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SOLUTIONS OF PERIOD SEVEN FOR A
LOGISTIC DIFFERENCE EQUATION*

A. BROWN

Communicated by James M. Hill

The paper extends earlier results for periodic solutions of the

2
difference equation w = W - A , where A is a constant and

A > -1/k . Exact equations are given for determining solutions

of period seven. The method involves finding roots of two

polynomial equations, one of degree 18 and the other of degree

7 . For a given value of A , each real root of the equation of

degree 18 corresponds to a cyclic solution and the equation of

degree 7 gives the seven values of W in this cyclic solution.

The equations are valid whether the periodic solution is stable

or unstable, although information about the stability emerges as

a by-product. Thus it is possible to tabulate precise intervals

of stability in the cases where stable solutions occur.

1. Introduction

The difference equation

(1.1) uB + 1 = 2aun -
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264 A. Brown

where a and b are positive constants, with a > 1/2 , has been used

freely in population dynamics as a finite analogue of the logistic

differential equation [5, Chapters 2, 3]. Its properties have been

discussed in detail in a review article by May [4], who mentions that an

equation of this kind is particularly appropriate in populations where the

generations are distinct and u gives the population size in the nth

generation. Apart from the zero solution u = 0 , the equation has an

equilibrium solution at u = (2a-l)/b and for sufficiently large values

of a solutions can oscillate about this non-zero equilibrium level. This

leads to the possibility of periodic solutions and to questions of the

stability of these periodic solutions. The review article by May [4]

includes a good deal of information on these matters , not only for equation

(1.1) but also for other equations of a similar character.

In examining solutions of equation (l.l) the parameter b is simply a

scale factor which can be eliminated by substituting v = bu . We can

take this a step further by using w = a - bu , which gives the simpler

equation

(1.2) 2

2
with A = a - a • For a > 1/2 , A increases monotonically with a and

can be used as an appropriate parameter instead of a in discussing

periodic solutions. This was done in a previous paper [7] in establishing

equations for periodic solutions with periods 2, 3, h, 5 and 6 and the

present paper extends these results to solutions with period 7 • The

method used is essentially the same and the notation follows that of the

previous paper.

For a solution of period 7 , we want to have u
n

n = 0, 1, 2, ... and it is easy to see that
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Logistic difference equation 265

2
y is a polynomial of degree 2 in w ,

w is a polynomial of degree 2 in w ,

7
u is a polynomial of degree 2 in W

Thus the condition W = w gives

(1.3) G^wJ =wn+1-wn = 0 ,

a polynomial equation of degree 128 in W . Since the condition

w = W is satisfied by the two equilibrium solutions, we can write

(1.10 G7{wn) = (wn-a)(un-l+a)a7(wn)

where H is a polynomial of degree 126 in w . (The solution W = a

corresponds to u = 0 and the solution W = 1 - a corresponds to

u = (2<2-l)/£ .) Now if b , b , i> , ..., & are the values of W for a

solution of period 7 , with distinct elements, this solution must

contribute a factor

(1.5) hjx) = T l (x-b.) = x7 - ax6 + 3*5 - Y*1* + <5a:3 - ex2 + 6x - ?
7 ^'
jx) = Tl
7 i=l

to the polynomial HAx) and at most there will be 18 factors of this

type. Equation (1.5) defines a, 8, Y, <S, e, 9, t, as symmetrical

functions of b to i> and the functions 3, Y* 6> e> 6» C can be

determined when a and A are specified. If we refer to a solution of

this type as a CJ solution, once a suitable value of <x is known (for a

given A ) the polynomial h (x) can be constructed and solving h_(x) = 0

gives the b. values for this CJ solution. The problem of finding

suitable values of a is dealt with by showing that a satisfies a

polynomial equation of degree 18 .

Section 2 deals with the problem of finding $» Y> &•> E> 9> £ when a

and A are specified and Section 3 establishes the polynomial equation for
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266 A. Brown

2
a. . In obtaining these equations it is assumed that a + a - A # 0 and

the main problem in Section k is to see what modifications are required in

2
the special case where a + a - A = 0 . Finally, some numerical results

are given in Section 5.

