RINGS WITH INVOLUTION IN WHICH EVERY TRACE IS NILPOTENT OR REGULAR

SUSAN MONTGOMERY

A theorem of Marshall Osborn [15] states that a simple ring with involution of characteristic not 2 in which every non-zero symmetric element is invertible must be a division ring or the 2×2 matrices over a field. This result has been generalized in several directions. If R is semi-simple and every symmetric element (or skew, or trace) is invertible or nilpotent, then R must be a division ring, the 2×2 matrices over a field, or the direct sum of a division ring and its opposite $[\mathbf{6 ; 8 ; 1 3 ; 1 6]}$. On the other hand, if R has no nilpotent ideals and the non-zero symmetrics (or skews) are not zero-divisors, then it has been shown that R must be a domain, an order in 2×2 matrices, or a subdirect sum of a domain and its opposite $[\mathbf{6} ; \mathbf{1 0}]$. It was thus natural to raise the following question [6]: If R is a ring with involution in which every symmetric element is nilpotent or a non zero-divisor, and the nil ideals of R are suitably restricted, must R be a domain, or contained in 2×2 matrices or the direct sum of a domain and its opposite?

It has so far been shown [1] that this is indeed the case when the ring is Noetherian and has no nilpotent ideals. In this paper we prove that, if R has no nil right ideals, a necessary and sufficient condition for the conclusion to hold is that every left zero-divisor in R is also a right zero-divisor. This includes the Noetherian case as a corollary.

We note that this result is perhaps the best possible, since W. S. Martindale has constructed an example of a prime, semi-simple ring with involution, in which every symmetric element is nilpotent or regular, which is not a domain but cannot be imbedded in 2×2 matrices.

Throughout, R will denote an associative ring with involution $*$ (an antiautomorphism of period 2). Let $S=\left\{x \in R \mid x^{*}=x\right\}$ denote the set of symmetric elements, and $T=\left\{x+x^{*} \mid x \in R\right\}$ the set of traces. T is clearly a subset of S, and $2 S \subseteq T$. An element $x \in R$ is said to be regular if it is not a zero-divisor in R. We will call an ideal I of R a $*$-ideal if $I^{*} \subseteq I$. If I is a *-ideal of R define

$$
T_{I}=\left\{x+x^{*} \mid x \in I\right\}
$$

Note that $T_{I} \subseteq T \cap I$.
The first lemma is trivial but will be used frequently.
Lemma 1. If every element of T is nilpotent, then R has a nil right ideal unless R is commutative, $2 R=0$, and $*$ is the identity.

Proof. If $T=0$, it is easy to verify that for $a, b, c \in R, a^{*}=-a, a b=-b a$, and $2 a b c=0$. Thus $(2 R)^{3}=0$, and so $2 R=0$. But then $a^{*}=a, a b=b a$, and we are done.

So, assume that $T \neq 0$. Choose $a \in S$ so $a^{2}=0, a \neq 0$. Then $a x+x^{*} a \in T$, so $\left(a x+x^{*} a\right)^{n}=0$, for some n. Multiplying on the right by $a x$, we see $(a x)^{n+1}=0$. But then $a R$ is a nil right ideal of R.

We point out that even if every symmetric element of R is nilpotent, it is an open question as to whether R must be nil [16]. In order to avoid this problem, we will simply assume that R has no nil right ideals. Note that by Lemma 1, this implies that if the involution is not trivial, R must contain a non-nilpotent trace.

Lemma 2. Let R be a prime ring with $*$, and let $a \in T$. If $a T_{I} b=0$, where b is any element of R and I is $a *$-ideal of R, then $a=0$ or $b=0$.

Proof. Follow exactly the proof of Theorem 6 of [3]; it is only necessary to choose the x and y in I.

Lemma 3. Suppose that R is a ring with no nil right ideals and that $a \in R$, $a^{2} \neq 0$. Let M be the maximal nil ideal of the ring aRa. Then $M \neq a R a, A=$ $a R a / M$ has no nil right ideals, and $a M a=0$.

Proof. If $M=a R a$, then $a R a$ is nil. But then $a^{2} R$ would be a nil right ideal of R, and so $a^{2}=0$, a contradiction. Thus $M \neq a R a$.

