.02624 W m−1 K−1, D = 2.49 × 10−5 m2 s−1.

(2.27a–c)
Substituting values (2.26)–(2.27) into (2.25), and recalling the value in (2.15) for TA, one
obtains

α ≈ 3.1828. (2.28)

2.4. Discussion
It is interesting to assess the importance of non-isothermal effects by comparing the above
model with its isothermal reduction. It can be verified readily that the latter amounts to
taking in (2.24) the limit α → 0, so that x = 1 − H. Denoting the isothermal time of
evaporation by t′e, one obtains

te
t′e

= q
1 − H

. (2.29)

It turns out that the isothermal approach noticeably underpredicts the evaporation time.
The largest discrepancy is observed at high humidity, in which case (2.24) can be
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Figure 2. The time of full evaporation of a water drop of radius 16 µm versus the temperature. The curves are
marked with the corresponding relative humidity (in percentage).

solved asymptotically. Assuming estimate (2.28) for α, one obtains

te
t′e

→ α + 1 ≈ 4.18 as H → 1. (2.30)

The smallest discrepancy, in turn, is observed at low humidity. Solving (2.24) with H = 0
numerically, one obtains

te
t′e

≈ 2.95 for H = 0. (2.31)

Evidently, the isothermal model may yield a significant error in the whole range of H,
which agrees broadly with conclusions of Sobac et al. (2015), Cossali & Tonini (2019) and
Finneran (2021).

It is also interesting to calculate the time of evaporation of a typical ‘cough drop’
(through which COVID-19, flu, etc. are spread). The radii of such drops are typically
between 0.5 and 16.0 µm (Yang et al. 2007). The largest drops from this range survive
the longest – hence are the most dangerous when spreading the disease. The dependence
te on T for this case is illustrated in figure 2.

3. The generalised Maxwell boundary condition as described by the diffuse-interface
model

Unlike the classical model where the drop’s boundary has zero thickness, the DIM
assumes the liquid and air to be separated by a finitely thin interface where the partial
densities ρi vary smoothly. In this section, the DIM will be used to derive a model of
evaporation that takes into account interfacial physics.

Mathematically, the interface should be viewed as an inner asymptotic region separating
the outer regions of liquid and air. The DIM describes them all, but it can be simplified
depending on the region to which it is applied.
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E.S. Benilov

First, one can take advantage of the fact that the temperature field associated with
evaporative cooling occurs at a macroscopic scale (e.g. the drop’s radius). The interface,
on the other hand, is microscopic – hence the temperature change in it is negligible, and it
can be examined via the isothermal version of the DIM.

One should still account for the temperature dependence of the saturated vapour density
(which was found to be important in the classical model) – but there is no need to use the
full non-isothermal equations just for this. Instead, one can use the classical (macroscopic)
model to calculate the temperature field and then use it to prescribe the correct value of
ρ

(v.sat)
1 (T) near the drop. This workaround allows one to avoid cumbersome calculations

associated with non-isothermality, yet obtain the same result.
One can also consider first a flat interface. Once the generalised Maxwell boundary

condition has been derived for this case, the pressure difference due to the capillary effect
can be incorporated readily into it.

3.1. The governing equations
Let z be the vertical Cartesian coordinate, and let w be the vertical velocity of the mixture
as a whole. Introduce also the pressure p, and keep in mind that it is not an independent
unknown: since the DIM assumes the fluid to be compressible, p is a known function of ρ1,
ρ2 and T (the equation of state). The shear and bulk viscosities – μs and μb, respectively –
are also known functions of the same arguments.

Introduce the partial chemical potentials G1 and G2. Their thermodynamic definition is
given in Appendix A.1 – but technically, one can simply treat them as given functions of
ρ1, ρ2 and T , such that

∂p
∂ρj

=
∑

i

ρi
∂Gi

∂ρj
. (3.1)

In the low-density limit, p and Gi tend to their ideal gas approximations:

p ∼
∑

i

Riρi, Gi ∼ RiT ln ρi as ρi → 0, (3.2)

where Ri are the specific gas constants. For water and air, they are

R1 = 461.53 m2 s−2 K−1, R2 = 289.41 m2 s−2 K−1, (3.3a,b)

with R2 calculated as the 70/30 weighted average of the gas constants of nitrogen and
oxygen.

The DIM comprises the standard hydrodynamic equations involving an undetermined
external force Fi, which will be identified later with the van der Waals force. Under the
slow-flow (Stokes) approximation, a compressible isothermal binary fluid is governed by

∂(ρ1 + ρ2)

∂t
+ ∂[(ρ1 + ρ2)w]

∂z
= 0,

∂ρ1

∂t
+ ∂(ρ1w + J)

∂z
= 0, (3.4a,b)

∂p
∂z

= ∂

∂z

(
η

∂w
∂z

)
+ ρ1F1 + ρ2F2, (3.5)

where the effective viscosity is

η = 4μs

3
+ μb, (3.6)
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Maxwell’s hypothesis of saturation near liquid/air interface

the diffusive flux is (e.g. Giovangigli 2021)

J = D
(

F1 − ∂G1

∂z
− F2 + ∂G2

∂z

)
, (3.7)

and D is the diffusion coefficient.
To understand the relationship of D with the diffusivity D from the classical model,

assume that the fluid is diluted, so that the van der Waals force is negligible (Fi = 0) and
the chemical potentials are given by (3.2). As a result, (3.7) reduces to

J ∼ D
(

−R1T
ρ1

∂ρ1

∂z
+ R2T

ρ2

∂ρ2

∂z

)
as ρi → 0. (3.8)

Let the vapour density be much smaller than that of the air (ρ1 � ρ2), but let their
variations be comparable (∂ρ1/∂z ∼ ∂ρ2/∂z) – so that the above expression reduces to

J ∼ −D
R1T
ρ1

∂ρ1

∂z
as ρi → 0,

ρ1

ρ2
→ 0. (3.9a,b)

A comparison of this expression with that for the classical diffusive flux yields

D ∼ ρ1

R1T
D as ρi → 0,

ρ1

ρ2
→ 0. (3.10a,b)

For a dense mixture of fluids with comparable densities, D cannot be deduced from D, but
its dependence on (ρ1, ρ2, T) is supposed to be known from measurements.