2. Relationships for C7 solutions

The equations for the elements b. in a Cf solution are

(2.1) bi+1 = b
2 - A , i = l, 2, 3, .... 7 ,

where £>n = b . From the theory of equations, any symmetrical, function of

the b's can be expressed in terms of a, (3, Y, 6, e, 6, Z, and we try to

use equation (2.1) to obtain an alternative form. In doing this i t is

convenient to introduce the symbol £ to denote cyclic summation over the

indices 1 to 7 (because equations (2.1) have cyclic symmetry). For

example, we can write

(2.2) a2 - 2g = ZQb2
x = ZQ{b2+A) = a + 1A ,

since "^rPo ~ ^"rP-i = a • Similar working gives

(2 .3) a 3 - 3cx3 + 3Y = ^ = ZJ^+A) = (^ + Aa ,

where

(2.U) Bx = lobxb2 - b±b2 + b2b3 + b3fcu • bkb5 + fe^ + b6fc? + fc^ .

In the same way,

(2 .5) aU - ha2& + 202 + l*oy - h& = ZQb^ = I0(b2+/ l)2 = (a+7-4) 2

(2.6) a5 - 5a3B - 5a6 + 5a2y + 5a02 - 53Y + 5e =

where &2 = ZA>^b~ . Note that we can write 0 = B + & + B, , where
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L o g i s t i c d i f f e r e n c e e q u a t i o n 2 6 7

Two similar equations which bring in 9 and t, are

(2.7) a6 - 6aU6 + 6a3y - 6a26 - l2a3Y + 636 + 6ae - 66 + 9a202 - 233

3 == I b^ = £ (i +A)3 = 3

(2 .8 ) a 7 - 7a5g + 7a y - T«3|5 + l ^ a 3 ^ 2 - 2 1 O 2 3 Y + 7a 2 e

2 - 7a9 + 7S + 732Y - 73e - 7Y<$

where y = E fc fc b . I t wi l l be seen that equations ( 2 . 2 ) , ( 2 . 3 ) , (2 .5 ) ,

(2 .6 ) , (2.7) and (2.8) can be solved to give, in tu rn , expressions for

$, y, 6, £, Q, C, , although they involve 3, , 3 ? and Y-, a s well as a

and A . Thus we require equations which allow 3-. , 3 ? and Y-, t o b e

evaluated from a and A .

The method used to i so l a t e 3, , 3 p and Y-, (described below)

involved a fa i r amount of deta i led algebra and i t i s possible that a

shorter method could be devised. As defined by equation (1.5) , Y and 6

consist of 35 terms while 3 and e have 21 terms. They can be sub-

divided into groups of 7 terms, each with cyclic symmetry, by wri t ing

^ .j.u/ o^ UQU^UQU^U^ , o^ 0 1 2 3 5 ' 3 0 1 2 3^6 '

$*=T,bbbib , 6 = E b b b\ b /• ,

(2.11) e± = ZQ1

Then Y = Yx + Yg
 + Y3

 + Ŷ  + Y5 . 6 = &1 + &2 + 8^ + 6^ + 6^ , and

e = e + e + e . (The sub-division of 3 has already been described.)

I f we form the products a3 •, orf . , a6 . and ae . and make use' of equation

x- u I. t-

(2.1), we get a total of 16 equations relating the 16 quantities

3•, y-, 6. and e. and the solution of these equations gives expressions
t- 1* t- 2*

for &x, 32, 33 ; Yx. •••» Y5 ; 6^ ..., 6^ ; e ^ eg, e3 . Typical

equations are:
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268 A. Brown

(2.12) a&1 = a(l+24) + 7^ + 62 + Y + Yx -

(2.13) OY2

(2.15) CK^ = >4(7+2a+231+83+2Y1+2Y3+61-65+5) + a + &2 + yk + 63 + e2 + 26 .

