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RINGS WITH INVOLUTION IN WHICH EVERY TRACE IS 
NILPOTENT OR REGULAR 

SUSAN MONTGOMERY 

A theorem of Marshall Osborn [15] states that a simple ring with involution 
of characteristic not 2 in which every non-zero symmetric element is invertible 
must be a division ring or the 2 X 2 matrices over a field. This result has been 
generalized in several directions. If R is semi-simple and every symmetric 
element (or skew, or trace) is invertible or nilpotent, then R must be a division 
ring, the 2 X 2 matrices over a field, or the direct sum of a division ring and 
its opposite [6; 8; 13; 16]. On the other hand, if R has no nilpotent ideals and 
the non-zero symmetries (or skews) are not zero-divisors, then it has been 
shown that R must be a domain, an order in 2 X 2 matrices, or a subdirect 
sum of a domain and its opposite [6; 10]. It was thus natural to raise the 
following question [6]: If R is a ring with involution in which every symmetric 
element is nilpotent or a non zero-divisor, and the nil ideals of R are suitably 
restricted, must R be a domain, or contained in 2 X 2 matrices or the direct 
sum of a domain and its opposite? 

It has so far been shown [1] that this is indeed the case when the ring is 
Noetherian and has no nilpotent ideals. In this paper we prove that, if R has 
no nil right ideals, a necessary and sufficient condition for the conclusion to 
hold is that every left zero-divisor in R is also a right zero-divisor. This includes 
the Noetherian case as a corollary. 

We note that this result is perhaps the best possible, since W. S. Martindale 
has constructed an example of a prime, semi-simple ring with involution, in 
which every symmetric element is nilpotent or regular, which is not a domain 
but cannot be imbedded in 2 X 2 matrices. 

Throughout, R will denote an associative ring with involution * (an anti-
automorphism of period 2). Let 5 = {x G R\x* = x] denote the set of sym
metric elements, and T = {x + x*\x G R} the set of traces. T is clearly a 
subset of S, and 2S C T. An element x Ç R is said to be regular if it is not a 
zero-divisor in R. We will call an ideal I of R a *-ideal if /* C / . If / is a 
•-ideal of R define 

Tr = {x + x*\x ç / } . 
Note that TjQTCM. 

The first lemma is trivial but will be used frequently. 

LEMMA 1. If every element of T is nilpotent, then R has a nil right ideal unless R 
is commutative, 2R = 0, and * is the identity. 
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Proof. If T = 0, it is easy to verify t ha t for a,b,c £ i?, a* = — a,ab = — ba, 
and 2afo = 0. T h u s (2i?)3 = 0, and so 27? = 0. Bu t then a* = a, ab = 6a, 
and we are done. 

So, assume tha t T ^ 0. Choose a G 5 so a2 = 0, a ^ 0. Then ax + x*a G T, 
so (ax + x*a)w = 0, for some n. Multiplying on the right by ax, we see 
(ax)w + 1 = 0. But then aR is a nil right ideal of R. 

We point out t ha t even if every symmetric element of R is nilpotent, it is an 
open question as to whether R must be nil [16]. In order to avoid this problem, 
we will simply assume tha t R has no nil right ideals. Note t ha t by Lemma 1, 
this implies t ha t if the involution is not trivial, R must contain a non-nilpotent 
trace. 

L E M M A 2. Let R be a prime ring with *, and let a £ T. If aTjb = 0, where b 
is any element of R and I is a *-ideal of R, then a = 0 or b = 0. 

Proof. Follow exactly the proof of Theorem 6 of [3] ; it is only necessary to 
choose the x and y in / . 

L E M M A 3. Suppose that R is a ring with no nil right ideals and that a £ R, 
a2 7e- 0. Let M be the maximal nil ideal of the ring aRa. Then M ^ aRa, A = 
aRa/M has no nil right ideals, and aMa = 0. 

Proof. If M = aRa, then aRa is nil. But then a2R would be a nil r ight ideal 
of R, and so a2 = 0, a contradiction. Thus M ^ aRa. 