For a multicomponent flow, the (one-dimensional) DIM approximation of the van der
Waals force is (Benilov 2023a)

Fi =
∑

j

Kij
∂3ρj

∂z3 , (3.11)

where the Korteweg matrix Kij characterises the interaction of molecules of components i
and j (Newton’s third law implies Kij = Kji). For the water–air combination, the Korteweg
matrix is (see Appendix B)[

K11 K12
K21 K22

]
=
[

1.87810 0.84978
0.84978 1.36880

]
× 10−17 m7 s−2 kg−1. (3.12)

Next, the pressure term in the momentum equation (3.5) can be rewritten conveniently in
terms of the chemical potentials. Using identity (3.1), one obtains

ρ1
∂G1

∂z
+ ρ2

∂G2

∂z
= ∂

∂z

(
η

∂w
∂z

)
+ ρ1F1 + ρ2F2. (3.13)

This equation and (3.7) can be viewed as a set of algebraic equations for F1 − ∂G1/∂z and
F2 − ∂G2/∂z. Solving these equations and recalling (3.11) for Fi, one obtains

∂

∂z

⎛
⎝∑

j

K1j
∂2ρj

∂z2 − G1

⎞
⎠ = − 1

ρ1 + ρ2

[
∂

∂z

(
η

∂w
∂z

)
− ρ2J

D

]
, (3.14)

∂

∂z

⎛
⎝∑

j

K2j
∂2ρj

∂z2 − G2

⎞
⎠ = − 1

ρ1 + ρ2

[
∂

∂z

(
η

∂w
∂z

)
+ ρ1J

D

]
. (3.15)

Equations (3.4) and (3.14)–(3.15) determine the unknowns ρ1, ρ2, w and J.
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3.2. Non-dimensionalisation
In what follows, the vertical coordinate z will be non-dimensionalised on the interfacial
thickness z̄, which implies that distances should be measured from the current height
Z(t) of the interface. Mathematically, this corresponds to the change of variables (z, t) →
(znew, tnew), where

znew = z − Z(t), tnew = t. (3.16a,b)

Rewriting (3.4) in terms of the new variables, introducing Ż = dZ/dt, and omitting the
subscript new, one obtains

∂(ρ1 + ρ2)

∂t
− Ż

∂ρ2

∂z
+ ∂[(ρ1 + ρ2)w]

∂z
= 0, (3.17a)

∂ρ1

∂t
− Ż

∂ρ1

∂z
+ ∂(ρ1w + J)

∂z
= 0, (3.17b)

whereas (3.14)–(3.15) remain the same as before.
There are three density scales in the problem – the liquid density, the air density

and the saturated vapour density. Since they differ from each other by orders of
magnitude, no single scaling of ρi would fit all the asymptotic regions. Still, a ‘generic’
non-dimensionalisation is needed, so let the density scale be that of air, ρ̄ = ρ

(a)
2 .

Introducing the air viscosity scale η̄, define the characteristic pressure and velocity by

p̄ = K̄ρ̄2

z̄2 , w̄ = p̄z̄
η̄

, (3.18a,b)

respectively. These choices for p̄ and w̄ correspond to an asymptotic regime where the
pressure gradient, viscous stress and van der Waals force in the momentum equation (3.5)
are of the same order.

Let t̄ be the evaporation time scale, and introduce

ε =
√

z̄
t̄w̄

. (3.19)

This parameter is responsible for the quasi-steady approximation – hence it is expected to
be small. Another important parameter is the advection/diffusion ratio, defined by

δ = w̄ρ̄2z̄
D̄p̄

, (3.20)

where D̄ is the characteristic value of the diffusion coefficient D.
The following non-dimensional variables will be used:

tnd = t
t̄
, znd = z

z̄
,

(ρi)nd = ρi

ρ̄
, wnd = w

εw̄
, Jnd = J

ερ̄w̄
, Znd = εZ,

ηnd = η

η̄
, Dnd = D

D̄
, (Kij)nd = Kij

K̄
, (Gi)nd = ρ̄

p̄
Gi.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.21a–j)
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Maxwell’s hypothesis of saturation near liquid/air interface

Rewriting (3.14)–(3.17) in terms of the non-dimensional variables, and omitting the
subscript nd, one obtains

∂

∂z

⎛
⎝∑

j

K1j
∂2ρj

∂z2 − G1

⎞
⎠ = − ε

ρ1 + ρ2

[
∂

∂z

(
η

∂w
∂z

)
− δ

ρ2J
D

]
, (3.22)

∂

∂z

⎛
⎝∑

j

K2j
∂2ρj

∂z2 − G2

⎞
⎠ = − ε

ρ1 + ρ2

[
∂

∂z

(
η

∂w
∂z

)
+ δ

ρ1J
D

]
, (3.23)

ε
∂(ρ1 + ρ2)

∂t
+ ∂[(ρ1 + ρ2)(w − Ż)]

∂z
= 0, ε

∂ρ1

∂t
+ ∂[ρ1(w − Ż) + J]

∂z
= 0.

(3.24a,b)

Evidently, the non-dimensional equations (3.22)–(3.24) can be transformed back to their
dimensional versions, (3.14)–(3.17), by setting ε = δ = 1. This shortcut will be used for
re-dimensionalising the results obtained.

In what follows, one will need the non-dimensional versions of the low-density
expressions (3.2) for p and Gi, and (3.10) for D. To obtain these, introduce

Tnd = R̄ρ̄

p̄
T, Dnd = ρ̄2

D̄p̄
D, (3.25a,b)

where R̄ is the characteristic gas constant. Rewriting (3.2) and (3.10) in terms of
Tnd and Dnd, and omitting the subscript nd, one can verify that the dimensional and
non-dimensional versions of these expressions look exactly the same.

3.3. Non-dimensional parameters
Let the characteristic value of the Korteweg parameter be that of dry air, K̄ = K22, given
by (3.12). The characteristic values of the rest of the parameters are given by (2.26)–(2.27)
and (3.3).

For common fluids, the room temperature range is much closer to the freezing point
than the critical point (e.g. for water, the former is 0 ◦C and the latter is 374 ◦C). In such
cases, the interfacial thickness z̄ is comparable to the liquid’s molecular size – i.e. several
ångströms – as confirmed by both experiments (e.g. Verde et al. 2012; Pezzotti et al. 2017)
and molecular simulations (e.g. Liu et al. 2005; Pezzotti et al. 2017; Dodia et al. 2019; and
references therein).

To obtain an estimate of z̄ from within the DIM, one can use the particular case of an
equilibrium interface. It is examined briefly in Appendix A.2 for the parameters specific
to the water–air combination listed in Appendix B. The resulting profiles of the water and
air densities are shown in figure 3, suggesting that the interfacial thickness is

z̄ ∼ 5Å. (3.26)

This value exceeds the water’s molecular size by a factor of 2–3 (depending on how it is
defined).

According to (3.19), ε depends on the time scale t̄ – which, in turn, depends on the
evaporation rate – hence ε can be estimated only in application to a specific setting.
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Figure 3. A schematic illustrating the asymptotic structure of the solution. The curves ρ1(z) and ρ2(z) describe
a flat equilibrium water/air interface at T = 25 ◦C, computed using the DIM (see Appendix A.2). The scale of
the horizontal axes in both panels is logarithmic. The height of the non-shaded region is used as an estimate
for the interfacial thickness z̄.

