
ON THE SUBALGEBRAS OF FINITE DIVISION 
ALGEBRAS 

JOSEPH L. ZEMMER, J R . 

1. Introduction. In 1893 it was shown by Moore that the only commutative, 
associative division algebras with a finite number of elements are the well-known 
Galois fields [10, p. 220]. Twelve years later it was shown by Wedderburn that 
every associative division algebra with a finite number of elements is commutative 
[11], and hence a Galois field. It is conceivable that these results, particularly 
the theorem of Moore, motivated some of the work done by Dickson and 
published in two papers in 1906 [4;5]. The work referred to is an attempt to 
determine all commutative, non-associative1 division algebras with a finite 
number of elements. The most complete result of Dickson states that there are 
only two commutative division algebras with unit element of order 3 over a 
Galois field GF(qk). One of these is the associative algebra GF{gzk) and the other 
an algebra in which the multiplication is not associative. Since this non-
associative algebra is discussed briefly in §4 the details will be omitted here. 
The methods used by Dickson in this connection are not capable of immediate 
generalization, and the problem of determining all commutative division 
algebras of order n over a finite field is still unsolved. Although Dickson 
apparently abandoned the problem shortly after the publication of the papers 
referred to above, his work in this connection should not be taken too lightly. 
It has been conjectured that this work may have led Dickson to his important 
discovery of cyclic algebras. 

Before discussing the results contained in the present paper, it is desirable to 
make several definitions and some obvious remarks concerning finite division 
rings and finite division algebras. 

A set G of elements is called a quasigroup with respect to a binary operation 
( • ), if and only if: 

(i) x - y is uniquely determined for each ordered pair x, y (:G, 
(ii) the equations a - x = b, y • a = b have unique solutions for each ordered 

pair a, b £ G. 
A quasigroup with unit element is called a loop. 
A set A of elements is called a division ring with respect to two binary 

operations, ( + ) and ( • ), defined on A, if and only if: 

Received April 18, 1951. This paper contains the substance of a thesis prepared under the 
direction of Professor R. H. Bruck and submitted for a Ph. D. degree at the University of 
Wisconsin. 

^ e r e , non-associative algebra means one which is not necessarily associative. In the re
mainder of the paper, however, non-associative algebra will mean an algebra in which the 
multiplication is actually not associative. 
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(i) the elements of A are an abelian group under ( + ), 
(ii) the non-zero elements of A are a quasigroup under ( • ), 

(iii) the two distributive laws x - {y -\- z) — x - y -\- x - z and (y + z) • x = 
y - x + z - x hold for all x, 3/, z £A. 

A division ring A is called a division algebra of order n over a field F, if and only 
if: 

(i) the additive group of A is a linear vector space of order n over F, 
(ii) a (a - b) = a - ( a b) = ( a a) • Z? for all a Ç J7 and a, & 6 ̂ 4. 
Note that if a division algebra A contains a unit element e, then the set of 

all multiples, a e, a Ç F, is a subalgebra of 4̂ isomorphic to F. There is no loss of 
generality in denoting a e by a. 

Let A be a division ring, and a any non-zero element of ^4. Then the mappings 
x —» xa and x —* ax are clearly non-singular mappings of A upon ^4. These 
mappings are denoted by R{a) and L(a) respectively. Let a, b be any two 
non-zero elements of A, and consider the system A0, consisting of the same 
elements as Ay with multiplication defined by x • y — xi^(a) - 1 • yL(b)~l. 
Denote by e the product b • a, then clearly e • y — y • e = y for all y £A0, 
Thus e is a unit element of AQ; furthermore, it is easily seen that AQ is a division 
ring, and that it is commutative if A is commutative and a = b. It is seen 
then that the study of division rings is reduced to a study of division rings with 
unit element. 

Now, if A is a finite division ring with unit eu then clearly A contains a subring 
M isomorphic to a finite prime field GF(p) for some rational prime p. By finite 
induction it may be shown that A has a basis e\, . . . , en with respect to M. 
Thus a study of finite division rings is reduced to a study of division algebras 
with unit element over a Galois field. 

In §2 finite commutative division algebras with unit element are studied. 
It is shown that every such algebra of even order contains a subalgebra of 
order 2, and that no such algebra of odd order contains a subalgebra of order 2. 
A well-known, and rather elementary, result in the theory of associative 
division algebras states that the order of every subalgebra of a division algebra 
is a divisor of the order of the algebra. Whether or not this result is valid for 
non-associative division algebras is not known. One application of the results 
obtained in §2 gives a little information in this connection in the case where 
the division algebra is a finite commutative algebra with unit element. 