Let p be a nil r ight ideal of aRa, and choose x G p. Then xara G p, and so 
(xara)n = 0, all r £ R. But then (axar)n+l = 0; t ha t is, axaR is a nil r ight 
ideal of R. Thus axa = 0, and so apa = 0. In particular aMa = 0. Also, 
p3 = 0 since p C aRa. 

Now if p were a nil right ideal of A, its inverse image p in aRa would be a 
nil r ight ideal of aRa. Thus p3 = 0 by the above. But this implies p Ç M, and 
so p = 0 in A. 

LEMMA 4. Let R be a prime ring with * and with no nil right ideals in which 
every trace is nilpotent or regular. Then t Ç T nilpotent implies t2 = 0. 

Proof. Assume tha t a G T, a nilpotent, bu t a2 ^ 0. Consider the ring 
A = aRa/M as in Lemma 3. Since a 6 5 , * is an involution on ai^a and 
M* ÇZ .M. T h u s aRa/M has an induced involution. 

Now every trace in 4̂ is the image of a trace in aRa. But no element of aRa 
is regular; thus every trace in aRa (and so in A) is nilpotent. By Lemma 1, 
there are no traces in A (since A has no nil right ideals) and so a Ta C M". 
Since a l f a = 0 by Lemma 3, we have a2Ta2 = 0, and so asTa2 = 0. Bu t 
a3 Ç T, so by Lemma 2 we have a3 = 0. Thus any nilpotent element of T 
has cube 0. 

Let x G R. Then a2x + x*a2 G 7", so is nilpotent or regular. Since xax* G T, 
a2xax*a2 = 0, and so (a2x + x*a2)ax*a2 = 0. We claim tha t (a2x)4 = 0. If 
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ax*a2 = 0, this is certainly true, so assume ax*a2 ^ 0. Then a2x + x*a2 is not 
regular, and so (a2x + x*a2)3 = 0. But (a2x + x*a2)3 = (a2x)z + za2, for 
some z £ R. Multiplying on the right by a2x, we have 0 = (a2x)A. Thus a2R is 
a nil right ideal of R, a contradiction. 

For the next lemma, we need some terminology. If a, b G i?, then we define 
a o b = ab + ba. If A and B are subsets of i?, then A o B means the additive 
subgroup of R generated by all a o 6, with a G ̂ 4, b G J3. Similarly, [a, 6] = 
ao — 6a, the Lie product. For more details, see [5, Chapters 1 and 2]. The 
lemma extends results in [5] and [11]. 

LEMMA 5. Suppose that R is a prime ring with *, a G T with a2 = 0, and I is 
a *-ideal of R with a(Tr o r 7 ) a = 0. Then a = 0, unless 2R = 0 and R is an 
order in a simple ring Q of dimension ^ 4 over its center. 

Proof. First assume that the characteristic of R is not 2. Then U — TI o TT 

is a Jordan ideal of S, and so by the proof of Theorem 2.6 of [5], there exists 
a *-ideal J of R such that U 3 J H S. Since 7 H 5 C 7V, we have a ^ a = 0, 
and so a = 0 by Lemma 2. 

Now consider the case when 2R = 0. Then TIoTI = [TIt r 7 ] , the Lie 
product. Assume that i£ is not an order in Q as above. Let W = {v G Ti\ava = 
0} ; T^ is a Lie ideal of TT. Now the sub-ring T/ generated by T j contains a 
non-zero *-ideal of R (by [11, Lemma 22]), so any element centralizing T 7 

would centralize an ideal of R, and so all of R, since R is prime. But a Q Z, 
the center of R, since a2 = 0; thus there exists v Ç 7"7 with «v ^ wz, 
or an + m ^ 0. Now 

a[(az; + ^a)^* + y(av + va)]a = a[u, ya + ay*]a Ç a[T7 , T7]a 

for all ;y G J. Thus (av + va)y* + y(av + m) G W, all y G / . By [11, Lemma 
23], this implies TF 2 3"j, for some ^ 0 *-ideal / of R. But then aTja = 0, 
and so again a = 0 by Lemma 2. 