The equations are linear and we can

(i) use the ccy • equations to solve for the 6' s (in terms

o f Yt, & £ , a , A ) ,

( i i ) use the a& , cx6, and a6 equations to solve for e ,

e2 and e ,

( i i i ) use the a6 , a6. and aB- equations to solve for the

Y's ,

(iv) use the ae. equations to give two equations for 3. and

Parts (i) and ( i i ) of this procedure are straightforward. In part ( i i i ) a
key equation is

(2.16) (a

26 .

2
P r o v i d e d a + a - A + 0 , t h i s gives y - y, i n terms of a , A, $,> 6 ,

8 and we can go on t o o b t a i n s i m i l a r s o l u t i o n s fo r Y-> 5 . , e . and 0 .

I n p a r t i c u l a r , t h e s o l u t i o n fo r y can be w r i t t e n as

(2.17)

•5a -(50+60/l)a3+(l5-2504)a2+(-15-134+5742)a+(l0542-1054)}

+ ei{30a3+30a2-(10+304)a-10-964}

+ 82(3Oa-l8) + B3{-3Oa3+(60+304)a-90-304} ,
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where C = a + a - 4 . This solution can be written in different ways,

since B + B + B, = B = (1/2)(a -a-74) . For example, the term in &2

can be eliminated by replacing B? by B - B, - B_ • This is what was

done in part (iv) of the procedure to obtain equations relating B. and

B . The two equations are

(2.18)

(2.19)

with

(2.20) pQ = 15a
7

0 =

0 = qQ +

- (635+120(M)a

(2.21) - 45a5 - - (195+630A)a3

(2.22) p = -15a + 15a5 + (-155+1654)a - (95+2704)a3

(2.23) qQ = -U5a
8 - 135a7 + (-l*O5+8lO/l)a6 + (-793+18634)a5

+ (-lit30+l*3504-l»32042)a + (-760+91154-850542)a3

+ (38U+l85064-lUll542+639043)a2 + (l536+191+324-131^042+677743)a

(2.2U) = 135a + 585a5 + (1275-I1»854)a + (3015-62104)a3

+ (8950-109054+256542)a2 + (llH20-591*04+562542)a

+ (91*72-28564+7971»42-121543) ,
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270 A. Brown

(2.25) <?3 = U501
6 + 195a5 + (62'y-k95A)ai + (1165-15904) a3

+ (2330-3355/l+85542la2 + (26OO-2 580/5+139 5A2) a

These equations depend on the assumption that C t 0 . For

p q ~ PJJ-. ? 0 , the equations can be solved for 3. and 3, and then

e2 = 3 - Bl - e3 .
o

Thus for given values of a and 4 , we can evaluate 3, pQ, P-̂ , p.,, <70» <7-,5

<7 and (in general) solve equations (2.18) and (2.19) for 3 and 3 .

The value of 3 follows and equation (2.17) gives Y, . Equations (2.3),

(2.5), (2.6), (2.7) and (2.8) can tie used to obtain Y, <5, e, 8 and Z, in

turn and this defines hAx) . The roots of h (x) = 0 correspond to the

values of b . for the solution and equation (2.1) can be used to put them

in order. The stability of the solution is determined by

C = bx
b
2
b
3 ••• bj > s i n c e

for a CJ solution. For local stability, we must have 2 |c| < 1 , that

is,

(2.27) -1/128 < C < 1/128 .

3. Equation for a

To obtain an equation for a we need an additional relationship

between a, 3, Y> <5, E, 0, £ and we would like to have it in a form which

allows us to eliminate 3 and 3-, • Thus a suitable form is an equation

similar to (2.18) and (2.19), for we can then write down the equation for

a in detenninantal form. There are a number of relationships that can be

used and the eventual choice was somewhat arbitrary.

One neat-looking set of results comes from eliminating A in equation

(2.1). For example,
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(3-D

and hence

(3.2)

where II is used to denote a cyclic product, that is

For a C~[ solution the b. are distinct and hence II (b -b ) # 0 . Thus

equation (3.2) gives

(3-3) 1 = \{\+b2) •

A similar argument leads to

(3.10 1 = %{\**3) '

( 3 - 5 ) 1 = %[\+\) •

When the right-hand side of equation (3.3) is expanded, we can replace b

by b + A , and so on, until only first powers of each b. are left.