An attempt is made in §3 to determine, by the use of Theorem 1, all finite, 
commutative division algebras with unit element of order 4 over a Galois field. 
A theorem due to Dickson is sharpened somewhat, but not enough to solve the 
problem completely. In fact, Theorem 1 does not seem to give enough information 
to solve the weaker problem of determining all finite, commutative division 
algebras of order 4 whose automorphism group relative to the base field contains 
the cyclic group of order 4. It is possible, however, to find out something about 
the subalgebras of finite division algebras of order n whose automorphism group 
relative to the base field contains the cyclic group of order n. This is done in 

https://doi.org/10.4153/CJM-1952-044-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1952-044-6


SUBALGEBRAS OF FINITE DIVISION ALGEBRAS 493 

§6, after it has been shown in §5 that there exist finite algebras of this kind 
which are not associative. 

2. Finite commutative division algebras. Before proceeding to the main 
theorem of this section, it is necessary to make some remarks concerning nor
mality of subloops of a given loop L. The subloop G of L is said to be normal 
in L if and only if the following condition is satisfied [2, p. 256]: for arbitrary 
x, y(zL, if in the equation (xy)gi = (xg2) (ygs), any two of the elements gi, 
g2, gz, are arbitrary elements of G, then the third is a uniquely determined 
element of G. 

Let A be a division algebra over a field F. Denote by L the set of non-zero 
elements of A, and by G the set of non-zero elements of F. It is clear that G is a 
normal subloop of L and that the set of all distinct cosets xG, x£L, is a loop, 
called the quotient loop of L modulo G, and denoted by L/G. 

The following lemma is due to Griffin [8, p. 728]. 

LEMMA 1. If Q is a finite, commutative quasigroup with an even number of 
elements, then the equation y2 = a has an even number of distinct solutions for 
each a£Q. 

The proof, which will be omitted, follows from a consideration of the main 
diagonal of the multiplication table of Q. 

LEMMA 2. If A is a commutative division algebra of order In over a field 
F = GF(qk), q > 2, and if L and G denote the non-zero elements of A and F 
respectively, then in the quotient loop L/G the equation X2 = C has either two 
distinct solutions or no solution. 

Proof. First note that the loop L/G contains 

elements. Clearly t is even, and hence by Lemma 1, the equation X2 — C has 
an even number of distinct solutions in L/G. Suppose that for some C = cG 
(zL/G the equation X2 = C has more than two distinct solutions. Then there 
exist at least three distinct elements xG, yG, zG^L/G such that (xG)2 = (yG)2 

= (zG)2. These imply x2G = y2G = z2G, and hence x2 = ay2 = /3z2, where 
a, £ are non-squares in F. Thus y2 = a~lfiz2, or since a-1/3 = y2 in F, y2 = y2z2, 
which implies that y = ± 7 2 , or y G = zG, a contradiction. 

COROLLARY. Exactly half of the equations X2 = C, C G L/G have solutions in 
L/G. 

THEOREM 1. If A is a commutative division algebra with unit element of 
order 2n over a field F = GF(qk), q > 2, then A contains a unique subalgebra M 
of order 2 over F. The subalgebra M is isomorphic to the field GF(q2k)f and may be 
characterized as the set of all elements of A which satisfy quadratic equations with 
coefficients in F. 
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Proof. Denote by 1 the unit element of A. Then, with the notation of 
Lemma 2, since the equation X2 = \G has a solution X = \G in L/G, it follows 
that the equation has exactly two distinct solutions. Let X = eG be the second 
solution. It is clear that 1, e are linearly independent over F, and that e2 = </>, 
where 0 is a non-square in F. Thus the subspace spanned by 1 and e is a sub-
algebra M of A. Denote by p a zero of the polynomial X2 — <£, irreducible in 
F[\] ; it is easily seen that M is isomorphic to the field F(p) = GF(q2k) under the 
correspondence a + fie <-> a + (3p. A contains no other subalgebra of order 2 
over F. This follows from the fact that 1G and eG are the only solutions of X2 = 
\G in L/G. Clearly, every element of M satisfies a quadratic equation with 
coefficients in F. Let S denote the set of all such elements, so that M Q S. 
If x Ç5, and x is a scaler, then x G M, since F Q M. Let x G 5, and assume that 
x is not a scalar. Then x2 = ax + /5, for some a, /3GF, and 

( x - |a)2 = £ + (èa)2. 