Let ρ be a nil right ideal of $a R a$, and choose $x \in \rho$. Then xara $\in \rho$, and so $(\text { xara })^{n}=0$, all $r \in R$. But then $(a x a r)^{n+1}=0$; that is, axaR is a nil right ideal of R. Thus $a x a=0$, and so $a \rho a=0$. In particular $a M a=0$. Also, $\rho^{3}=0$ since $\rho \subseteq a R a$.

Now if $\bar{\rho}$ were a nil right ideal of A, its inverse image ρ in $a R a$ would be a nil right ideal of $a R a$. Thus $\rho^{3}=0$ by the above. But this implies $\rho \subseteq M$, and so $\bar{\rho}=0$ in A.

Lemma 4. Let R be a prime ring with * and with no nil right ideals in which every trace is nilpotent or regular. Then $t \in T$ nilpotent implies $t^{2}=0$.

Proof. Assume that $a \in T$, a nilpotent, but $a^{2} \neq 0$. Consider the ring $A=a R a / M$ as in Lemma 3. Since $a \in S, *$ is an involution on $a R a$ and $M^{*} \subseteq M$. Thus $a R a / M$ has an induced involution.

Now every trace in A is the image of a trace in $a R a$. But no element of $a R a$ is regular; thus every trace in $a R a$ (and so in A) is nilpotent. By Lemma 1, there are no traces in A (since A has no nil right ideals) and so $a T a \subseteq M$. Since $a M a=0$ by Lemma 3, we have $a^{2} T a^{2}=0$, and so $a^{3} T a^{2}=0$. But $a^{3} \in T$, so by Lemma 2 we have $a^{3}=0$. Thus any nilpotent element of T has cube 0 .

Let $x \in R$. Then $a^{2} x+x^{*} a^{2} \in T$, so is nilpotent or regular. Since $x a x^{*} \in T$, $a^{2} x a x^{*} a^{2}=0$, and so $\left(a^{2} x+x^{*} a^{2}\right) a x^{*} a^{2}=0$. We claim that $\left(a^{2} x\right)^{4}=0$. If
$a x^{*} a^{2}=0$, this is certainly true, so assume $a x^{*} a^{2} \neq 0$. Then $a^{2} x+x^{*} a^{2}$ is not regular, and so $\left(a^{2} x+x^{*} a^{2}\right)^{3}=0$. But $\left(a^{2} x+x^{*} a^{2}\right)^{3}=\left(a^{2} x\right)^{3}+z a^{2}$, for some $z \in R$. Multiplying on the right by $a^{2} x$, we have $0=\left(a^{2} x\right)^{4}$. Thus $a^{2} R$ is a nil right ideal of R, a contradiction.

For the next lemma, we need some terminology. If $a, b \in R$, then we define $a \circ b=a b+b a$. If A and B are subsets of R, then $A \circ B$ means the additive subgroup of R generated by all $a \circ b$, with $a \in A, b \in B$. Similarly, $[a, b]=$ $a b-b a$, the Lie product. For more details, see [5, Chapters 1 and 2]. The lemma extends results in [5] and [11].

Lemma 5. Suppose that R is a prime ring with $*, a \in T$ with $a^{2}=0$, and I is a *-ideal of R with $a\left(T_{I} \circ T_{I}\right) a=0$. Then $a=0$, unless $2 R=0$ and R is an order in a simple ring Q of dimension $\leqq 4$ over its center.

Proof. First assume that the characteristic of R is not 2 . Then $U=T_{I} \circ T_{I}$ is a Jordan ideal of S, and so by the proof of Theorem 2.6 of [5], there exists a *-ideal J of R such that $U \supseteq J \cap S$. Since $J \cap S \subseteq T_{J}$, we have $a T_{J} a=0$, and so $a=0$ by Lemma 2 .

Now consider the case when $2 R=0$. Then $T_{I} \circ T_{I}=\left[T_{I}, T_{I}\right]$, the Lie product. Assume that R is not an order in Q as above. Let $W=\left\{v \in T_{I} \mid a v a=\right.$ $0\} ; W$ is a Lie ideal of T_{I}. Now the sub-ring T_{I}^{\prime} generated by T_{I} contains a non-zero $*$-ideal of R (by [11, Lemma 22]), so any element centralizing T_{I} would centralize an ideal of R, and so all of R, since R is prime. But $a \notin Z$, the center of R, since $a^{2}=0$; thus there exists $v \in T_{I}$ with $a v \neq v a$, or $a v+v a \neq 0$. Now

$$
a\left[(a v+v a) y^{*}+y(a v+v a)\right] a=a\left[v, y a+a y^{*}\right] a \in a\left[T_{I}, T_{I}\right] a
$$

for all $y \in I$. Thus $(a v+v a) y^{*}+y(a v+v a) \in W$, all $y \in I$. By [11, Lemma 23], this implies $W \supseteq T_{J}$, for some $\neq 0 *$-ideal J of R. But then $a T_{J} a=0$, and so again $a=0$ by Lemma 2 .