Assuming that to be a drop of radius rd, one can use the continuity of the advective mass
flux to relate ṙd to w̄, we have

ṙdρ
(l)
1 ∼ w̄ρ

(a)
2 . (3.27)

Expressing w̄ from this equality, substituting it into definition (3.19) of ε, and
approximating ṙd by rd/t̄, one obtains

ε =
√√√√ ρ

(a)
2 z̄

ρ
(l)
1 rd

. (3.28)

Luckily, this expression no longer involves t̄ (which is unknown without further
calculations). Then for rd between 1 µm and 1 nm, the above expression shows that ε

is between 0.771 × 10−3 and 2.44 × 10−2 – i.e. it is small.
To estimate δ, estimate the diffusion coefficient by D̄ = Dρ̄2/p̄, where D is the standard

vapour-in-the-air diffusivity. Then (3.18) and (3.20) yield

δ = K̄ρ̄2

Dη̄
. (3.29)

Estimating the viscosity of air at 25 ◦C using the results of Shang et al. (2019), one obtains

η̄ = 4.20 × 10−5 kg m−1 s−1, (3.30)

for which (3.29) yields δ ≈ 1.83 × 10−8. Thus one can assume that

δ � ε � 1. (3.31)
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Maxwell’s hypothesis of saturation near liquid/air interface

In addition to ε and δ, the problem involves two ‘hidden’ small parameters:

ε(a/l) = ρ
(a)
2

ρ
(l)
1

≈ 1.19 × 10−3, ε(v/a) = ρ
(v.sat)
1

ρ
(a)
2

≈ 1.95 × 10−2. (3.32a,b)

The presence of four independent small parameters makes the analysis awkward: they arise
in various combinations, and each time, one has to check whether these are large, small or
order-one. In particular, the following estimates will be needed:

ε2ε(a/l)ε(v/a)

δ
� ε2ε(a/l)

δ
≈ 3.84 × 10−2 � 1, (3.33)

δ

ε(v/a)
≈ 0.938 × 10−6 � 1. (3.34)

Thus all of the above parameter combinations will be assumed small.

3.4. The boundary/matching conditions
When applied to the interface (inner region), (3.22)–(3.24) need boundary conditions at
large z. These are to be obtained via matching the inner solution to those in the liquid and
air (outer regions). The former is trivial: since the liquid is homogeneous and at rest, the
interfacial solution should satisfy

ρi → ρ
(l)
i as z → −∞, (3.35)

w → 0, J → 0 as z → −∞. (3.36)

Unlike the classical model where ρ
(l)
i are external parameters, the DIM determines them as

functions of the pressure and humidity of air. The DIM also describes dissolution of air in
liquid – hence ρ

(l)
2 /= 0. This quantity is very small and thus unimportant both dynamically

and thermodynamically.
The matching between the interface and air is less trivial: it can be carried out only

after examining the large-distance behaviours of the inner solution and choosing the one
that matches the outer solution. The properties of the latter are easy to guess: it should be
such that ρ1 � ρ2 (small vapour concentration in the air), and the variations of ρ1 and ρ2
should be such that the total pressure is spatially uniform (e.g. Ricci & Rocca 1984; Mills
& Coimbra 2016).

To verify that (3.22)–(3.24) admit such an asymptotic solution, let

ρi = ρ
(+)
i + εδρ

′(+)
i z + O(ε2δ, εδ2), w = w(+) + O(ε), J = J(+) + O(ε),

(3.37a–c)

where ρ
(+)
i , ρ

′(+)
i , etc. depend on t (but not on z) and may involve the hidden small

parameters ε(a/l) and ε(v/a). It turns out that only ρ
(+)
i is independent in these expansions,

with the other coefficients being expressible through ρ
(+)
i .

To find how w(+) and J(+) depend on ρ
(+)
i , observe that to leading order, (3.24) can

be integrated. Using boundary conditions (3.35)–(3.36) to fix the constants of integration,
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one obtains

w = −Ż

(
ρ

(l)
1 + ρ

(l)
2

ρ1 + ρ2
− 1

)
+ O(ε), J = −Ż

ρ
(l)
1 ρ2 − ρ1ρ

(l)
2

ρ1 + ρ2
+ O(ε), (3.38a,b)

which entails

w(+) = −Ż

(
ρ

(l)
1 + ρ

(l)
2

ρ
(+)
1 + ρ

(+)
2

− 1

)
, J(+) = −Ż

ρ
(l)
1 ρ

(+)
2 − ρ

(+)
1 ρ

(l)
2

ρ
(+)
1 + ρ

(+)
2

. (3.39a,b)

To calculate ρ
′(+)
i , one should substitute the expansions of w and J into (3.22)–(3.23).

Since air is a diluted fluid, the effective viscosity does not depend on the density (e.g.
Ferziger & Kaper 1972), i.e.

η ∼ η0 as ρi → 0, (3.40)

where η0 depends only on T . This property implies that when expressions (3.38) are
substituted into (3.22)–(3.23), the linear term in the expansion for w cancels out. The
quadratic term does not, but its contribution is much smaller than that of J(0) (due to
estimates (3.33)), and to leading order, one obtains the following algebraic equations for
ρ

′(+)
i :

∑
i

(
∂G1

∂ρi

)(+)

ρ
′(+)
i = − ρ

(+)
2 J(+)

D(+)(ρ
(+)
1 + ρ

(+)
2 )

, (3.41)

∑
i

(
∂G2

∂ρi

)(+)

ρ
′(+)
i = ρ

(+)
1 J(+)

D(+)(ρ
(+)
1 + ρ

(+)
2 )

, (3.42)

where D(+) = D(ρ
(+)
1 , ρ

(+)
2 , T) and

(
∂Gj

∂ρi

)(+)

= ∂Gj(ρ
(+)
1 , ρ

(+)
2 , T)

∂ρ
(+)
i

. (3.43)

Given the smallness of the air-to-liquid and vapour-to-air density ratios (3.32),
(3.41)–(3.42) can be simplified. Using the diluted-fluid expressions (3.2) and (3.10) for
Gi and D, respectively, and keeping the leading order only, one obtains

ρ
′(+)
1 = ρ

(l)
1 Ż
D , (3.44)

ρ
′(+)
2 = −ρ

′(+)
1

R1

R2
. (3.45)

Equality (3.44) is the desired matching condition; it can also be viewed as the relationship
of the speed Ż of the interface to the vapour flux Dρ′(+), whereas (3.45) is the standard
condition of constant pressure for diffusion in diluted fluids. As mentioned before, both
conditions are obvious physically, but it is still important to verify that they are intrinsic to
the DIM formalism.

971 A20-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

66
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.667


Maxwell’s hypothesis of saturation near liquid/air interface

3.5. The interfacial asymptotic region
Three asymptotic zones exist within the inner (interfacial) region,

Zone 1 (mostly air): ρ1 � ρ2 � ρ(l),

Zone 2 (air–vapour mixture): ρ1 ∼ ρ2 � ρ(l),

Zone 3 (mostly liquid): ρ2 � ρ1 ∼ ρ(l).

⎫⎬
⎭ (3.46)

Note that Zone 1 is not part of the air region: in the latter, the air density is nearly uniform,
ρ2 ≈ ρ

(a)
2 , whereas in the former, variations of ρ2 are comparable to ρ

(a)
2 .