Thus (x — \a)G satisfies X2 = 1G in L/G, and it follows that (x — |a) G = eG 
since x$G. Llence x — fa = 7 e for some 7 ÇG, and x = fa + ye Gikf. Clearly 
then 5 Ç I , which together with ikf Ç 5 implies that S = M. This completes 
the proof of the theorem. 

In a finite commutative loop of odd order the equation x2 — a has a unique 
solution for each a (as in Lemma 1, consider the main diagonal of the multiplica
tion table). It follows that if A is a commutative division algebra with unit 
element of odd order over a field GF(qk), q > 2, then x2 = a G F implies that 
x Ç F. Thus, if G, C are the sets of non-zero elements of A and F respectively, 
then the loop G/C is of odd order. Hence the equation X2 = C has the unique 
solution X = C. Let x2 = a Ç C for some x £G, then (xG)2 = C, which implies 
that xG = G, or x G G C ^- Now, x2 G ^ implies x G F is equivalent to saying 
that A contains no subalgebra of order two over F. This, together withTheorem 
1, implies that no finite commutative division algebra with unit of odd order 
over a field GF{qk)1 q > 2, can contain a subalgebra of even order. 

3. Finite commutative division algebras of order 4. Theorem 1 may be used 
to sharpen somehwat a theorem of Dickson [4, p. 381]. This will be accomplished 
by proving Lemma 4, from which the desired result readily follows. The proof 
of Lemma 3 follows immediately from the observation that in any commutative 
division ring b2 = a2 implies b = ± a. 

LEMMA 3. Let A be a commutative division ring and M any proper subring 
of A. If b is an element of A such that b2 G M, then b2 is a non-square in M if and 
onlyif2b£A - M. 

LEMMA 4. If A is a commutative division algebra with unit of order 4 over a 
finite field F = GF(qk), q > 2, and if M is the unique subalgebra of order 2 over 
F described in Theorem 1, then every element of M is the square of some element of A. 

2A — M means the usual set-theoretic complement of M in A. 
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Proof. Let 1, e be a basis for M. Then, if x £A — M, 1, e, x, ex, are a basis 
for A. Thus , every x£A — M satisfies a quadratic equation with coefficients 
in M, for if x £A — M, then there exist in F four elements at (i = 0, 1, 2, 3) 
such tha t x2 = ao + axe + a2x + a^ex = \p + fxx, where \//, fi(zM. Define y by 
y = x - (i/i), then y Ç 4 - M and y2 = ^ + ( | M ) 2 € M. Let y = \p + {^)\ 
so tha t y2 = z>. By Lemma 3, ^ is a non-square in M. Since yG satisfies the 
equation X2 = v G in L/G, it follows from Lemma 2 tha t there exists a second 
solution X — zG 7e yG. Clearly, z2 — yy2 — yv, where 7 is a non-square in F. 
By Theorem 1, M is isomorphic to GF(q2k), and since GF{q2k) is the root field of 
the polynomial X2 — 7, it follows tha t 7 is the square of some element of M. 
Thus , z2 = yv is a non-square in M, and hence z £A — M by Lemma 3. 

Suppose tha t 0o + 0i£ + /32y + ftz = 0, where the PidF. Then 

(ft, + Pie)2 + 202 (0o + M y + foV = 032*2, 

and since y2, s2(;ik/", this equation implies tha t 02 (0o + Pie)y €M. Thus , 
02(0o + 0i^) = 0, for otherwise y£M, a contradiction. If 02 = 0, so tha t 
0o + Pie + fizz = 0, then, since z (z~A — M, it follows tha t each of the remaining 
Pi is zero. However, if 0O + Pie = 0, so tha t 02y + P%z = 0, then 02 = 03 = 0, 
for otherwise yG — zG in L/G, a contradiction. I t is seen then tha t 1, e, y, z, 
are linearly independent over F. 