The next three lemmas are similar to the arguments in [6]. For Lemmas 6 and 7, we use the following construction of Martindale [12]. If R is a prime ring, then the central closure of R is a prime ring $B \supset R$, with center a field C, such that $B=R C$. Moreover, given $b \neq 0$ in B, there exists an ideal $U \neq 0$ of R with $0 \neq b U \subset R$.

As in [2], the involution $*$ on R may be extended to an involution on B, which we shall also call *.

Lemma 6. Let R be a prime ring with no nil right ideals with $*$ which is not a domain or an order in a simple ring of dimension $\leqq 4$ over its center, and let B be the central closure of R. If every trace in R is regular or nilpotent, then every trace in B is regular or nilpotent.

Proof. Assume that $t_{0}=u+u^{*} \in B$ is not regular. We will show that $t_{0}{ }^{2}=0$. Now $t_{0} x=0$, some $x \neq 0 \in B$. Since there exists an ideal U of R
such that $x U \neq 0 \subseteq R, t_{0}$ also annihilates a non-zero element of R. As in the proof of Theorem 4 of [5], there exists a $*$-ideal V of R such that $0 \leqq u V \subseteq R$, $0 \neq u^{*} V \subseteq R, 0 \neq t_{0} V \subseteq R, 0 \neq V t_{0} \subseteq R$, and $0 \neq t_{0} V t_{0} \subseteq R$.

Now if $T_{V}=0$, then by Lemma $1, V$ is commutative, which implies R is commutative (since R is prime). Then R is a domain, a contradiction. We may therefore assume that $T_{V} \neq 0$. Let $v \in T_{V}$. Then $t_{0} v t_{0} \in T$ and is a zero-divisor in R, so $\left(t_{0} \nabla t_{0}\right)^{2}=0$ by Lemma 4. If $s \in S \cap V$ and $t \in T$, then $s t s \in T_{V}$, and so $\left(t_{0} s t s t_{0}\right)^{2}=0$. This implies that

$$
\left(s t_{0} s\right) t\left(s t_{0}{ }^{2} s\right) t\left(s t_{0} s\right)=0, \quad \text { for all } t \in T
$$

Say $s_{0} \in V \cap S$ and s_{0} is regular. Then $s_{0} t_{0} \in T_{V}$ is regular or nilpotent. If $s_{0} t_{0} s_{0}$ is regular, then $t s_{0} t_{0}{ }^{2} s_{0} t=0$, for all $t \in T$, by the previous paragraph. Since at least one trace t is regular, $s_{0} t_{\mathrm{r}}{ }^{2} s_{0}=0$. Thus $t_{0}{ }^{2}=0$ since s_{0} is regular, and we would be done. We may therefore assume that $\left(s_{0} t_{0} s_{0}\right)^{2}=0$, for all regular s_{0}. Thus, $t_{0} s_{0}{ }^{2} t_{0}=0$ for all regular $s_{0} \in V \cap S$.

Now if $s \in T_{V}$ is not regular, then $s^{2}=0$ by Lemma 4 , so certainly $t_{0} s^{2} t_{0}=0$. Thus $t_{0} s^{2} t_{0}=0$ for every $s \in T_{v}$. Linearizing on s, we see that $t_{0}(s r+r s) t_{0}=$ 0 , all $r, s \in T_{V}$; that is, $t_{0}\left(T_{V} \circ T_{V}\right) t_{0}=0$. Now let $a=t_{0} v t_{0}$, for any $v \in T_{V}$. Then $a \in T$ and is not regular, so $a^{2}=0$. Thus $a\left(T_{V} \circ T_{V}\right) a=0$, where $a \in T$ and $a^{2}=0$. By Lemma 5 , if follows that $a=0$. Thus $t_{0}\left(T_{V}\right) t_{0}=0$.

