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Summary

Previous studies have noted that the estimated positions of a large proportion of mapped

quantitative trait loci (QTLs) coincide with marker locations and have suggested that this indicates

a bias in the mapping methodology. In this study we predict the expected proportion of QTLs

with positions estimated to be at the location of a marker and further examine the problem using

simulated data. The results show that the higher proportion of putative QTLs estimated to be at

marker positions compared with non-marker positions is an expected consequence of the

estimation methods. The study initially focused on a single interval with no QTLs and was

extended to include multiple intervals and QTLs of large effect. Further, the study demonstrated

that the larger proportion of estimated QTL positions at the location of markers was not unique

to linear regression mapping. Maximum likelihood produced similar results, although the

accumulation of positional estimates at outermost markers was reduced when regions outside the

linkage group were also considered. The bias towards marker positions is greatest under the null

hypothesis of no QTLs or when QTL effects are small. This study discusses the impact the findings

could have on the calculation of thresholds and confidence intervals produced by bootstrap

methods.

1. Introduction

To understand the nature of quantitative genetic

variation and to utilize this variation efficiently in

artificial selection programmes in plant and livestock

populations, methods have been developed to map

quantitative trait loci (QTLs) which underlie this

variation. These methods use information from

multiple genetic markers to estimate the position of

QTLs and their effects on the traits of interest. Lander

& Botstein (1989) used maximum likelihood to map

QTLs using sets of flanking markers and named their
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method ‘ interval mapping’. Haley & Knott (1992)

showed that a simple linear regression method gives

results that are very similar to the more complicated

maximum likelihood methods. For simple population

structures, results from the two methods are nearly

identical with respect to the power and estimates of

parameters.

Several authors have recently noted that a large

proportion of mapped QTLs are estimated to be at the

same position as markers, and have questioned

whether there is a bias in the regression method (e.g.

Spelman et al., 1996; Walling et al., 1998). When the

null hypothesis of no QTLs is true, it would be

expected that the estimated position of putative QTLs,

determined by the position of the largest test statistic

or Lod score, would be randomly distributed on the

chromosome. In this case the proportion of estimated

putative QTL positions at any one point on the
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Fig. 1. Distribution of the position of the largest test statistic across a chromosome of 100 cM. Results are based on 1

million simulations of a backcross population of 200 individuals, using 11 evenly spaced fully informative markers. Also
shown is the mean test statistic when the position is the estimated location of a putative QTL.

chromosome would be 1}n, where n is the number of

locations tested. Walling et al. (1998) showed by

simulation that this was not observed, and that the

Fig. 2. Histogram showing the position of estimated QTL locations from 1 million replicates of a backcross population
of 200 individuals, using a single 20 cM interval with a QTL (h#¯10%) at 10 cM.

QTL location was estimated more often at positions

of flanking markers in comparison with non-marker

locations. An example from Walling et al. (1998) is
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given in Fig. 1, which clearly shows that under the null

hypothesis of no QTLs, a large proportion of QTLs

are estimated to be at a marker position.

When a large QTL is located within an interval, the

distribution of the estimated location might be

expected to be approximately normal with the mean

at the true location of the QTL. Fig. 2 demonstrates

this is not observed in analyses of simulated data even

when the power of detecting the QTL is high. A large

proportion of estimates indicate that the position of

the putative QTL is at the location of one of the

flanking markers. Indeed only within 3 cM of the true

QTL location does the frequency of estimates at an

individual position outnumber the frequency at either

flanking marker.

The apparent bias of the interval mapping method

towards placing the estimated location of QTL at a

marker position could affect the results of several

types of studies. Bootstrapping is a relatively simple

method of producing confidence intervals for a

position of a QTL (Visscher et al., 1996) but, as

demonstrated by Walling et al. (1998), the results of a

bootstrap analysis could be misleading in the presence

of inherent positional bias. In addition, Fig. 1 also

highlights another trend. The mean test statistic is

significantly lower when the estimated position for a

putative QTL is located at a marker. Significance

thresholds in QTL analysis are often calculated by

studying the distribution of the test statistic when no

QTL is present by simulation or permutation. The

accumulation of estimated positions at marker

locations and subsequently lower estimates of the test

statistic may decrease thresholds below their correct

value.