Assume tha t the elements of G have been ordered in some way and let 7]f 

denote the ith element in this ordering. Then for each i = 1, . . . , qk — 1, 
define yf by y* = y + 7?^. Clearly each yt(zA — M, and hence there exist 
ixi£M such tha t (yt — /JL/)2 = vt^M for i = 1, . . . , qk — 1. Let y% = yt — \xu 

and note tha t each yr
t^A ~ M. It is easily verified tha t the qk + 1 cosets 

y / ? , yG, and sG are distinct. I t follows tha t the q2k — 1 elements of A contained 
in these cosets are distinct elements of A — M. Denote these elements by 
bjy (J = 1, . . . , q2k — 1). By Lemma 3, each bf is a non-square in M. Fur ther
more, it is easily seen tha t if b is an element of the set {bj}y then — b is also an 
element of the set. Hence, the set {b2} contains no more than \{q2k — 1) 
elements. Since the bj are distinct, it follows from the remark immediately 
preceeding Lemma 3 tha t the set {b2} contains exactly ^(q2k — 1) elements. 
Finally, since there are ^{q2k — 1) elements of M which are non-squares in M, 
it is seen tha t the set {b/} is precisely the set of all non-square elements of M. 
This completes the proof of the lemma. 

T H E O R E M 2. If A is an algebra satisfying the hypotheses of Lemma 4, then A 
has a basis 1, / , f2, P, with multiplication given by 

(1) (J2)2 = a0 + a,f2, (f)2 = 0O + 0 ! / + 02 /2 + 03/3, 

ff = To + 7 i / + Y2/2 + 73/3 , f2f = d0 + dif + d2f
2 + 8,f. 

Proof. First, note tha t f2f = ff2 by commutativi ty, and hence tha t p is 
unambiguous. As in Lemma 4 let M be the subalgebra of A of order 2 over F. 
Then M has a basis 1, e, with e2 = <t>, where 0 is a non-square in F. Let the 
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elements of M be ordered in some way and denote by 770 + vie the first non-
square in M with respect to this ordering. By Lemma 4 there exists an element 
f^A — M such t h a t / 2 = vo + Vie> Furthermore, it is clear t ha t 1, / , / 2 , P are 
linearly independent over F. Define a0 and ai by a0 = <j>vi2 — 7702, ai = 2770, 
then clearly 

(Z2)2 = (vo + Vie)2 = V + 4> V12 + 2rjo Vie = Vo2 + <S> V12 + 2 Vop - 2 7702 

= a0 + ai /2 . 

Note t ha t the constants a0 and ai depend only upon the choice of <j> Ç F and the 
ordering of the elements of M. Nothing can be said about the twelve constants 
0i, 7i, at (i = 0, 1, 2, 3). 

The theorem of Dickson, mentioned earlier, s tates t ha t an algebra A satisfying 
the hypotheses of Lemma 4 has a basis 1, / , p, P with multiplication given by 
(Z2)2 = f0 + f 1/ + Up + UP, and (f3)2, ff\ PP the same as in (1), where the 
polynomial X4 — f3X

3 — f 2X2 — fiX — fo is irreducible in F[k]. 

4. Finite commutative division algebras of order 3. Let A be a commutat ive 
division algebra of order 3 over a field F = GF(qk), q > 2. I t has been shown 
by Dickson [3; 4; 6; 7] tha t if -4 is not associative, then A has a basis 1, e, e2 

with multiplication given by 

(2) ee2 = y + ôe, e V = - d2 - Sye - 20e2, 

where X3 — 5X — y is irreducible in F[\], and conversely if X3 — d\ — y is 
irreducible in F[\], then the algebra over F with basis 1, e, e2 and multiplication 
given by (2) is a division algebra. Dickson has shown further t ha t there is a t 
most one commutat ive, non-associative division algebra with unit element of 
order 3 over a Galois field GF(qk), q > 2, and t ha t this unique non-associative 
division algebra has as its automorphism group relative to the base field, the 
cyclic group of order 3. 

The question of the existence of finite, non-associative, commutat ive division 
algebras of order a prime p > 3 appears to be rather difficult to answer. In fact, 
to the best of the author 's knowledge, there exist no examples of such algebras. 
The most obvious approach to the problem is a s tudy of p-a.ry, p-ic forms, p a 
prime, over a Galois field, which vanish only when each of the p variables 
vanishes. The connection between these two problems is seen by noting t ha t 
(i) an algebra A, of order p over a field F, is a division algebra if and only if 
|jx(x)| = 0 implies tha t x = 0, where R(x) is the linear transformation defined 
by aR(x) = ax for all a^A; and (ii) |2£(x)| is a £>-ary, p-ic form3 in the p 
components of x. The problem of determining all "definite" £-ary, £-ic forms 
over a Galois field has been solved by Dickson [7] for the case p = 3, and this 
is one reason for a fairly complete knowledge of finite, commutat ive division 
algebras of order 3. 