A schematic illustrating the asymptotic structure of the problem can be found in figure 3
(which is computed for the equilibrium interface, i.e. that where the relative humidity of
air is H = 1). Its most counter-intuitive features are the local maximum and minimum of
the air density ρ2(z) in Zone 2. Note that they both disappear in the limit K12 → 0 (see
figure 11 of Benilov 2023a). One can thus assume that the maximum of ρ2 is created by
the van der Waals force exerted by the bulk of the liquid by attracting a certain amount
of air towards the interface. The existence of the minimum of ρ2 is harder to understand,
but it is dynamically unimportant anyway. The air density is extremely small there – even
smaller than that of the air dissolved in the liquid – and they both have a minuscule effect
on the dynamics of the rest of the fluid.

It turns out that only Zone 1 contributes significantly to the evaporation rate, whereas
the contributions of Zones 2–3 are negligible. To understand why, recall that the fluid
density in the latter two zones exceeds that of the vapour component of air by an order of
magnitude. As a result, Zones 2–3 are close to equilibrium (the fact that the ‘outside’ air
is undersaturated cannot perturb them too much). Thus Zone 1 is the only region out of
equilibrium – hence it is the only place where irreversible processes, such as evaporation,
can occur.

The calculations associated with Zones 2–3 can be avoided via a certain workaround
developed by Benilov (2022b, 2023b) for evaporation of pure fluids. The workaround
involves the following two steps.

(i) Equations (3.22)–(3.24) can be rearranged in such a way that the velocity Ż of the
interface is expressed in terms of the fluid’s known parameters (relative humidity,
etc.) and a certain integral of the solution.

(ii) The contribution of Zone 1 to this integral exceeds the contributions of Zones 2–3 by
an order of magnitude. Thus to evaluate this integral asymptotically, it is sufficient
to find the solution only in Zone 1.

3.5.1. Calculation of Ż
Recall that matching conditions (3.44)–(3.45) emerged from the governing equations at the
order of O(εδ). Finding Ż does not require going that far, as the terms in (3.22)–(3.23) that
involve Ż are O(ε). The terms O(δ) in these equations can also be omitted (as suggested
by the estimates in § 3.3).

Substitute expressions (3.38) for w and J into (3.22)–(3.23), and, keeping the terms up
to O(ε), obtain

∂

∂z

⎛
⎝∑

j

K1j
∂2ρj

∂z2 − G1

⎞
⎠ = εŻ

ρ1 + ρ2

∂

∂z

[
η

∂

∂z

(
ρ

(l)
1 + ρ

(l)
2

ρ1 + ρ2

)]
, (3.47)
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∂

∂z

⎛
⎝∑

j

K2j
∂2ρj

∂z2 − G2

⎞
⎠ = εŻ

ρ1 + ρ2

∂

∂z

[
η

∂

∂z

(
ρ

(l)
1 + ρ

(l)
2

ρ1 + ρ2

)]
. (3.48)

Keeping the same accuracy in boundary condition (3.37), one obtains

ρi → ρ
(+)
i as z → +∞. (3.49)

Now, integrate (3.47) and (3.48) with respect to z from −∞ to +∞. Recalling boundary
conditions (3.35) and (3.49), one obtains

G(l)
i − G(+)

i = −εŻA, (3.50)

where

A =
∫ +∞

−∞
1

ρ1 + ρ2

∂

∂z

[
(ρ

(l)
1 + ρ

(l)
2 )η

(ρ1 + ρ2)
2

∂(ρ1 + ρ2)

∂z

]
dz. (3.51)

Next, consider the combination∫ +∞

−∞
[ρ1 × (3.47) + ρ2 × (3.48)] dz. (3.52)

Integrating by parts the terms involving the third derivatives, take into account boundary
conditions (3.35) and (3.49), and recall identity (3.1) to obtain

p(l) − p(+) = 0. (3.53)

Thus the pressure in the liquid coincides with that in the air (as expected physically).
Equalities (3.50) and (3.53) relate the (unknown) liquid densities ρ

(l)
i and the velocity

Ż of the interface to the air parameters (marked with (+)). In addition, Ż is also related to
the air parameters by equality (3.44). If two of these three equalities are used to eliminate
ρ

(l)
i and Ż, then the remaining one will inter-relate the air parameters and thus turn into

the generalised Maxwell boundary condition (GMBC).
To eliminate ρ

(l)
i from equalities (3.50) and (3.53), recall that equations of state of

liquids at normal conditions are typically such that even a minuscule change of the density
gives rise to a huge change of the pressure. This means effectively that ρ

(l)
i is close to its

saturated value, ρ
(l)
i ≈ ρ

(l.sat)
i – so that (3.50) becomes

G(l.sat)
i − G(+)

i = −εŻA. (3.54)

In the state of saturation, the chemical potentials of the liquid and vapour are equal (see
Appendix A.2) – hence one can change in the above equality G(l.sat)

1 → G(v.sat)
1 . Then,

using for both G(v.sat)
1 and G(+)

1 the diluted-fluid expression (3.2), one obtains

ρ
(l.sat)
1 R1T ln

ρ
(+)
1

ρ
(v.sat)
1

= εDρ
′(+)
1 A. (3.55)

This is, essentially, the GMBC.
With A calculated (see the next subsubsection), equality (3.55) inter-relates the

near-interface vapour density ρ
(+)
1 and its gradient ρ

′(+)
1 . If ε = 0, then (3.55) yields
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Maxwell’s hypothesis of saturation near liquid/air interface

ρ
(+)
1 = ρ

(v.sat)
1 , which is the classical Maxwell boundary condition. If, however, ε is small

but not zero, then ρ
(+)
1 can differ significantly from ρ

(v.sat)
1 – because A can actually

be large, so that εA ∼ 1. This does not violate the employed asymptotic approach: it
requires only ε � 1, which makes the time derivatives in (3.24) small and thus justifies
the quasi-steady approximation.

3.5.2. Zone 1 of the interfacial asymptotic region
The coefficient A arises in all problems where the DIM is applied to evaporation or
condensation – but, so far, it has been calculated only for pure fluids and the case where the
relative humidity is close to unity (Benilov 2020, 2022a,b, 2023b). The calculation of A for
a binary mixture and arbitrary humidity is more complex technically, but the underlying
idea is the same.

It is based on the observation that the main contribution to (3.51) comes from the zone
where ρ1 + ρ2 is small, but its derivatives are relatively large – i.e. near the air region, but
not in it. This means effectively that (3.51) can be calculated asymptotically by considering
Zone 1 only (see its definition at the beginning of § 3.5).