The next three lemmas are similar to the arguments in [6]. For Lemmas 6 
and 7, we use the following construction of Martindale [12]. If R is a prime 
ring, then the central closure of R is a prime ring B D R, with center a field C, 
such that J3 = i£C. Moreover, given 6 ^ 0 in 5 , there exists an ideal U ?* 0 
of i? with 0 9* bU CR. 

As in [2], the involution * on R may be extended to an involution on B, 
which we shall also call *. 

LEMMA 6. Let R be a prime ring with no nil right ideals with * which is not a 
domain or an order in a simple ring of dimension ^ 4 over its center, and let B 
be the central closure of R. If every trace in R is regular or nilpotent, then every 
trace in B is regular or nilpotent. 

Proof. Assume that /0 = u + u* G B is not regular. We will show that 
to2 = 0. Now tQx = 0, some x ?*• 0 G B. Since there exists an ideal U of R 
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such that xlJ ^ 0 C Ry t0 also annihilates a non-zero element of R. As in the 
proof of Theorem 4 of [5], there exists a *-ideal V of R such that 0 ^ u V C i£, 
0 ^ M * F Ç i ? , 0 ^ / 0 F Ç ^ 0 ^ F/o £ i?, and 0 ^ /0F/0 C R. 

Now if 7V = 0, then by Lemma 1, F is commutative, which implies R is 
commutative (since R is prime). Then R is a domain, a contradiction. We may 
therefore assume that Tv 7e 0. Let v G TV. Then £0̂ o G 2" and is a zero-divisor 
in i?, so (t0vt0)

2 = 0 by Lemma 4. If s G 5 Pi F and / G L, then ste G 7V, and 
so (t0ststo)2 = 0. This implies that 

(st0s)t(st0
2s)t(st0s) = 0, for all * G L. 

Say 50G F P S and s0 is regular. Then s0ts0 G TV is regular or nilpotent. 
If Sot0So is regular, then ts0t0

2s0t = 0, for all / G L, by the previous paragraph. 
Since at least one trace t is regular, s0tç

2s0 = 0. Thus t0
2 = 0 since s0 is regular, 

and we would be done. We may therefore assume that (s0t0s0)
2 = 0, for all 

regular s0. Thus, /0̂ o2 ô = 0 for all regular s0 G F Pi S. 
Now if ^ G Tv is not regular, then s2 = 0 by Lemma 4, so certainly t0s

2t0 = 0. 
Thus t0s

2to = 0 for every 5 G Tv. Linearizing on s, we see that t0(sr + rs)t0 = 
0, all r, s G 2"FÎ that is, t0(Tv o r F ) / 0 = 0. Now let a = /0^o, for any v G TF. 
Then a £ T and is not regular, so a2 = 0. Thus a(Tv o 7V)a = 0, where a £ T 
and a2 = 0. By Lemma 5, if follows that a = 0. Thus t0(Tv)t0 = 0. 

Let x G F. Then x + x* G 7V, so /0(x + x*)£ = 0, and thus t0xt0 = —toX*t0. 
Also, x/0x* = #(w + u*)x* G ^y, and so to(xtoX*)t0 = 0. Combining these 
statements, we have toXt0xt0 = 0, and so (/0^)3 = 0, for all x G F. But then / 0 F 
is a nilpotent right ideal of R, which is a contradiction. 

LEMMA 7. Le/ Rbe a prime ring with no nil right ideals satisfying a generalized 
polynomial identity. If every element of T is nilpotent or regular, then R is a 
domain or an order in the 2 X 2 matrices over a field F. 

Proof. By a theorem of Martindale [12], the central closure B of R is a 
primitive ring with a minimal one-sided ideal. By Lemma 6, B satisfies the 
same hypotheses as R. The rest of the proof follows exactly the case where 
every skew-trace is regular (Theorem 4 of [6]). 

LEMMA 8. Let Rbe a ring with no nil right ideals in which every trace is nilpotent 
or regular. If R is not prime, then either 

(a) R is a subdirect sum of a domain and its opposite, or 
(b) 2R = 0, * is the identity, and R is commutative. 

Proof. We assume that case (b) does not hold. Thus by Lemma 1, R must 
contain a regular trace. Since R is not prime, there exist non-zero ideals A and 
B oîRwiÛiAB = (0). 