The aim of this study was to examine the ac-

cumulation of estimated QTL positions at the location

of markers and to estimate through simulation and

theory the proportion of estimated positions for

putative QTLs at the site of a marker.

2. Linear regression

(i) Single inter�al

For a single interval, results from Whittaker et al.

(1996) can be used to predict the probability that the

highest test statistic will be at either of the flanking

markers. In this study we consider only a backcross

population derived from inbred lines, but the general

results also apply to other population structures.

Model, assumptions and notation

y¯µ­β
L
x
L
­β

R
x
R

with x
L

and x
R

the marker scores pertaining to the

flanking markers. For fully informative markers in a

backcross population, x
L

and x
R

can have two

(arbitrary) values only, for example 0 and 1. Whittaker

et al. (1996) showed that β
L

and β
R

are simple non-

linear equations of the unknowns α and d, i.e. the

QTL effect and location. For a backcross population,

the QTL effect α is defined as the difference between

the heterozygous and homozygous genotypes at the

QTL. Hence, a simple transformation of the regression

coefficients, which are estimated by a multiple re-

gression of the phenotypes on the marker scores, gives

the estimates of the QTL effect and location, thus

making a grid search within the interval unnecessary.

Whittaker et al. (1996) also showed that, if the signs of

the two regression coefficients were not the same, the

results were not consistent with a QTL in that interval.

In terms of the equivalent grid search, this would

result in the estimate of the QTL position being at the

location of a flanking marker. The latter observation

can be used to predict the probability of a QTL being

placed at a marker because it corresponds to the

probability that the sampled regression coefficients

are of unequal sign. Hence, the means and (co)-

variances of the two regression coefficients need to be

calculated.

For a QTL at position d from the first marker, with

recombination rate r
L
and r

R
from the first and second

marker respectively, the expected values of the

regression coefficients were shown by Whittaker et al.

(1996) to be:

β
L
¯ [r

R
(1®r

R
)(1®2r

L
)}(r(1®r ))]α (1)

β
R

¯ [r
L
(1®r

L
)(1®2r

R
)}(r (1®r ))]α (2)

with r the recombination rate between the flanking

markers.

The two estimated regression coefficients b«¯ [b
L

b
R
], conditional on a set of fixed x

L
­x

R
, follow a

bivariate normal distribution, with mean β«¯ [β
L
β
R
],

and covariance matrix,

var(b)¯ (XHX)−"σ#

with X being the design matrix for the regression

model. We have assumed that the sample size is large

so that the mean (µ) is estimated without error and

hence the sampling covariance between the two

regression coefficients due to the estimation of the

mean can be ignored. If we now consider that the

regressors are random variables, then elements of XHX
contain multiples (²N®3´, since 3 degrees of freedom

are lost in the estimation procedure) of the variances

and covariances of the regressors (x ). This result

follows from standard regression theory: when y and

x are bivariately normally distributed, the variance of

the regression coefficient for the model y¯µ­bx, is

σ#}(n®3), with σ# the variance of y rx, and n the

sample size (Kendall & Stuart, 1963). For a backcross
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population, the (co)variances of x
L

and x
R

are easy to

calculate :

var(x
L
)¯ var(x

R
)¯ "

%
,

cov(x
L
, x

R
)¯ "

%
(1®2r ).

Assuming, without loss of generality, that σ#¯1, this

gives an approximation of var(b) as,

var(b)E
1

(N®3)r(1®r )

A

B

1 ®(1®2r )

®(1®2r ) 1

C

D

.

(3)

Using equations (1) to (3), we have the mean and

approximate (co)variances of the two regression

coefficients. Hence, we can predict the probability that

the estimates will be of opposite sign, using a standard

bivariate normal distribution.