Before presenting the scaling of Zone 1, it is instructive to apply the ‘obvious’
approximations – i.e. take advantage of the diluted-fluid expressions (3.2), (3.10) and
(3.40), plus neglect ρ1 and ρ

(l)
2 if they appear next to ρ2 and ρ

(l)
1 , respectively. As a result,

(3.47)–(3.48) and (3.51) become

∂

∂z

(
K12

∂2ρ2

∂z2 − R1T ln ρ1

)
= ερ

(l)
1 Ż

η0

ρ2

∂2

∂z2

(
1
ρ2

)
, (3.56)

∂

∂z

(
K22

∂2ρ2

∂z2 − R2T ln ρ2

)
= ερ

(l)
1 Ż

η0

ρ2

∂2

∂z2

(
1
ρ2

)
, (3.57)

A = η0ρ
(l)
1

∫ +∞

−∞
1
ρ2

∂

∂z

(
1
ρ2

2

∂ρ2

∂z

)
dz. (3.58)

The most general asymptotic limit is when the three terms in (3.57) are of the same order,
which implies the rescaling

z = z0 +
(

K22ρ
(+)
2

R2T

)1/2

znew, ρi = ρ
(+)
i (ρi)new , Ż = − E0

ερ
(l)
1

ξ, (3.59a–c)

A = ρ
(l)
1 R2T
E0

Anew, (3.60)

where z0 is the ‘location’ of Zone 1, E0 is given by (1.3) of the Introduction, and the
minus in the expression for Ż is introduced to make ξ positive (recall that evaporation
corresponds to Ż < 0). Since the problem under consideration is translationally invariant,
the actual value of z0 does not feature in, and is not needed for, any leading-order results.
One does not need (3.56) either, because now A depends only on ρ2.
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ξ
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0.10
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100 1000 10 000

Figure 4. The function A(ξ). Note that in the right-hand half of the figure, the scale of ξ is logarithmic.

Substitution of (3.59)–(3.60) into (3.57), boundary condition (3.49), and (3.58) yield
(with the subscript new omitted)

∂

∂z

(
∂2ρ2

∂z2 − ln ρ2

)
= − ξ

ρ2

∂2

∂z2

(
1
ρ2

)
, (3.61)

ρ2 → 1 as z → +∞, (3.62)

A =
∫ +∞

−∞
1
ρ2

∂

∂z

(
1
ρ2

2

∂ρ2

∂z

)
dz. (3.63)

As shown in Appendix C, boundary condition (3.62) is sufficient to uniquely fix the
solution of (3.61), making it unnecessary to examine the other asymptotic zones of the
interfacial region.

It can be derived readily from (3.61) that

ρ2 ∼ z2 ln(−z) as z → −∞. (3.64)

The growth of ρ2(z) as z → −∞ in Zone 1 agrees with the fact that this function has a
local maximum in Zone 2 (see figure 3). Asymptotics (3.64) also guarantees that (3.63)
converges at the lower limit.

The function A(ξ) was computed numerically using the algorithm described in § C.2;
the result is plotted in figure 4. For practical use, however, it is more convenient to use the
approximation formula (1.4) (for more details, see § C.3).

3.5.3. Summarising the GMBC for flat interfaces
Recall that the dimensional variables can be recovered by setting ε = δ = 1. Then
equalities (3.44) and (3.59) yield a dimensional relationship of the near-interface air
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Maxwell’s hypothesis of saturation near liquid/air interface

density ρ
(+)
1 and its gradient ρ

′(+)
1 ,

ξ = −Dρ
′(+)
1

E0
, (3.65)

and (3.55) yields

ρ
(+)
1 = ρ

(v.sat)
1 exp

[
−R2

R1
ξ A(ξ)

]
. (3.66)

Equalities (3.65) and (3.66) inter-relate the near-surface vapour density ρ
(+)
1 and its normal

derivative ρ
′(+)
1 , hence they constitute the generalised Maxwell boundary condition (for

flat interfaces), as required.

3.5.4. Curved interfaces
Interfacial curvature influences evaporation via the so-called Kelvin effect, i.e. by changing
the effective saturated vapour pressure near the liquid’s (curved) surface. This effect can
be incorporated readily into the analysis under the assumption that the curvature radius is
much larger than the interfacial thickness. This has been done, and the result has turned
out to be physically obvious: the Kelvin effect adds a new term to the pressure condition
(3.53),

p(l) − p(+) = εCσ, (3.67)

where C is the interfacial curvature, and σ is the surface tension. (The DIM expression for
σ is given by (B8) of Appendix B.)

The extra term in the pressure equation entails an extra term in the GMBC: instead
of (3.66), it becomes (1.1) of the Introduction, whereas definition (3.65) of the relative
evaporation rate ξ coincides with (1.2) if one sets ρ

′(+)
1 = (n · ∇ρ1)

(+).

4. Evaporation of drops as described by the generalised model

To compare the generalised model to the classical one, the former will be applied to
evaporation of floating spherical drops. To do so, one needs to replace the classical
boundary condition (2.10) with its generalised version (1.1), and leave the rest of the
governing set (2.3)–(2.13) the same as before. The ensuing algebra is also the same as
before, and one eventually obtains the following differential equation for rd(t):

ρ
(l.sat)
1

Dρ
(v.sat)(a)
1

ṙdrd︸ ︷︷ ︸
diffusion

+ exp

⎡
⎢⎢⎢⎢⎣

TAρ
(l.sat)
1 Δ

T(a)2κ(a)
ṙdrd︸ ︷︷ ︸

non-isothermality

− R2

R1
ξ A(ξ)︸ ︷︷ ︸

interfacial effects

+ 2σ

ρ
(l.sat)
1 R1T(a)rd︸ ︷︷ ︸

Kelvin effect

⎤
⎥⎥⎥⎥⎦ = H,

(4.1)
where

ξ = −ρ
(l.sat)
1 ṙd

E0
(4.2)

is the ratio of the evaporative flux to the interfacial emission capacity (the latter given by
(1.3)).
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Equations (4.1)–(4.2) generalise the corresponding classical result (2.21). The term
involving A(ξ) in (4.1) describes emission of vapour by the interface, and the term
involving σ gives the shift of the effective saturation pressure near a curved surface. The
remaining two terms on the left-hand side of (4.1) are the same as those in its classical
counterpart (2.21).

The classical and modified models – described by (2.21) and (4.1), respectively – are
compared in figures 5(a,b). For figure 5(a), both were treated as algebraic equations for
the non-dimensional evaporation flux ξ with the drop’s radius rd being a parameter – so
that the result is the dependence ξ versus rd. Figure 5(b), in turn, shows the dependence
of the time of full evaporation on the drop’s initial radius.

The following features of these figures should be observed.

(i) The (classical) d2 law states that te ∼ r2
d, which is why curve (M) in figure 5(b) is

a straight line with slope 2. In figure 5(a), curve (M) is also a straight line, but its
slope is −1 (which agrees with the corresponding result of the classical model).

(ii) The shaded areas in figures 5(a,b) mark the region ξ < 1, where the two models
are supposed to yield similar results – and indeed, they do. The value of rd
corresponding to ξ = 1 is rd ≈ 2 µm.

(iii) For smaller rd, curves (M) and (B) begin to diverge. The difference between the
classical and generalised results peaks when the drop’s radius is close to, and slightly
less than, rd = 10 nm.