3For a further discussion of this see Bruck [1] and Dickson [4]. 
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In the next section an important method due to Dickson [5, p. 515] will be 
employed to obtain non-associative, commutative division algebras of order In 
over a Galois field, whose automorphism group relative to the base field is the 
cyclic group of order 2n. This result of Dickson may be summarized as follows : if 

/(X) = \n - ai\
n ~ * + a2A

w-2 - . . . ± aneF[X] 

(where an is a non-square in the field F) is an irreducible, normal, cyclic polynom
ial, if p is a zero of/(X) and 61 a generating automorphism of the automorphism 
group of F(p) relative to F, then the set A of all ordered pairs (x, y), x, y (z F(p) 
is a division algebra of order 2n over F under the operations 

a(x, y) = (x, y)a = (ax, ay), a£F, 

(x, y) + (a, b) = (x + a, y + b), (x, y) (a, 6) = (xa + ySbSp, ya + x6). 

5. The existence of finite non-associative division algebras. As noted earlier, 
the non-zero elements of a division algebra with unit element form a loop under 
multiplication. It is interesting, and somewhat useful, as the next theorem will 
indicate, to be able to determine whether or not the set of non-zero elements 
of a given division algebra with unit contains a subloop of index 2. No non-
associative, commutative, finite, division algebras with this property are known 
to the author. However, the set of all squares in a Galois field is a subgroup 
of index 2 in the group of non-zero elements, and it is easy to see that if the 
loop of non-zero elements of a finite, commutative division algebra contains a 
subloop of index 2, then this subloop is necessarily the set of all squares. It 
should be mentioned at this point that there exist non-associative division 
algebras, not finite, with this property. Thus, in the linearly ordered algebras 
constructed by Zelinsky [12] the set of all positive elements is the desired 
subloop of index 2. 

The following theorem is closely related to the result of Dickson referred to 
at the end of the last section and will be applied to the Galois fields. 

THEOREM 3. Let A be a division algebra {not necessarily associative) with unit 
element of order n over a field K. Denote by G the set of all non-zero elements of A. 
If the loop G contains a subloop H of index 2 in G, then the set A* of all ordered 
pairs (x, y),x, y £A, is a division algebra with unit element of order 2n over K under 
the operations 

(3) a(x, y) = (x, y)a = (ax, cry), aÇi£, 

(x,y) + (z,w) = (x + z,y + w), (x,y) (z,w) = (xz + [yUwV]e,yz + xw), 

where e is any fixed element of G — H, and U, V are non-singular linear transforma
tions of A such that HU = HV = H. 

Proof. First note that if (x, y) (z, w) = (0, 0), (x, y) ^ (0, 0), (z, w) ^ (0, 0) 
then x, y, z, w are all different from zero. Suppose that there exist elements 
x, y, z, w£G such that (x, y) (z, w) = (0, 0). Then by (3) it is seen that 

(4) (i) xz + (yUwV)e = 0, (ii) yz + xw = 0. 
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Eliminating x from equations (4) it is found that 

(5) yz = yUR (w V)R (e)R(z) ~'R {w). 

Now, denote by 1 and — 1 the elements of C2, the cyclic group of order 2, and 
define the mapping F of G upon C2 by F(x) = 1, if x £H, and F(x) = — 1, if 
x $ H. Clearly F is a homomorphism of G upon C2, and it is easily verified that 
FlaRib)'1] = F{a)F{b), and F(aU) = F(aV) = F (a), for all a, b£G. From 
equation (5) it follows that F(yz) = F{y)F(w)F{e)F{z)F{w), which implies that 
F(e) = 1, contrary to the hypothesis e $ H. Thus, (x, y) (2, w) = (0, 0) implies 
either x = y = 0, or z = w — 0. The absence of divisors of zero in the set of 
non-zero elements of A* insures, in this case, that they form a loop with respect 
to the multiplication defined in (3). It is readily verified that the remaining 
postulates for a division algebra are satisfied by A*. This completes the proof 
of the theorem. 

It is easily seen that if the algebra A of Theorem 3 is a Galois field, if 
U = V = I, and if e is a non-square in A, then the algebra A* of Theorem 3 
is simply A{e), the quadratic extension of A. It should be noted, however, 
that if U = V T^ I, then the algebra A* is not associative. Thus, let A = GF(qnk), 
so that A is an associative division algebra of order n over F = GF{qk). 
Choose U and V = U from the set of automorphisms of A relative to F. Then, 
if eQH, that is, if e is a non-square in A, the algebra A* is a commutative, 
non-associative division algebra with unit element of order In over F. The 
following theorem shows that under certain conditions the automorphism group 
A* contains the cyclic group of order 2n. 