(ii) No QTL model

The no QTL model is the easiest to address, because

the mean values of the regression coefficients are zero,

so only the correlation between the regression coef-

ficients, ®(1®2r ), determines the area of the bivariate

normal distribution for which the two variables are of

opposite sign. The two variables exhibit symmetry

around zero, hence the variances (and therefore

population size) of these values are irrelevant. There is

a single solution for this case that does not require

numerical integration (Kendall & Stuart, 1963) :

Prob(QTL at either marker)

¯ 0±5®arcsin(®(1®2r ))}π

¯ 0±5­arcsin(1®2r )}π. (4)

Equation [4] was checked by simulation of intervals of

length 10, 20, 40 and 100 cM, and the predicted

proportion of QTLs which were placed at the markers

was very close to proportions observed through

simulation (absolute differences! 0±001). For marker

spacings of 10, 20, 40 and 100 cM, the predictions

from equation [4] are 0±805, 0±734, 0±648 and 0±543,

respectively. Hence, for an interval of 20 cM, the

probability that a QTL pertaining to the largest test

statistic in this linkage group is placed at either

marker is 0±734.

(iii) Single QTL in inter�al

The next level of complexity introduces a QTL into

the single interval, in which case numerical integration,

or some approximation, has to be used to predict the

area under the bivariate normal surface for which the

two variates are of opposite sign. Two approaches

Table 1. Predicted and simulated proportions of

estimated QTL locations that were placed at markers

Marker spacing (cM)

n 10 20 40 100

50 0±540 0±424 0±347 0±394
0±514 0±401 0±332 0±380

200 0±209 0±104 0±064 0±143
0±182 0±089 0±053 0±128

500 0±045 0±010 0±003 0±021

0±034 0±007 0±002 0±017

Upper values, observed values from 1000000 simulations of
a backcross population; lower values, predictions from the
algorithm of Mendell & Elston (1974). The simulated QTL
was in the middle of the interval, with h#¯ 0±10.

were used to estimate the relevant integrals : (i) A 7-

order Taylor series expansion, and (ii) the algorithm

of Mendell & Elston (1974). The two methods gave

nearly identical results, and the results from the latter

approach are shown in Table 1. In this table, the

proportion of estimated QTL locations at either

flanking marker was calculated using theoretical

prediction and simulation, for population sizes of 50,

200 and 500. The QTL was placed in the middle of the

interval, and explained 10% of the phenotypic

variation in the backcross population. Although the

difference between the prediction and simulation is

larger than in the no QTL scenario, they remain in

close agreement. There appears to be a small

underestimation in the prediction.

(iv) Two inter�als and no QTL

For two intervals and three markers, there are four

regression coefficients whose joint distribution deter-

mines where a QTL is placed, with the regression

coefficient pertaining to the middle marker appearing

twice : once in combination with the first marker, and

once in combination with the third marker. Let the

regression coefficients be β
"
, β

#"
, β

#$
and β

$
, where β

#"

is the regression coefficient of the second marker in

combination with marker 1, and β
#$

is the regression

coefficient of marker 2 in combination with marker 3.

Again the signs of the four estimated regression

coefficients (b
"
, b

#"
, b

#$
and b

$
) determine in which

interval or at which marker the QTL is placed

(Whittaker et al., 1996).

The probability of obtaining a particular com-

bination of signs can be predicted if we know the joint

distribution of the four estimated regression coef-

ficients. If b
"

is a vector containing b
"

and b
#"

, with

corresponding incidence matrix X
"
, and b

#
is a vector

with elements b
#$

and b
$
, and incidence matrix X

#
,
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then the covariances between the regression coef-

ficients can be calculated as:

cov(b
i
, b

j
)£ (X!

i
X

i
)−"(X!

i
X

j
)(X!

j
X

j
)−". (5)

Analogous to the case of a single marker interval, the

elements of the complete covariance matrix for the

four regression coefficients were calculated using

equation (5). For i¯ j, equation (5) reduces to (3).

For i1 j, i.e. for the sampling covariance between b
"
,

b
#"

and b
#$

, b
$
, the only non-zero covariance is

between b
#"

and b
#$

, and its value is, approximately,

4}(N®3). The result of zero sampling covariances for

non-adjacent markers has been demonstrated in

previous publications (e.g. Visscher, 1996).