This gives

(3-6) 1 = (ct+B+-Y+6+e+e+2£) + i4(7+6a+5B+^Y+3<5+2e)

and equations (3.**) and (3.5) give the same result.

Equation (3.6) is clearly a useful equation, for example, for checking

the numerical results obtained from the equations in Section 2, but it is

less convenient to use it directly to give a relation between & and

$ . The inconvenience stems from equations (2.7) and (2.8), which involve

Y . There is no difficulty in determining 8 and C, numerically from

2 2
these equations but in the algebraic solution the Y term includes &

in its expansion and we would prefer linear terms only. (This difficulty

can be circumvented but there was no need to to so in this case.)

Another useful set of equations comes from forming the products
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a8, ae, a6, ..., a3 . Indeed some of these equations were used in checking

the results for aS., ay., a6. and ae. . Using equation (2.1), these

products become

(3-7) ag = 3Y + 26 + a - $1 + 4(6a+7) ,

(3.8) «Y = U6 + 2Y + 6 + a + Y 5 - Yx + 63 + 4(53+5a+7) ,

(3-9) a6 = 5e + 26 + Y + 3 + a + 6 - 6̂^ + Y 3 +

(3.10) ae = 66 + 2e + 6 + Y + 3 + a - e± - 6 - y - y - 3

(3.11) a8 = TC + 6 + a + e + 6 + Y, + 6, + i4(2e+6+Y+3+2a+T)

2
From equation ( 2 . 2 ) , a = 23 + a + 7/1 and hence

(3.12) a(9+e+6+Y+3+a+l) = 7(£+6+e+6+Y+3+a) + /l(2e+U6+7Y+ll3+20a+li2)

I t can be shown tha t

(3.13) 6 1 - 6 5 + 2Y;L - Y3 - 2Y5 + 3B1 -

= (1/12) mi(6a
2+22a+»tlt-l8J4)-1233-a

1|-2a3+(-3+10yl)a2

-(18+22/1 )a-126/l-2L42 ,

which means that the final term in equation (3.12) causes no difficulties.

What was done, in effect, was to eliminate £ between equations (3-6) and

(3.12) and replace 9, e, 6, Y a n d 3 by their expansions in terms of

a, A, 3 and g . This gave

(3.1U) 0 = (2a-7){ro+r131+r3(3B3)} ,

with

(3.15) rQ = 9a8 - 72a7 + (6-32hA)a6 + (-U+576/l)a5 + (-3i+7-2lt2l»/l

+ (U76-8U 324+792/12) a 3 + (71*Ol*-1010oVl+727842-U356i43)a2

+ (686l4-322U/l+ll772A2-1296/l3)a + 2
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(3.16) rx = 8{U5a5+75a'*+(33-3064)a3+(l01-55a4)a2

+ (202-7a4+26l42) a+ (296+3O/1+26142)} ,

(3.17) r = 8{5a -31ta3-(53+5OJ4)a2+(31t-6i4)a+(72+lU/l+U5i42)} .

The factor 2oc - 7 in equation (3.1*0 corresponds to the case where

b. = ( l /2 ) for i = 1 , 2, . . . , 7 • This i s an equilibrium solution

corresponding to a = 1/2 and A = 1/k and i t i s easy to check that

equations (3 .3 ) , (3 .*0, (3-5) and (3.12) are s a t i s f i ed in t h i s case. Thus

we can expect i t t o emerge as a possible solut ion of the equations but

since we have s t ipu la ted tha t a > 1/2 we can ignore t h i s solut ion. This

leaves

(3.18) 0 =

As with equations (2.18) and (2.19), equation (3.18) depends on the

2
condition that C = a + a - A t 0 . For the three equations to be

consistent, we must have

(3.19) 0 =E(a, A) =

and this is (almost) the equation we want for ct . An examination of the

leading terms shows that E{a, A) is a polynomial of degree 20 in a

rather than a polynomial of degree 18 . Numerical checks gave

E(0, 0) = 0 = E(-l, 0) and £(l, 2) = 0 = E{-2, 2) , which suggests that

2

a + a - A might be a factor and this was verified by expressing p as

(3.20) p = Cp + p^ ' ,

where pl^ is linear in a . Similar expressions were obtained for

Pi' P^ ' ^0' ̂ 1' ̂  ' r 0 ' r i ' ri a n d t h e d e t e r m i n a n t obtained from the