Let $x \in V$. Then $x+x^{*} \in T_{V}$, so $t_{0}\left(x+x^{*}\right) t=0$, and thus $t_{0} x t_{0}=-t_{0} x^{*} t_{0}$. Also, $x t_{0} x^{*}=x\left(u+u^{*}\right) x^{*} \in T_{V}$, and so $t_{0}\left(x t_{0} x^{*}\right) t_{0}=0$. Combining these statements, we have $t_{0} x t_{0} x t_{0}=0$, and so $\left(t_{0} x\right)^{3}=0$, for all $x \in V$. But then $t_{0} V$ is a nilpotent right ideal of R, which is a contradiction.

Lemma 7. Let R be a prime ring with no nil right ideals satisfying a generalized polynomial identity. If every element of T is nilpotent or regular, then R is a domain or an order in the 2×2 matrices over a field F.

Proof. By a theorem of Martindale [12], the central closure B of R is a primitive ring with a minimal one-sided ideal. By Lemma $6, B$ satisfies the same hypotheses as R. The rest of the proof follows exactly the case where every skew-trace is regular (Theorem 4 of [6]).

Lemma 8. Let R be a ring with no nil right ideals in which every trace is nilpotent or regular. If R is not prime, then either
(a) R is a subdirect sum of a domain and its opposite, or
(b) $2 R=0, *$ is the identity, and R is commutative.

Proof. We assume that case (b) does not hold. Thus by Lemma $1, R$ must contain a regular trace. Since R is not prime, there exist non-zero ideals A and B of R with $A B=(0)$.

Let $C=A \cap A^{*}$. We claim that $C=(0)$. For, let $x \in C$. Then $x^{*} \in C$, and $\left(x+x^{*}\right) B \subseteq C B=(0)$. Thus $x+x^{*}$ is nilpotent. Since every trace in C is nilpotent, by Lemma $1,2 C=0, *$ is the identity, and C is commutative. Also, $T_{C}=0$. Since R is semi-prime and C is a commutative ideal, C is in the
center of R. Let t be a regular element of T and choose $c \in C$. Then $t c \neq 0$ if $c \neq 0$, and $t c \in T_{C}$, a contradiction unless $c=0$. Thus $C=A \cap A^{*}=(0)$.

We next show that A is a domain. For, say $a_{1} a_{2}=0$, with $a_{1}, a_{2} \neq 0$ in A. Then $a_{1} a_{2}{ }^{*} \in A \cap A^{*}=(0)$, and so $a_{1}\left(a_{2}+a_{2}{ }^{*}\right)=0$. This implies $x=$ $a_{2}+a_{2}{ }^{*}$ is nilpotent, say $x^{n}=0$. But $a_{2} a_{2}{ }^{*}=0=a_{2}{ }^{*} a_{2}$ implies that $x^{n}=$ $a_{2}{ }^{n}+\left(a_{2}{ }^{*}\right)^{n}=0$, and so $a_{2}{ }^{n} \in A \cap A^{*}=(0)$. Thus $a_{2}{ }^{n}=0$; that is, every zero-divisor in A is nilpotent. Thus if a is a zero-divisor, $a A$ is a nil right ideal of A, a contradiction. Thus A is a domain.

As in the proof of Theorem 5 of [6], if $u^{2}=0$ in R then $u A=0$ and $u A^{*}=0$. Thus $u\left(a+a^{*}\right)=0$, all $a \in A$. Since $a+a^{*} \in T,\left(a+a^{*}\right)^{n}=0=a^{n}+\left(a^{*}\right)^{n}$, some n. As above, this implies $a^{n}=0$. But A is a domain, a contradiction. Thus R contains no nilpotent elements.

This means that every element of T is regular. If every element of S were regular, the theorem would follow from the result of Lanski $[\mathbf{1 0}]$. We may thus assume that for some $s \neq 0$ in S, s is a zero-divisor. Let $V=\{x \in R \mid s x=0\}$. If $s x=0$, then $(x s)^{2}=0$ so $x s=0$. Thus V is an ideal of R. Since $s^{*}=s$, $V^{*}=V$. However, $V \cap T=(0)$. As before, this implies $2 V=0, *$ is the identity on V, and V is in the center of R. But then for $v \in V, t \in T$, we have $v t \neq 0$ but also $v t \in V \cap T=(0)$, a contradiction. Thus the theorem is proved.