For a large population size, it was assumed that the

joint distribution of the regression coefficients is

multivariate normal. This assumption was validated

by a subsequent simulation study. Four variables were

sampled from a multivariate normal distribution with

a mean of zero and the covariance matrix as in

equation (6), for values of the marker intervals, d
"
and

d
#
. Equation (6) was derived assuming Haldane’s

mapping function and by pre- and post-multiplying

the 4¬4 covariance matrix obtained from equation

(5) by a diagonal matrix D with elements :

D¯ diag ²["
%
(1®e−%d")]"}

#, [ "
%
(1®e−%d")]"}

#´, ²["
%
(1®e−%d#)]"}

#, ["
%
(1®e−%d#)]"}

#´

var

E

F

b
"

b
#"

b
#$

b
$

G

H

£

A

B

1 ®e−#d" 0 0

1 [(1®e−%d")(1®e−%d#)]"}
# 0

1 ®e−#d#

symm 1

C

D

.

(6)

Table 2. Patterns of the signs of regression coefficients for two marker inter�als, and the conditional

probabilities that a QTL is placed at one of the three markers

Probabilities

Group Pattern P(M
"
) P(M

#
) P(M

$
)

1 ®®®® 0 0 0
2 ®®®­ 0 0 "

#
r
#

3 ®®­® 0 0 1

4 ®®­­ 0 0 0
5 ®­®® 1 0 0
6 ®­®­ "

#
0 "

#
7 ®­­® r

"
}(2r

"
­r

"#
) r

"#
}(r

"
­r

#
­r

"#
) r

#
}(2r

#
­r

"#
)

8 ®­­­ "

#
r
"

0 0
9 ­®®® "

#
r
"

0 0
10 ­®®­ r

"
}(2r

"
­r

"#
) r

"#
}(r

"
­r

#
­r

"#
) r

#
}(2r

#
­r

"#
)

11 ­®­® "

#
0 "

#
12 ­®­­ 1 0 0
13 ­­®® 0 0 0
14 ­­®­ 0 0 1

15 ­­­® 0 0 "

#
r
#

16 ­­­­ 0 0 0

r
"

is the recombination fraction between the markers 1 and 2, r
#

between markers 2 and 3, and r
"#

is the recombination
fraction between markers 1 and 3.
P(M

i
) is the probability that a QTL is placed at marker M

i
.

For each sample of four values, the signs of the four

coefficients were recorded, for a total of 1 million

replicates. The observed average pattern of signs of

the coefficients (e.g. [­­­­] or [®®­®]) was

compared with simulation results where markers in a

backcross population were sampled. The results from

simulating a backcross population (population size¯
100, 200 and 500; heritability of QTL¯1%, 5% and

10%; marker spacing¯10, 20, 50 and 100 cM) were

from 1000 replicates. The resulting patterns were not

significantly different from each other, suggesting that

equation (6), and assuming multivariate normality, is

a good approximation for the distribution of the four

regression coefficients. Hence, to determine the prob-

ability of obtaining any of the 16 sign configurations

of the regression coefficients, for a particular distance

between the markers, a simple and quick simulation

was performed using a multivariate normal distri-

bution.

The final part of the prediction is to translate the

pattern of the signs of the regression coefficients into

the probability that a QTL is placed at one of the

three markers. This is relatively straightforward for
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Table 3. Probability of QTL being placed at markers M
"
, M

#
and M

$
, for two adjacent inter�als under the null

hypothesis of no QTL effect : obser�ed results from simulation (linear regression) and predicted results from

sampling from a multi�ariate normal distribution

Observed Predicted

∆ M
"

M
#

M
$

Sum M
"

M
#

M
$

Sum

5 0±317 0±200 0±312 0±829 0±321 0±191 0±324 0±836
10 0±290 0±179 0±290 0±759 0±294 0±172 0±296 0±761

20 0±248 0±156 0±256 0±660 0±255 0±149 0±259 0±663
40 0±212 0±129 0±219 0±560 0±215 0±125 0±213 0±553

100 0±174 0±098 0±171 0±443 0±164 0±095 0±164 0±424

∆, marker spacing (cM).

some combinations, but not for others. For example,

given the pattern [­­­­], the first pair of regression

coefficients have the same sign, indicating the QTL

could be within the first interval. The second pair of

regression coefficients also have the same sign,

indicating the QTL could bewithin the second interval.