THEOREM 4. Let F be the Galois field GF{q}c), q > 2, and A the field GF(qnk)t 

where n is any positive integer. Let S be a generating automorphism of the auto
morphism group of A relative to F. If A* is the non-associative algebra of order 
In over F defined as in Theorem 3 with U = V = S, and e any non-square in A, 
then the automorphism S of A may be extended to an automorphism T of A* 
relative to F. Furthermore, if n is odd, T has period In. 

Proof. Since e is a non-square in A, it follows that e~l and eS are non-squares 
in A, and hence that e~l • eS is a square. Denote by c either of the two square 
roots of e~l • eS. For any x £A, let N(x) be the usual norm of x over F, that is 
N(x) = x - xS - xS2 . . . x5n _ 1 , then clearly N(c) = ± 1. Note that if n is odd, 
c may be chosen so that N(c) = — 1. Let / = cS71-1, and define the linear 
transformation T of A* by (a, b)T = (aS, f • bS). It is readily verified that T 
is an endomorphism of A* and that T2n = I. These two facts imply that T 
is an automorphism of A*. When n is odd, / may be chosen so that N(f) — — 1. 
li j is the period of T, and b a non-zero element of A, it is readily verified that 
(a, b)Tn j* (a, b). It follows that j •£ n. However, (a, b)Tj = (aSj, *) = (a, b), 
for all a, b £A, whence aSj = a, for all a £A. Hence j = hn, for some positive 
integer h. Finally, T2n — I implies that 2n — rj, for some positive integer r. 
From these relations involving the integers j , h, n, and r it may be inferred that 
j = 2n. This completes the proof of the theorem. 
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Before proceeding to the next theorem it is necessary to make the following 
definition. Let A be a division algebra with unit element of order n over a field 
F. If A has a basis 1, e, e2, . . . , en~x, with multiplication given by4 

(6) en = 4, e* • e> = </>(*', j V + '", * , j = 1, • • . , n - 1, 

where it is understood that i + j is reduced modulo w, and </>, <£(i, j ) G F, then 
4̂ is said to have a c;yc& foms relative to F. 

THEOREM 5. Let n be any positive integer and F — GF(qk), q > 2, a Galois 
field with qk = 2ns + I, for some positive integer s. Then there exists a commutative, 
non-associative division algebra A* of order In over F with the following properties'. 

(i) A* has a cyclic basis relative to F, 
(ii) the automorphism group of A* relative to F is the cyclic group of order 2ny 

(iii) A* contains a unique associative subalgebra of order n over F isomorphic to 
the field GF(qnk). 

Proof. Note that qk = 2ns + 1 is equivalent to the statement: F contains 
2n distinct (2n)th roots of unity. In this case there exists a polynomial \n — </>, 
irreducible in F[\], and such that if n is even, — 0 is a non-square in F, and if n 
is odd, 0 is a non-square in F. Let A = GF(qnk) and denote by 5 a generating 
automorphism of the automorphism group of A relative to F. Now, there exists 
an element e(zA, which satisfies \n — 0 = 0, and is a non-square in A. With 
this choice of e, and with U = V = 5, the algebra A* of Theorem 3 is clearly a 
commutative division algebra with unit element of order 2n over F. First it 
will be shown that A* possesses a cyclic basis. Denote by f ÇF a primitive 
(2^)th root of unity. Then f2 is a primitive nth root of unity and without loss 
of generality it may be assumed that eS = Ç2e. If g = (0, en~l)j it is easily 
verified, by finite induction on i, that the relations 

(7) (i) g2i-i = tt2<_l(o, e - ' ) , (ii) g2i = au(f-tf o), 

where ay ^ 0, a3- G F (j = 1, . . . , In) hold for i — 1, . . . , n. Since 1, e, e2
r 

. . . , en~l is a basis for A over F, it follows that 1, g} g
2, . . . , g2n~l is a basis for 

A* over 7̂ . Again, by induction it may be shown that there exist non-zero 
elements </>(r, s) £F (r, s = 1, . . . y 2n — 1) such that gr • gs — #(r, s)gr+s, 
where r + 5 is reduced modulo 2n if necessary. Note also that, by relation 
(7, ii), g2n = <L2n<i> (zF. Thus, A* has a cyclic basis relative to F. 