We are now able to combine the various lemmas to obtain the desired results.
Theorem 1. Let R be a ring with no nil right ideals and with $*$ satisfying a generalized polynomial identity. Assume that every trace in R is nilpotent or regular. Then R is one of the following:
(1) a domain,
(2) a subdirect sum of a domain and its opposite,
(3) an order in $\mathscr{M}_{2}(F)$, the 2×2 matrices over a field F,
(4) commutative of characteristic 2 with the trivial involution.

Proof. This follows from Lemmas 7 and 8 .
The following corollary is actually implicit in the results of [6] (and in fact is true if we only assume that R has no nilpotent ideals). We state it here only for completeness.

Corollary 1 (Herstein and Montgomery). Let R be a ring with * and with no nil right ideals in which every non-zero trace is regular. Then R must be one of the four possibilities in Theorem 1.

Proof. If R is not prime, then we are done by Lemma 8. If R is prime but not a domain, we may assume that R satisfies a generalized polynomial identity. For if every symmetric element were regular, we would be done by Lanski's result [10]. We may thus assume that R contains a symmetric zero-divisor, say a. Since $a T a \subset T$ and every non-zero trace is regular, we must have that
$a T a=0$. Hence if $r \in R, a\left(r+r^{*}\right) a=0$, and so ara $=-a r^{*} a$. Now if $r_{1}, r_{2} \in R$, then

$$
a\left(r_{1} a r_{2}\right) a=-a\left(r_{1} a r_{2}\right)^{*} a=-a r_{2}^{*} a r_{1}^{*} a=-a r_{2} a r_{1} a
$$

Consequently, R satisfies the generalized polynomial identity $p(x, y)=$ $a x a y a+$ ayaxa. Now apply Lemma 7 .

We now come to the main result of this paper.
Theorem 2. Let R be a ring with $*$ and with no nil right ideals in which every trace is nilpotent or regular. Then R is one of the four possibilities in Theorem 1 if and only if R satisfies either one of the following conditions:
(A) every left zero-divisor in R is also a right zero-divisor;
(B) whenever $x x^{*}=0$, for any $x \in R$, there exists $y \neq 0 \in R$ such that $y x=0$.

Proof. It is trivial that if R is one of the four possibilities in Theorem 1 , then R satisfies conditions (A) and (B). Also, it is clear that condition (A) implies condition (B). Thus it remains to show that if R satisfies condition (B), then R must be either
(1) a domain,
(2) a subdirect sum of a domain and its opposite,
(3) an order in $\mathscr{M}_{2}(F)$, or
(4) commutative with the trivial involution.

Now if R is not prime, then by Lemma $8 R$ must be (2) or (4). We may therefore assume that R is prime. As before, we will show that R satisfies a generalized polynomial identity.

First, say that there exists some $x \in R$ so x is a left zero-divisor but $x^{*} x \neq 0$. Let $a=x^{*} x$ and let $t \in T$. Then $x T x^{*} \subseteq T$ and is not regular, so $\left(x t x^{*}\right)^{2}=0$, all $t \in T$ by Lemma 4 . Thus $x t x^{*} x t x^{*}=0$, and so atata $=0$, all $t \in T$. Linearizing on t, and then multiplying on the right by $t a$, we see atasata $=0$, for all $s, t \in T$. Now ata $\in T$, and so ata $=0$ by Lemma 2. Since $a T a=0$, as in the proof of Corollary 1 we see that R satisfies a generalized polynomial identity.

We may thus assume that for every $x \in R$ which is a left zero-divisor, $x^{*} x=0$. But now by our basic assumption (using *), there exists some $y \neq 0 \in R$ such that $x y=0$. By repeating the argument in the above paragraph on the right, we see that we would be done unless $x x^{*}=0$. We may therefore assume that for every $x \in R$ which is a left zero-divisor, we have $x x^{*}=0$. Now if every nonzero trace were regular, we would be done by Corollary 1 . So choose $s \in T$, $s \neq 0$ with $s^{2}=0$. Then for any $r \in S, x=s r$ is a left zero-divisor, and so $x x^{*}=s r^{2} s=0$. Linearizing on r, we have $s(r u+u r) s=0$, for all $r, u \in S$, or $s(S \circ S) s=0$. But then $s=0$ by Lemma 5 , a contradiction, unless R is an order in a simple ring Q of dimension $\leqq 4$ over its center. Thus R is either (1) or (3), and we are done.