Under either scenario the estimated location of the

QTL would not be located at a marker. Unfortunately

not all combinations are conclusive: for a pattern such

as [­­­®], sometimes the QTL will be inside the

first interval and sometimes it will be placed at the

third marker. The other less obvious pattern is

[­®®­]. In this case the QTL can be placed at

either the first, second or third marker.

The proportions were calculated theoretically, using

the recombination fractions between the markers as

parameters, and results are shown in Table 2. These

were checked extensively using simulations, and found

to be reasonable approximations (Table 3). For

example, for a marker spacing of 20 cM, the prob-

ability that the largest test statistic is at one of the

three markers was 0±660 and its prediction 0±663. This

prediction includes simulation results from the multi-

variate normal distribution.

Table 4. Probability of QTL being placed at markers using maximum likelihood (ML) or linear regression

(REG) on the same data for a single marker inter�al, using simulation results from 1000 replicates of a

backcross population of 200 indi�iduals with no QTL. A separate set of 1000 replicates was e�aluated for

extending the chromosome by 100 cM from both markers (MLEX ). Prediction results presented from sampling

from a multi�ariate normal distribution

Probability of the QTL being located at either marker

∆ ML REG MLEX Prediction

5 0±903 0±877 0±320 0±860
10 0±828 0±827 0±284 0±805
20 0±750 0±754 0±238 0±734
40 0±669 0±662 0±233 0±648

100 0±540 0±538 0±175 0±543

∆, marker spacing (cM).

3. Maximum likelihood

It could be argued that the results obtained so far are

an artefact of the method of analysis used, i.e. linear

regression. The regression method does not take into

account that genotypes at locations in between

markers are not known precisely and variances may

be heterogeneous within marker classes. In addition,

there is no information used in the regression method

that can distinguish between a QTL at the end marker

of a linkage group, and a linked QTL outside the end

marker. Using regression, the test statistic beyond the

end marker is the same as the test statistic at that

marker. Hence, these ‘end-effects ’ may cause part of

the accumulation of positional estimates observed at

markers, i.e. that a large proportion of QTLs are

placed at the extreme marker positions.

We simulated a backcross population with no

QTLs and analysed the data using maximum like-

lihood (ML). For a particular marker interval, the test

statistic was calculated at 1 cM positions in the

linkage group and compared with the results from the

regression method (REG). To allow comparisons

between the results both methods (ML and REG)
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Table 5. Probability of a QTL being placed at markers M
"
, M

#
or M

$
, and the sum of these probabilities

(Sum), using maximum likelihood (ML) or linear regression (REG) on the same data for two marker inter�als,

using simulation results from 1000 replicates of a backcross population of size 200 with no QTL. A separate set

of 1000 replicates was e�aluated for extending the chromosome by 100 cM from both extreme markers

(MLEX )

ML MLEX REG

∆ M
"

M
#

M
$

Sum M
"

M
#

M
$

Sum M
"

M
#

M
$

Sum

5 0±319 0±236 0±322 0±877 0±113 0±169 0±108 0±390 0±314 0±232 0±317 0±863
10 0±311 0±191 0±299 0±801 0±099 0±154 0±110 0±363 0±310 0±190 0±302 0±802
20 0±250 0±176 0±266 0±692 0±084 0±144 0±088 0±316 0±247 0±173 0±267 0±687
40 0±224 0±142 0±209 0±575 0±085 0±121 0±068 0±274 0±230 0±136 0±219 0±585

100 0±192 0±087 0±160 0±439 0±073 0±075 0±068 0±216 0±175 0±093 0±191 0±459

∆, marker spacing (cM).

used a grid search approach at 1 cM intervals. In a

separate set of simulations, the test statistic was also

calculated by extending the chromosome to 100 cM to

the left of the leftmost marker, and to the right of the

rightmost marker (MLEX). This was done because

maximum likelihood can, in principle, detect estimated

locations for a putative QTL that are outside the

linkage group.

Results are shown in Tables 4 and 5. In Table 4,

simulation results are shown from a single marker

interval for ML, MLEX and REG. Results for the

proportion of QTLs placed at markers are very

similar for ML and REG when the estimated position

was chosen from the given linkage group. This was

expected, given previous results from the many studies

demonstrating the close similarity between maximum

likelihood and regression methods (e.g. Haley &

Knott, 1992). When the chromosome was extended,

the proportion of QTLs placed at either marker

decreased significantly. For example, for a marker

interval of 20 cM, the proportion of QTLs placed at

either marker was 0±750 for a search over the 20 cM,

and 0±238 when the search was extended to 220 cM.