Let C = A P A*. We claim that C = (0). For, let x G C. Then x* G C, 
and (x + x*)B C CB = (0). Thus x + x* is nilpotent. Since every trace in C 
is nilpotent, by Lemma 1, 2C = 0, * is the identity, and C is commutative. 
Also, Tc = 0. Since R is semi-prime and C is a commutative ideal, C is in the 
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center of R. Let / be a regular element of T and choose c Ç C. Then te 9e 0 i( 
c 9^ 0, and te Ç 3"c, a contradiction unless c = 0. T h u s C = A C\ A* = (0). 

We next show t h a t A is a domain. For, say a\a2 = 0, with ai , a2 7e 0 in A. 
Then ai^2* G /I Pi ^4* = (0), and so ax(a2 + a2*) = 0. This implies x = 
a2 + a2* is nilpotent, say xn = 0. Bu t a2a2* = 0 = a2*a2 implies t h a t xn = 
a2

n + (ft2*)n = 0, and so a2
n £ A r\ A* = (0). T h u s a2

n = 0; t h a t is, every 
zero-divisor in 4̂ is nilpotent. T h u s if a is a zero-divisor, aA is a nil r ight ideal 
of A, a contradiction. T h u s 4̂ is a domain. 

As in the proof of Theorem 5 of [6], if u2 = 0 in R then uA = 0 and z^4* = 0. 
T h u s w(a + a*) = 0, all a Ç ,4. Since a + a* G 7\ (a +a*)n = 0 = an + (a*)*, 
some ^. As above, this implies an = 0. B u t A is a domain, a contradict ion. T h u s 
7^ contains no nilpotent elements. 

This means t h a t every element of T is regular. If every element of S were 
regular, the theorem would follow from the result of Lanski [10]. We may thus 
assume tha t for some 5 ^ 0 in S, s is a zero-divisor. Let V = {x Ç R\sx = 0} . 
If sx = 0, then (xs)2 = 0 so xs = 0. T h u s V is an ideal of R. Since 5* = s, 
V* = V. However, V C\ T = (0). As before, this implies 2 V = 0, * is the 
ident i ty on V, and V is in the center of R. Bu t then for v Ç F , £ Ç T, we have 
zrô 5^ 0 bu t also ztf £ 7 H r = (0), a contradiction. T h u s the theorem is proved. 

We are now able to combine the various lemmas to obtain the desired results. 

T H E O R E M 1. Let R be a ring with no nil right ideals and with * satisfying a 
generalized polynomial identity. Assume that every trace in R is nilpotent or 
regular. Then R is one of the following: 

(1) a domain, 
(2) a subdirect sum of a domain and its opposite, 
(3) an order in ^é2{F), the 2 X 2 matrices over a field F, 
(4) commutative of characteristic 2 with the trivial involution. 

Proof. This follows from Lemmas 7 and 8. 

T h e following corollary is actually implicit in the results of [6] (and in fact 
is t rue if we only assume t h a t R has no ni lpotent ideals). We s ta te i t here only 
for completeness. 

COROLLARY 1 (Herstein and Montgomery) . Let R be a ring with * and with 
no nil right ideals in which every non-zero trace is regular. Then R must be one of 
the four possibilities in Theorem 1. 

Proof. If R is not prime, then we are done by Lemma 8. If R is prime but not 
a domain, we may assume t h a t R satisfies a generalized polynomial identi ty. 
For if every symmetr ic element were regular, we would be done by Lanski 's 
result [10]. We may thus assume t h a t R contains a symmetr ic zero-divisor, 
say a. Since aTa C T and every non-zero trace is regular, we must have t ha t 
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aTa = 0. Hence if r Ç R, air + r*)a = 0, and so ara = — ar*a. Now if 
ri, r2 G i?, then 

airxar2)a = —a(r1ar2)*a = — ar*ar*a = — armaria. 

Consequently, R satisfies the generalized polynomial identity p(x, y) = 
axaya + ay axa. Now apply Lemma 7. 

We now come to the main result of this paper. 