A similar effect is observed in models resolving or parametrising the Knudsen
layer (Long et al. 1996; Haut & Colinet 2005; Landry et al. 2007; Jakubczyk et al.
2012; Hołyst et al. 2013, 2017; Rana et al. 2018, 2019; Zhao & Nadal 2023).

(iv) For drops with rd � 10 nm, the Kelvin effect ‘kicks in’: it increases the effective
saturated pressure and thus accelerates the vapour emission by the interface – as a
result, curves (M) and (B) re-converge.

To verify this explanation, the four terms of (4.1) have been computed individually
and plotted in figure 5(c). Evidently, evaporation of small drops is governed by
the balance of interfacial effects and the Kelvin effect. Non-isothermality is less
important, whereas the diffusion of vapour in the air is unimportant.

(v) A general criterion of importance of the van der Waals force relative to diffusion can
be obtained by estimating the characteristic ratio B of the second term in the square
brackets in (4.1) to the first term. Recalling (4.2), one obtains

B = R2ĀT(a)2κ(a)

R1rdE0TAΔ
, (4.3)

where Ā is a characteristic value of the function A(ξ). The van der Waals force is
important when B � 1, which amounts to

rd � R2ĀT(a)2κ(a)

R1E0TAΔ
. (4.4)

For the parameters of water at 25 ◦C and with Ā = A(0) ≈ 0.14219, one obtains rd �
0.4 µm, which agrees qualitatively with the fact that curves (d) and (i) in figure 5(c)
intersect at rd ≈ 1 µm.

(vi) Figure 5(c) also suggests that for large drops (say, rd � 0.1 µm), the Kelvin effect is
negligible, which agrees broadly with the estimate of Sobac et al. (2015) .

It is worth emphasising, however, that this conclusion applies only to large floating
drops, whereas large sessile drops can be still influenced by the Kelvin effect via the
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Figure 5. Characteristics of an evaporating spherical drop versus its radius, for T = 25 ◦C and relative
humidity H = 50 %. Curves (M) and (B) are computed using Maxwell’s classical model and its generalised
version, respectively. The numbers in the ellipses show the relative deviations of curve (M) from curve (B).
(a) The evaporative flux normalised by the emission capacity of the interface (where ξ is defined by (4.2)). (b)
The time of evaporation. The shaded areas of (a) and (b) correspond to ξ < 1, which is where the classical
model is supposed to work. (c) The four terms (effects) in (4.1).
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highly curved part of their surface near the contact line (e.g. Deegan et al. 2000;
Dunn et al. 2009; Eggers & Pismen 2010; Colinet & Rednikov 2011; Rednikov &
Colinet 2013, 2019; Morris 2014; Stauber et al. 2014, 2015; Janeček et al. 2015;
Sáenz et al. 2015; Saxton et al. 2016, 2017; Wray, Duffy & Wilson 2019; Williams
et al. 2020).

(vii) Overall, figures 5(a,b) should be viewed as an argument in favour of the GMBC at
scales � 1 µm, whereas figure 5(c) provides a physical explanation as to why.

5. Concluding remarks

Since the main result of this paper has been summarised in the Introduction, it only
remains to comment on further applications of the proposed model and its connections
with other models of evaporation.

(i) Apart from drops, the generalised Maxwell boundary condition can be applied to
menisci – and if their radii are small, then the GMBC should produce results more
accurate than those of the classical model. This should be important for diffusion of
fluids in porous media with small pores.

Note also that interfacial effects are particularly strong for concave menisci, in
which case the Kelvin effect works with the interfacial effects, not against them. This
should make the difference between the predictions of the classical and generalised
models larger than that for convex menisci and drops.

(ii) For flat and cylindrical interfaces, the results obtained via the two models converge
with time. In both cases, the diffusion equation does not have a one-dimensional
solution describing a steady flux of vapour towards infinity, which effectively means
that the throughput of air is zero. As a result, after a sufficiently long time, the air
near the interface gets almost saturated.

At finite times, however, the classical and generalised models yield different
results even for cylindrical and flat interfaces.

(iii) A sessile or pendant drop – especially that with moving contact lines – evaporates
differently from floating ones. Its surface is highly curved near the contact lines,
changing the local evaporation rate. To account for this effect is not a straightforward
task, however, as the flow inside the drop is not one-dimensional in this case.

One might hope that the generalised model might explain the problem of
abnormally small Navier slip arising for several liquids, including water (Podgorski,
Flesselles & Limat 2001; Winkels et al. 2011; Puthenveettil, Senthilkumar &
Hopfinger 2013; Benilov & Benilov 2015).

(iv) All of the problems listed above are easier to solve using the quasi-static
approximation. One should keep in mind, however, that Finneran et al. (2021)
compared that with the transient solution of the governing equations (for the
classical model) and observed that at high pressure, the quasi-steady approximation
overpredicts the droplet lifetime by up to 80 %.

One might conjecture that the difference between the transient and quasi-steady
approaches is due to the fact that the latter implies that the mass of evaporated
liquid is infinite. Indeed, the steady solution of the spherically symmetric diffusion
equation for vapour is ∼1/r – hence the integral of this solution over the region
between the drop’s surface and infinity diverges.

Thus for the quasi-steady solution to establish itself around the drop, a significant
part of the drop should have evaporated already. This applies to both classical and
generalised models.
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Maxwell’s hypothesis of saturation near liquid/air interface

(v) If the drop’s radius is small, but the Kelvin effect is nevertheless neglected, the
generalised model – i.e. (4.1) with σ = 0 – predicts that the time of a drop’s
evaporation is proportional to its radius. A similar behaviour occurs due to the
temperature jump associated with the Knudsen layer (e.g. Rana et al. 2019; Zhao
& Nadal 2023), but this seems to be just a coincidence. Indeed, the DIM does not
describe temperature jumps (which are a purely kinetic effect (Bond & Struchtrup
2004; Persad & Ward 2016; Rana et al. 2018)), whereas the existing kinetic models
do not include the van der Waals force (which is vital for Zone 1 of the present
analysis).

Yet the Knudsen layer and Zone 1 are both located at the outskirts of the interface,
out of equilibrium and affected by irreversible processes: the former by collisions,
and the latter by viscosity (which is the hydrodynamic analogue of collisions). All
this suggests that Zone 1 is the DIM equivalent of the Knudsen layer. If this is indeed
the case, then the main conclusion of this paper is that the van der Waals force is one
of the driving effects in the Knudsen layer and thus should be accounted for.

This conjecture can be verified using the Enskog–Vlasov kinetic equation; it
includes the van der Waals force (just like the DIM) and can handle temperature
jumps (like the Boltzmann equation). Since both effects work the same way – to
slow evaporation down – their joint effect should be stronger than predicted by the
DIM and existing models of the Knudsen layer separately.

(vi) Despite the fact that the DIM cannot handle temperature jumps, it is still closely
related to the Enskog–Vlasov equation, with the former being the hydrodynamic
approximation of the latter (Giovangigli 2020, 2021). The asymptotic structure of
the solution of the two models should be similar, and the results obtained in the
present paper should make the analysis of the Enskog–Vlasov equation much easier.