Extending the search even wider did not significantly

reduce the proportion of highest test statistics at

markers (results not shown). Hence, although the

‘end-effect ’ gives an inflated proportion of QTLs that

are placed at markers, the proportion of estimates at

marker locations is still significantly higher than at

non-marker locations even when the search is ex-

tended.

In Table 5, results are shown for two marker

intervals. Results for REG in Table 5 are slightly

larger than the equivalent points in Table 3. This is

because the grid search method at 1 cM intervals

rounds the results to the nearest centimorgan. Hence,

with a marker at 10 cM, any result between 9±5 cM

and 10±5 cM would give an estimate at the location of

the marker. The equations of Whittaker et al. (1996)

give a precise answer and differentiate between an

estimate at the location of a marker and an esti-

mate! 0±5 cM away from a marker. The results for

ML and REG are very similar when the search is

confined to the linkage group. The proportion of

estimates that are placed at the middle marker are also

very similar for both methods. When the chromosome

search is extended by 200 cM, the proportion of QTLs

that are placed at outermost markers decreases.

However, a substantial proportion of the replicates

still have the estimated location of a QTL at the

position of a marker. In addition, the largest pro-

portion is now found at the central marker. For

example, a total of 31±6% of positional estimates were

placed at the three markers, with 14±4% at the

location of the middle marker.

4. Discussion

We have shown that under the null hypothesis of no

QTL the probability that the largest test statistic is

found at a marker locus is high. When using linear

regression to analyse QTL data from a backcross

population, the proportions were predicted analyti-

cally for single and double intervals. The predictions

were extended to a single interval containing a QTL

located midway between two flanking markers. The

extension to multiple intervals is feasible, although it

would be tedious and is unlikely to increase our

understanding of interval mapping. The simulations

and predictions were performed for a backcross

population derived from inbred lines, but the general

conclusions are also valid for other designs, such as

F2 and half-sib populations. The accumulation of

estimated locations at the position of markers occurs

when using either maximum likelihood or linear

regression. In practice, more sophisticated methods to

map multiple QTL are used (Jansen, 1993, 1994;
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Zeng, 1993, 1994). However, for a particular marker

interval, these methods essentially use interval map-

ping and a bias towards locating estimated positions

of a QTL at a marker are also to be expected.

This work demonstrates a bias in estimated QTL

position, but we should be careful how the estimated

QTL position is defined. There are at least two

definitions that have been discussed in the literature:

(i) The average position of a QTL from repeated

sampling. If we consider the average estimated

location of a QTL in a replicated experiment, it

will be biased towards the middle of the chro-

mosome, because of the impact of false positives

(which are distributed symmetrically around the

mid-point on any one chromosome). However,

the average test statistic across experiments is

largest at the true QTL position (Haley & Knott,

1992). This implies that there is a relationship

between the size of the largest test statistic and its

estimated position. We also found this from our

simulations under the null hypothesis (Fig. 1), in

that the highest test statistic had, on average, a

lower value when it was placed at a marker

compared with when it was in between markers.

(ii) The distribution (rather than just the point

estimate) of the estimated position of the QTL,

which is equivalent to investigating the distri-

bution of the maximum test statistics along a

chromosome region. The distribution of the

highest test statistic, i.e. with variation in the

position of a QTL across repeated sampling, does

not follow a χ# distribution (Mangin et al., 1994).

In the present study we have focused on the

distribution of the estimated QTL position. In

particular, we have investigated the behaviour of

Fig. 3. Probability of QTL placed at either flanking marker of a 20 cM single interval as a function of QTL effect for
the case of no threshold or a threshold corresponding to a 5% type I error rate.

the estimated QTL position expressed as the

proportion of QTLs that are found at marker loci.

For example, from our results in Table 1 we can

conclude that ‘ if we repeatedly map a QTL with

h#¯ 0±10 in a single interval of 20 cM, using a

very low significance threshold and a population

size of N¯ 200, the probability that the QTL

location is estimated at one of the flanking markers

is approximately 0±10 when the actual QTL is in

the middle of the chromosome’.