Now, it is evident that the mapping T of A* upon A* defined by glT = ^~1gt 

is an automorphism of period 2n. Thus, the automorphism group of A* relative 
to F contains the cyclic group of order 2n. Let K be any automorphism of A* 
relative to F and note that for the case n = 2, the uniqueness (see Theorem 1) 
of the subalgebra of order 2 implies that K induces an automorphism of this 
subalgebra. It will be assumed then that n > 2, and it will be shown that the 

4The following convention is adopted for positive integral powers in a non-associative 
algebra: if x is any element of the algebra and t any positive integer, then xl denotes the right 
power of x, defined by xl = xlRix)]1"1. 
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subalgebra A is a unique associative subalgebra of ^4*, of order n over F. Indeed, 
if it is assumed that K does not induce an automorphism of A, then K maps A 
into an isomorphic subalgebra B of A*. Since 1, e, e2, . . . , en~l is a basis for A 
over F, it follows that (eK)1 (i = 0, 1, . . . , w — 1) is a basis for £ . Then, 
ei£ = (a, b) $A, so that 6 ^ 0 . Let / = eK = (a, 6), then, since J5 is an 
associative subalgebra of .4*, it follows that (f2)2 = fzf. This last equation, 
written in terms of a, b, is 

[*, ±ab{a2 + (bS)2e)] = [*, 4a36 + 2ab{bS)2e + 2{aS)b(bS)2e\. 

Equating the second "components" of (f2)2 and fzf, it is found that a = aS. 
Thus a£F, and denoting a by a, the relation (f2)2 = f*f, in terms of a, b 
simplifies to 

[a4 + 6a2(bS)2e + (6S)V,*] = [a4 + 6a2(bS)2e + (bS)2(bS2)2eeS,*]. 

Equating the first "components" and noting that eS = f2e, it is seen that 
(6S)2 = f2(652)2. This last equation may be written (b2S)S = f~202S), from 
which it follows that b2S = \l/en~\ \peF. Now, 

f2-2af+a2-^<t>= {f- a)2 - * <t> = (0, b)2 - + <j> = 0. 

Thus, 1, / , f2 are linearly dependent over F, which implies n = 2, contrary to 
the assumption n > 2. This shows that the subalgebra A is the only associative 
subalgebra of order n over F, contained in ^4*. In particular then, the arbitrary 
automorphism X of i * induces an automorphism of A, so that (e, 0)K 
= Ç2j(e, 0) for some positive integer j . Since [(0, l)]2 = (e, 0), it follows that 
(0, \)K = ± r>(0 , 1); hence 

gK = (0, en-')K = [(0, 1)] [ (^- i , 0)X] = ± f^2^1^. 

Thus, gK is the product of g and a (2^)th root of unity, that is, K coincides with 
a power, Tr, of the automorphism T defined above. It is seen then that the 
automorphism group of A* relative to F is the cyclic group of order In. This 
completes the proof of the theorem. 

6. Finite division algebras of order n whose automorphism group contains 
the cyclic group of order n. Let A be a division algebra of order n over an 
arbitrary field F. If A has a cyclic basis relative to F and if m is a divisor of n, 
then it is evident that A contains a subalgebra of order m. The following 
theorem gives a sufficient condition, not quite as immediate as the above, for a 
finite division algebra of order n to contain a subalgebra of order w, where m 
is any divisor of n. 

THEOREM 6. Let A be a division algebra of order n over a field F — GF(qk), 
where n = hq\ (h, q) — 1. Let T be an automorphism of A relative to F with 
period n. If the minimum function of T is of degree n, then, for every divisor m 
of n, A contains a subalgebra Amy of order m over F, whose automorphism group 
relative to F contains the cyclic group of order m. 
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Proof. Let 12 be the root field of the polynomial \h — 1 £ F[\]. Then there 
exists an element f G12 such that 

X* - 1 = ff (X - f ') 

in 12[X]. Since 7" satisfies Xw — 1 = 0, and since its minimum function is of 
degree n, it follows that Xw — 1 = 0 is the minimum equation of T. Now in 
0[X], 

x" - i = (x» _ I)*' = ff (x - f')'1-

Thus, there exists a basis for the algebra AQ such that a representation for T 
is given by [9, p. 128, Theorem 65] 

T = £o e Ei e . . . © E*_I, E = ri + E (i = o, 1 , . . . , A - i), 
where 7 is the ql X ql identity matrix and E is the ql X ql matrix with 1 every
where in the diagonal just below the main diagonal and zeros elsewhere. If m 
is a divisor of n, let qT be the highest power of q which divides m, so that m = sqr 