(vii) Note that, strictly speaking, the surface tension depends on the drop’s curvature
(Tolman’s effect), which can have a profound influence on, say, cavitation (Menzl
et al. 2016; Magaletti, Gallo & Casciola 2021; Aasen et al. 2023; Lamas et al. 2023).
Since cavitating bubbles are created with zero radii, Tolman’s length – no matter
how small – may affect the whole ‘trajectory’ of their growth. Evaporation appears to
be different, however; since Tolman’s length for, say, water under normal conditions
is less than 1 Å (e.g. Wilhelmsen, Bedeaux & Reguera 2015; Burian et al. 2017), it is
much smaller than typical radii of evaporating drops, and the whole effect is likely
to be negligible.

Declaration of interests. The author reports no conflict of interests.
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E.S. Benilov https://orcid.org/0000-0002-5895-9746.

Appendix A. The thermodynamics incorporated into the DIM

A.1. The definition of the chemical potential Gi

Consider an N-component compressible non-ideal fluid, characterised by the temperature
T and partial densities ρi, where i = 1, . . . , N. The fluid’s thermodynamic properties are
fully described by the internal energy e(ρ1, . . . , ρN, T) and entropy s(ρ1, . . . , ρN, T) –
both specific, i.e. per unit mass. Note that e and s are not fully arbitrary, but should satisfy
the fundamental thermodynamic relation, which can be written in the form (see Appendix

971 A20-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

66
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0002-5895-9746
https://orcid.org/0000-0002-5895-9746
https://doi.org/10.1017/jfm.2023.667


E.S. Benilov

A of Benilov 2023a)
∂e
∂T

= T
∂s
∂T

. (A1)

The dependence of the fluid pressure p on (ρ1, . . . , ρN, T), or the equation of state, is
given by (e.g. Giovangigli & Matuszewski 2013)

p = ρ
∑

i

ρi

(
∂e
∂ρi

− T
∂s
∂ρi

)
, (A2)

where

ρ =
∑

i

ρi (A3)

is the total density. The partial chemical potentials, in turn, are given by

Gi = ∂(ρe)
∂ρi

− T
∂(ρs)
∂ρi

. (A4)

Using (A1)–(A4), one can verify readily identity (3.1).

A.2. The Maxwell construction (conditions of saturation)
Consider a flat interface in a multicomponent fluid in the state of equilibrium. This implies
that there should be no flow and fluxes (w = Ji = 0), and no dependence on t, so that
(3.14)–(3.15) yield

d
dz

⎛
⎝∑

j

Kij
d2ρj

dz2 − Gi

⎞
⎠ = 0. (A5)

One should also impose the following boundary conditions:

ρi → ρ
(l.sat)
i as z → −∞, (A6)

ρi → ρ
(v.sat)
i as z → +∞, (A7)

where ρ
(l.sat)
i and ρ

(v.sat)
i are the densities of saturated liquid and vapour, respectively.

Integrating (A5) with respect to z, and taking into account conditions (A6)–(A7), one
obtains

G(l.sat)
i = G(v.sat)

i . (A8)

Then consider ∫ +∞

−∞

∑
i

ρi × (A5) dz. (A9)

Integrating the resulting equality by parts, and keeping in mind that

∑
i,j

Kij
dρi

dz
d2ρj

dz2 dz = 1
2

d
dz

∑
i,j

Kij
dρi

dz
dρj

dz
dz, (A10)
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one can use boundary conditions (A6)–(A7) to obtain

−
∑

i

ρ
(v.sat)
i G(v.sat)

i +
∑

i

ρ
(l.sat)
i G(l.sat)

i +
∫ +∞

−∞

∑
i

dρi

dz
Gi dz = 0. (A11)

Observe that identity (3.1) implies that

Gi = ∂

∂ρi

⎛
⎝∑

j

ρjGj − p

⎞
⎠ . (A12)

This equality helps one to integrate the last term of (A11) and obtain

p(l.sat) = p(v.sat). (A13)

Physically, equalities (A8) and (A13) reflect the famous Maxwell construction (Maxwell
1875), which inter-relates the partial densities of the components in vapour and liquid. One
should also require

p(v.sat) = pA, (A14)

where pA is the atmospheric pressure.
An example of a numerical solution of boundary-value problem (A5)–(A7) in

application to a water/air interface (with the chemical potentials Gi described in the next
appendix) is shown in figure 3.

Appendix B. The parameters of the DIM

Benilov (2023a) proposed to use the DIM with the so-called Enskog–Vlasov equation
of state. In application to a binary fluid with one diluted component, it amounts to the
following expressions for the chemical potentials:

G1 = T
[

R1 ln ρ1 + Θ(ρ1) + (ρ1 + ρ2)
dΘ(ρ1)

dρ1

]
− 2(a11ρ1 + a12ρ2) + T[R1 + 3R1(1 − ln T)], (B1)

G2 = T[R2 ln ρ2 + Θ(ρ1)] − 2a12ρ1 + T[R2 + 5
2 R2(1 − ln T)], (B2)

where a11 and a12 are adjustable parameters, and Θ(ρ1) is an adjustable function. For
water and air, Benilov (2023a) proposed

a11 = 2112.1 m5 s−2 kg−1, a12 = 208 m5s−2 kg−1, (B3a,b)

Θ(ρ1) = R

[
−q(0) ln

(
1 − 0.99

ρ1

ρtp

)
+

4∑
n=1

q(n)

(
ρ1

ρtp

)n
]

, (B4)

where

ρtp = 999.79 kg m−3, (B5)

q(0) = 0.071894, q(1) = 1.4139, q(2) = 8.1126, (B6a–c)

q(3) = −8.3669, q(4) = 4.0238. (B7a,b)

When using the DIM, one also needs the Korteweg matrix Kij. The value of K11 can
be deduced from the surface tension of the liquid–water/vapour–water interface, and K22
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Figure 6. The surface tension of the water/air interface versus the pressure, at T = 22.5 ◦C. The black squares
show the experimental data of Hinton & Alvarez (2021), and the solid line shows the theoretical result (B8)
computed using the parameter values described in Appendix B and K12 = 0.84978 × 10−17 m7 s−2 kg−1

(chosen as the best fit of the experimental results). The dashed curves marked with ‘±’ are computed for
K12 = (0.84978 ± 0.04810) × 10−17 m7 s−2 kg−1, respectively.

from that of the liquid–air/vapour–air interface. The resulting values, computed by Benilov
(2023a), are listed in equality (3.12).

The coefficient K12 is harder to calculate. One might think that it can be determined by
comparing the liquid–water/vapour–water interface with the liquid–water/air interface –
but at normal conditions, their characteristics are almost indistinguishable. Instead, K12
was deduced from the surface tension of the liquid–water/air interface at high pressure,
measured by Hinton & Alvarez (2021). The following approach was used.