With reference to the above point, it is worth noting

that the behaviour of the test statistic at a particular

location has been studied by several authors (e.g.

Haley & Knott, 1992; Mangin et al., 1994). These

studies demonstrated that for a particular location in

the genome (i.e. both marker and non-marker

locations), the test statistic asymptotically follows a

central or non-central χ# distribution in the absence

and presence of a QTL, respectively. However, these

findings are useful only if we wish to focus on a

particular location, e.g. a candidate gene; they do not

describe the distribution of the maximum test statistic

when a search along a chromosome region is

performed.

Most of our results were derived for the null

hypothesis of no QTL in any marker interval. It could

be argued that in practice we should set a significant

threshold and the bias may disappear. However,

Walling et al. (1998) showed that even when setting an

arbitrary threshold, the accumulation of positional

estimates at marker locations remains. This is not

surprising, because our simulations were performed

with an arbitrary low threshold of zero. We illustrate

this in Fig. 3, which shows the probability of a QTL

being placed at a flanking marker, as a function of the
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true QTL heritability and the threshold for the test

statistic. Fig. 3 shows that whether or not a threshold

is imposed, the probability of the QTL being mapped

at a marker is relatively large for QTLs of small

effects.

In practice, the consequence of the bias is likely to

be small. In many mapping experiments a single

population is used with a stringent threshold. Under

these conditions the accumulation of estimated QTL

locations at the positions of markers is unlikely to

occur. Areas that are affected are those using

replication, especially in populations with no QTL or

a QTL with small effect. The application of resampling

techniques such as the bootstrap (Visscher et al., 1996)

has consistently shown large peaks at positions of

markers (e.g. Walling et al., 1998; Knott et al., 1998).

These observed results are a consequence of the bias

that was shown in this paper and could elongate or

truncate confidence intervals that would otherwise

have ended before or beyond the marker location

respectively. However, the non-parametric bootstrap

has been shown to perform to expectation, i.e. a 90%

confidence interval contains the QTL in 90% of all

cases, or be slightly conservative under certain

parameter combinations (Walling et al., 1998). In

comparison the parametric bootstrap is inaccurate

and clearly influenced by the effects demonstrated in

this study.

Two methods – a ‘difference’ method and a

‘weighted’ method – that directly correct for marker

bias have been suggested for calculating confidence

intervals for QTL locations from the non-parametric

bootstrap (Bennewitz et al., 2000). Both methods base

the correction on the distribution of the bootstrap

estimates along the chromosome when a QTL may be

present but not in a linkage phase with any marker.

This distribution is obtained through simulation using

the permutation approach. The theory presented in

this paper would allow the correction to be based on

the true theoretical distribution and would remove the

sampling error present in the simulation approach.

Bootstrapped confidence intervals using the corrected

approaches are shorter without a loss in accuracy, i.e.

the proportion of 90% confidence intervals that

contains a QTL is still 0±90.

The results from this studymay affect the calculation

of suitable thresholds using the permutation test

(Churchill & Doerge, 1994) or simulation. Permu-

tation methods collate the maximum test statistic

from random permutations of the phenotypic records

relative to the genotypes, breaking any marker–QTL

association, and hence are assumed to be sampling

from the distribution of the maximum test statistic

under the null hypothesis. This study demonstrates

that the distribution of the maximum test statistic

differs between marker and non-marker locations.

Currently the application of these methods means that

many of the maximum test statistics are located at the

position of a marker ; but as shown in Fig. 1 these are,

on average, lower than the test statistics from maxima

at non-marker locations. Thresholds are then calcu-

lated from these test statistics which, because of the

unequal sampling from marker and non-marker

locations, produce lower thresholds than would have

been produced from more proportionate sampling.

Simulation studies demonstrate that thresholds de-

rived by the permutation approach give the anticipated

type I thresholds at the level of the whole linkage

group or genome. Nonetheless, future studies should

investigate whether thresholds can be adjusted on a

within-chromosome positional basis to account for

the accumulation of estimates of QTL position at

markers.
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