Corollary 2. If R is a semi-prime Goldie ring with * in which every trace is nilpotent or regular, then R must be one of the four possibilities in Theorem 1.

Proof. Since a semi-prime Goldie ring is an order (left and right) in a semisimple Artinian ring [4, p. 176], every left zero-divisor in R is a right zerodivisor. In addition, any nil right ideal in a Goldie ring is nilpotent [9], and so R being semi-prime implies that R has no nil right ideals. The corollary now follows from Theorem 2.

Corollary 3 (Chacron and Chacron [1]). Let R be a Noetherian ring with * in which every non-zero element of the form $x+x^{*}$ or $x x^{*}$ is regular or nilpotent. If N is the maximal nilpotent ideal of R, then R / N must be one of the possibilities (1), (2), or (3), in Theorem 1.

Proof. This follows from Corollary 2.
We close by giving Martindale's example of a prime, semi-simple ring R with * in which every symmetric element is nilpotent or regular, but which is not a domain and cannot be imbedded in the 2×2 matrices over a field.

Let F be any field, and consider the polynomial ring $F[x, y]$ in the noncommuting indeterminates x and y. Let

$$
R=F[x, y] /\left(x^{2}\right)
$$

$F[x, y]$ has an involution $*$ by reversing the order in any monomial in x and y, by fixing the elements of F. Since $\left(x^{2}\right)$ is a $*$-ideal, R has an induced involution.

Now if $\bar{z} \bar{w}=0$ in R, then $\bar{z}=\bar{z}_{1} \bar{x}$ and $\bar{w}=\bar{x} \bar{z}_{1}$, for some \bar{x}_{1} and \bar{w}_{1} in R. (This has been verified independently by P. M. Cohn in Proc. Amer. Math. Soc. 40 (1973), 91-92, and by D. Estes.) It follows that if \bar{s} is a symmetric zerodivisor in R, then $\bar{s}^{2}=0$. Thus every symmetric element of R is regular or nilpotent, and R is the desired ring.

Acknowledgement. The author would like to thank W. S. Martindale, III for several helpful suggestions.

References

1. M. Chacron and J. Chacron, Rings with involution of all whose symmetric elements are nilpotent or regular, Proc. Amer. Math. Soc. (to appear).
2. T.S. Erickson, The Lie structure in prime rings with involution, J. Algebra 21 (1972), 523-534.
3. T. S. Erickson and S. Montgomery, The prime radical in special Jordan rings, Trans. Amer. Math. Soc. 156 (1971), 155-164.
4. I. N. Herstein, Non-commutative rings (Carus Math. Monograph 15, M.A.A., 1968).
5. - Topics in ring theory, (University of Chicago Press, Chicago, 1969).
6. I. N. Herstein and S. Montogmery, Invertible and regular elements in rings with involution, J. Algebra (to appear).
7. N. Jacobson, Structure of rings, Amer. Math. Soc. Colloquium Publ. 37 (1964).
8. —— Lectures on quadratic Jordan algebras (Tata Institute, Bombay, 1969).
9. C. Lanski, Nil subrings of Goldie rings are nilpotent, Can. J. Math. 21 (1969), 904-907.
10. -_Rings with involution whose symmetric elements are regular, Proc. Amer. Math. Soc. 33 (1972), 264-270.
11. C. Lanski and S. Montgomery, Lie structure of prime rings of characteristic 2, Pacific J. Math. 42 (1972), 117-136.
12. W. S. Martindale, III, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969), 576-584.
13. K. McCrimmon, Quadratic Jordan algebras whose elements are all invertible or nilpotent, Proc. Amer. Math. Soc. 35 (1972), 309-316.
14. S. Montgomery, Lie structure of simple rings of characteristic 2, J. Algebra 15 (1970), 387-407.
15. J. M. Osborn, Jordan algebras of capacity 2, Proc. Nat. Acad. Sci. U.S.A. 57 (1967), 582-588.
16. -—Jordan and associative rings with nilpotent and invertible elements, J. Algebra 15 (1970), 301-308.

University of Southern California, Los Angeles, California