(s, q) = 1, and ^ divides h. Since (s, q) = 1, it is seen that the field 12 contains s 
distinct 5th roots of unity, each of which is also an Mh root of unity. Thus in 
the matrix Ts given by Ts = E0

S © Eis © . . . © i^- i s , exactly 5 of the 
components Et* will have 1 everywhere in the main diagonal and the remaining 
h — s components will have diagonal elements different from 1. Let E/ be one 
of the components with 1 along the main diagonal, that is, let fj be one of the 
sth roots of unity. Then, 

E/ = (f'7 + E)s = 7 + s^-^E + fyiis~2)E2 + ... + E* = I + EF, 

where 

F = s^-^I + l^j(s-2)E + . . . + Es~\ 

By the definition of E, and since (s, q) = 1, F is non-singular. Furthermore, 

E™ - I = ( £ / - /) f f r = Eqr'Fq\ 

and hence the nullity of Ejm — I is equal to the nullity of EqT. Noting that the 
first v rows of Ev consist entirely of zeros, and that the remaining ql — v rows 
are linearly independent, it follows that the nullity of the matrix Ejm — I is 
exactly qr. If fp is one of the h — s hth roots of unity which is not an sth root 
of unity, then clearly Ev

m — I has nullity zero. Thus, in the expression of 
Tm — I as a direct sum, given by5 

Tm - I = (£ow - I) © (£iw - / ) © . . . + (£»_iw - 7), 

exactly s of the components have nullity q% and the remaining components 
have nullity zero. Thus, the nullity of Tm — I is sqr = m. Since the nullity of a 

6In Tm — I it is understood that I denotes the n X n identity matrix. 
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matrix with elements in a field F is invariant under an extension of F, it follows 
that in the original algebra A over the given field F there exist exactly m 
linearly independent elements in the null space of Tm — / . Thus, the subalgebra 
Am, consisting of all elements of A which are mapped into themselves by Tm, 
is of order m over F. It is obvious that the automorphism T of A induces an 
automorphism Tf of Am of period m. Hence the group of automorphisms of the 
algebra Am relative to F contains the cyclic group of order m. This completes 
the proof. 

Suppose that F is a Galois field, F = GF(qk)> and n = hq\ (h> q) = 1. If 
h divides qk — 1, then F contains h distinct hth roots of unity. If A is an algebra 
of order n over F whose automorphism group relative to F contains the cyclic 
group of order n, then it is seen that every hth root of unity is a characteristic 
root of any automorphism T of A which generates the cyclic group of automor
phisms of order n. Thus, if 

M = TQ\ 

so that the transformation M has period h, then it is clear that every character
istic root of M is an hth root of unity. Furthermore, the set of distinct 
characteristic roots of M is a subgroup of the set of hth roots of unity, for if 
771,772, are any two characteristic roots, then there exist ai, a2, (zA, ai 9^ 0, a2 7^ 0, 
such that a\M = rjiai, a2M = 772̂ 2, whence 

(ai#2) (M — 771 r)2I) = 0, axa2 9e 0, 

so that rji 772 is a characteristic root. If the set of distinct characteristic roots 
does not contain all of the hth roots of unity, then it is the set of 5th roots of 
unity for some s < h, with 5 dividing h. Since a basis for A may be chosen 
in such a way that M is represented by a diagonal matrix, whose diagonal 
elements are 5th roots of unity, it follows that Ms = 7, contrary to the hypo
thesis that M is of period h. Thus, every hth root of unity is a characteristic 
root of M. Finally, since the mapping 

a —-> a 

of F upon JP, is a premutation of the Ath roots of unity, it is seen that every 
characteristic root of M is a characteristic root of T. If t > 0, it is not known 
whether or not the minimum function of T is of degree n. However, if t — 0, 
so that n — h \ (qk — 1), then the previous remarks indicate that the minimum 
function of T is of degree n, and Theorem 6 is applicable. In fact, in this case, 
it is possible to choose a basis 1, ei, . . . , en_i for A over F in such a way that 
etT = f iei, where f is a primitive wth root of unity. It is readily verified that 
the multiplication for A is given by (6). Thus the following theorem has been 
proved. 

THEOREM 7. If A is a division algebra of order n over a field F = GF(qk), 
where qk = hn + 1 for some positive integer h, and if the automorphism group of A 
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relative to F contains the cyclic group of order n, then A has a cyclic basis relative 
to F. 

Added in proof. The question discussed in the second paragraph of §4 has 
been answered by A. A. Albert. See abstract 421, Bull. Amer. Math. Soc, vol. 
57 (1951), p. 457. 
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