THEOREM 2. Let R be a ring with * and with no nil right ideals in which every 
trace is nilpotent or regular. Then R is one of the four possibilities in Theorem 1 
if and only if R satisfies either one of the following conditions: 

(A) every left zero-divisor in R is also a right zero-divisor; 
(B) whenever xx* = 0,for any x Ç R, there exists y 9e 0 Ç R such that yx = 0. 

Proof. It is trivial that if R is one of the four possibilities in Theorem 1, then 
R satisfies conditions (A) and (B). Also, it is clear that condition (A) implies 
condition (B). Thus it remains to show that if R satisfies condition (B), then 
R must be either 

(1) a domain, 
(2) a subdirect sum of a domain and its opposite, 
(3) an order in ytf(2(F), or 
(4) commutative with the trivial involution. 
Now if R is not prime, then by Lemma 8 R must be (2) or (4). We may 

therefore assume that R is prime. As before, we will show that R satisfies a 
generalized polynomial identity. 

First, say that there exists some x £ R so x is a left zero-divisor but x*x ^ 0. 
Let a = x*x and let t £ T. Then xTx* C T and is not regular, so (xtx*)2 = 0, 
all t G T by Lemma 4. Thus xtx*xtx* = 0, and so atata = 0, all t Ç T. Linearizing 
on t, and then multiplying on the right by ta, we see atasata = 0, for all s, t Ç T. 
Now ata G T, and so ata = 0 by Lemma 2. Since aTa = 0, as in the proof of 
Corollary 1 we see that R satisfies a generalized polynomial identity. 

We may thus assume that for every x Ç R which is a left zero-divisor, x*x = 0. 
But now by our basic assumption (using *), there exists some y ^ 0 G R such 
that xy = 0. By repeating the argument in the above paragraph on the right, we 
see that we would be done unless xx* = 0. We may therefore assume that for 
every x G R which is a left zero-divisor, we have xx* = 0. Now if every non
zero trace were regular, we would be done by Corollary 1. So choose s £ T, 
s 9^ 0 with s2 = 0. Then for any r G S, x = sr is a left zero-divisor, and so 
xx* = sr2s = 0. Linearizing on r, we have s(ru + ur)s = 0, for all r, u G S, 
or s (S o S)s = 0. But then s = 0 by Lemma 5, a contradiction, unless R is an 
order in a simple ring Q of dimension ^ 4 over its center. Thus R is either (1) 
or (3), and we are done. 

COROLLARY 2. If R is a semi-prime Goldie ring with * in which every trace is 
nilpotent or regular, then R must be one of the four possibilities in Theorem 1. 
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Proof. Since a semi-prime Goldie ring is an order (left and right) in a semi-
simple Artinian ring [4, p. 176], every left zero-divisor in R is a right zero-
divisor. In addition, any nil right ideal in a Goldie ring is nilpotent [9], and so 
R being semi-prime implies that R has no nil right ideals. The corollary now 
follows from Theorem 2. 

COROLLARY 3 (Chacron and Chacron [1]). Let R be a Noetherian ring with * 
in which every non-zero element of the form x + x* or xx* is regular or nilpotent. 
If N is the maximal nilpotent ideal of R, then R/N must be one of the possibilities 
(1), (2), or (3), in Theorem 1. 

Proof. This follows from Corollary 2. 

We close by giving Martindale's example of a prime, semi-simple ring R 
with * in which every symmetric element is nilpotent or regular, but which is 
not a domain and cannot be imbedded in the 2 X 2 matrices over a field. 

Let F be any field, and consider the polynomial ring F[x, y] in the non-
commuting indeterminates x and y. Let 

R = F[x,y]/(x>). 

F[x, y] has an involution * by reversing the order in any monomial in x and y, 
by fixing the elements of F. Since (x2) is a *-ideal, R has an induced involution. 

Now if zw = 0 in R, then z = Z\ôt and w = xzi, for some Xi and W\ in R. 
(This has been verified independently by P. M. Cohn in Proc. Amer. Math. Soc. 
40 (1973), 91-92, and by D. Estes.) It follows that if 5 is a symmetric zero-
divisor in R, then s2 = 0. Thus every symmetric element of R is regular or 
nilpotent, and R is the desired ring. 
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