Within the framework of the DIM, the surface tension is given by

σ =
∑
i,j

Kij

∫ ∞

−∞
dρi

dz
dρj

dz
dz, (B8)

where ρi(z) is the solution of the boundary-value problem (A5)–(A7). It was solved
numerically with different values of K12 and the rest of the parameters given by (B1)–(B7)
and (3.12). For each value of K12, problem (A5)–(A7) was solved for various values of
the atmospheric pressure pA, and this computation was repeated until the best fit with the
experimental dependence σ versus pA is achieved. The results are shown in figure 6.

Unfortunately, Hinton & Alvarez (2021) provide data for only six values of pA, and the
resulting pairs (pA, σ ) do not sit on a smooth curve. Thus these measurements do not
seem to merit the use of formal curve-fitting methods; instead, a value of K12 was chosen
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‘manually’. If sought in the form

K12 = b(K11K22)
1/2, (B9)

the best fit appears to be for b = 0.53 – for which (B9) yields the value of K12 given by
(3.12). For comparison, figure 6 shows curves with K12 corresponding to b = 0.50 and
b = 0.56.

Note that in the pure-fluid reduction of (B8), one can replace the coordinate z with the
density ρ and then use the pure-fluid reduction of boundary-value problem (A5)–(A7) to
obtain a closed-form integral involving the fluid’s thermodynamic functions (see equation
(7.12) of Benilov 2023a). As a result, σ can be found without solving the equations for
the interfacial profile. In the multicomponent case, however, a similar change z → ρ1 does
allow one to bypass solving the equations, as (B8) would involve the dependence of ρ2 on
ρ1.

Appendix C. Equation (3.61)

The ordinary differential equation (ODE) (3.61) is third order, but it can be reduced to a
first-order equation of the Chini kind. To do so, multiply (3.61) by ρ2 and integrate with
respect to z. Fixing the constant of integration via boundary condition (3.62), one obtains

ρ2
d2ρ2

dz2 − 1
2

(
dρ2

dz

)2

− ρ2 + 1 = ξ

ρ2
2

dρ2

dz
. (C1)

Then changing (ρ2, z) → (q, ρ), where

q = dρ2

dz
, ρ = ρ2, (C2a,b)

one obtains

ρq
dq
dρ

− 1
2

q2 − ρ + 1 = ξ

ρ2 q. (C3)

In terms of (q, ρ), boundary condition (3.62) becomes

q = 0 at ρ = 1. (C4)

C.1. Numerical results
Observe that boundary-value problem (C3)–(C4) is singular at the boundary point, hence
to solve it numerically, one needs to ‘step away’ from ρ = 1. This can be done using the
asymptotic expansion

q ∼
∞∑

n=1

an(ρ − 1)n as ρ → 1. (C5)

Substituting into (C3), one can calculate recursively as many coefficients an as one needs,
e.g.

a1 = ξ −
√

ξ2 + 4
2

, a2 = 4ξa1 + a2
1

2ξ − 6a1
, . . . . (C6)
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To rewrite (3.63) for A(ξ) in terms of (q, ρ), one should first integrate it by parts and use
boundary conditions (3.62) and (3.64) to obtain

A =
∫ +∞

−∞
1
ρ4

2

(
dρ2

dz

)2

dz. (C7)

Rewriting this integral in terms of variables (C2), one obtains

A =
∫ +∞

1

q(ρ)

ρ4 dρ, (C8)

where q(ρ) is determined by (C3).
Boundary-value problem (C3)–(C4) was solved numerically by calculating 7 terms of

series (C5) to set up a boundary condition at ρ = 1.1 (a smaller number of terms was
found to be insufficient for large ξ ). Then the solution was shot towards ρ → +∞ using
the MATLAB function ‘ode23t’ (all other MATLAB functions for ODEs were found to be
slow and inaccurate for large ξ ). Finally, the computed solution was substituted into (C8),
which was evaluated via Simpson’s rule.

C.2. Asymptotic results
As discussed in the main body of the paper, the classical and generalised models do not
differ much for ξ ∼ 1. Thus the asymptotic limit ξ → ∞ is of particular importance.

If ξ � 1 and ρ ∼ 1, then the first two terms in (C3) can be omitted, and one obtains

q ≈ ξ−1ρ2(−ρ + 1). (C9)

The omitted terms become important (and the above solution inapplicable) if

ρ � ξ2/5. (C10)

To find the solution for large ρ, introduce (q′, ρ′) such that

q = ξ1/5ρ′, ρ = ξ2/5ρ′. (C11a,b)

In terms of the new variables, (C3) becomes, to leading order,

ρ′q′ dq′

dρ′ − 1
2

q′2 − ρ′ = q′

ρ′2 , (C12)

and its solution matches (C9) only if

q′ ∼ −ρ′3 + O(ρ′8) as ρ → 0. (C13)

The composite solution, valid for all ρ, is

q = ρ2(ρ − 1)

ξ
+ ξ1/5q′(ξ−2/5ρ) − ρ3

ξ
, (C14)

where the first term is the finite-ρ solution (C9), the second term reflects scaling (C11) for
large ρ, and the last term is the common part of the two solutions. Substituting the above
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expression into (C8), one obtains

A = −1
ξ

− 1
ξ

∫ ∞

ξ−1/5

q′(ρ′)
ρ′4 dρ′. (C15)

One might be tempted now to take the limit ξ → ∞, but the integral in (C15) is actually
divergent (due to asymptotics (C13)). One can still use (C13) to express this integral
through a convergent one:∫ ∞

ξ−1/5

q′(ρ′)
ρ′4 dρ′ = −2

5
ln ξ −

∫ ∞

ξ−1/5
ln ρ′ d

dρ′

(
q′

ρ′3

)
dρ′. (C16)

Now take the limit ξ → ∞, so that (C15) becomes

A ≈ 1
ξ

[
−1 + 2

5
ln ξ +

∫ ∞

0
ln ρ′ d

dρ′

(
q′

ρ′3

)
dρ′
]

. (C17)

The integral in this expression does not involve ξ , hence it can be evaluated ‘once and
for all’. This was done by solving boundary-value problem (C12)–(C13) numerically and
substituting the resulting solution into (C17), which yields

A ≈
2
5 ln ξ − 0.81571

ξ
. (C18)

C.3. Curve-fitting results
The large-ξ asymptotics (C18) can be used to derive an approximation of A(ξ) for all ξ .
To do so, assume that

A ≈
2
5 ln(ξ + ξ0) − 0.81571

ξ + ξ0
+ A0

(ξ + ξ0)7/5 , (C19)

where ξ0 and A0 are undetermined constants; the former regularises asymptotics (C18)
at ξ = 0, and the latter improves the accuracy for large ξ . (Note that a term ∼ξ−7/5

would appear as a correction to the leading-order solution if (C18) were extended to higher
orders.)

The coefficients ξ0 and A0 were fixed by fitting (C19) to the corresponding numerical
result for the range ξ ∈ [0, 105], using the MATLAB function ‘fit’. The resulting values are
those in (1.4) of the Introduction. The relative error of (1.4) within the range ξ ∈ [0, 105]
is approximately 0.8 %.
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