remainder terms, that is,

https://doi.org/10.1017/S000497270000575X Published online by Cambridge University Press

https://doi.org/10.1017/S000497270000575X


2 7 4 A. Brown

[ 0 * l ' 3

proved to have a factor C . With t h i s assurance tha t C i s a factor of

E{a, A) brute force was used to expand E(a, A) and write i t in the form

(3.21)

where

E(a, A) = (361+50) [a2+a-A)D(a, A) ,

(3-22)
18

D(a, A) = £ kna
n ,

with

(3.23) = 1 , fcl6 = 1+ - 57,4 , = 20 -

= 110 - 380i4 + 118842 , k = 638 - 10U84 + 37hOA2

= 3828 - 9652A2 -

k = IOU52 - 82hA + 23660A2 - U2168/}3 ,

k±Q = 27225 - U2196A + - 10058843 + 6\95OAk ,

k = 60665 - 1133524 - 2265242 - 18T50U.43 + 2280704

ka = 120032 - 2728254 + 18660U42 - 1+6870043

o

+ 1+909884 - 16860645 ,

k = 195632 - 602301+4 + 1+3901+U42 + 11+816843

+ 53T77241* - 53189645 ,

= 1491+368 - 125U9604 + 31185642 + 38161+1+43

+ 11+028224 - 121176U45 + 25»+9324 ,
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k = 88638U - 3892804 - ll*6200042 + U7760043

+ 61*1*7024 - 117653645 + 6388764 ,

k = 6989UU + 118062U4 + XXOhkQA2 - 261652843

+ 27210884 - 32U836645 + 155833246 - 21718847 ,

k = -U2U70U + 9768964 + 23U736042 - 350003243

+ 1J36100841* - 31U828345 + 137762046 - 37620047 ,

k = -566272 - 281+1*1*164 + 615872042 - 930979243 + 9790781*4

- 6U661*l645 + 337921646 - 9976684T + 9792948 ,

k = 5731*1*0 - 33771524 + 528972842 - 7828U8043 + 672568041*

- l*70857645 + 21939364 - 5T3981*4T + 8691348 ,

kQ = 101*8576 - 22773764 + l*7l*62l*04
2 - 58091*0843 + 605U976414

- 1+57252845 + 262929646 - Ill61*3247 + 25ll*2U48 - 1822549 .

For a given value of 4 the coefficients k to k „ can be evaluated

and the appropriate values of a are the real roots of D(a, 4) = 0 .

4. Special case C = 0

It might appear that the special case a = 0 requires attention

because of the use of equations such as (2.12) to (2.15) or (3-7) to

(3-11). However when a check was made this case produced no difficulties.

For example, in the derivation of equation (2.12),

= ^ 0 ( V ^ ^h2h^ + Yl + Yl* + Y3 + Y2 + Yl

= (a+74) + 24a + 62 + Y + y± - Y5 •

This expansion is still valid when £(*&•< = 0 i the equation reduces to

0 = 74 + 32 + Y + Yx - Y5 • Checking the details in this way gave k = 0

as the equation for 4 , in agreement with D(0, 4) = 0 .
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276 A. Brown

When C = 0 , equation (2.16) is s t i l l valid but i t no longer gives an

equation for y - y, and the solution for the Y- breaks down. This

invalidates most of the subsequent equations in Section 2 and i t is better

2
to make a fresh s t a r t , replacing a by A - a wherever i t occurs.

Equations (2.2), (2.5) and (2.6) become

g = -a - 3A , 3Y = a( 2-9/1) - 2A + &± ,

(k.l) 36 = a(74-2) + 9A2 - kA + ag ,

15e = a[l-klA+k5A2) + (21A2-1A) + 332 - (5a+9/l)B1 .

The equations for ag . , ay ., a.8 . and ae . are s t i l l valid, so equation
"V 1* Z- "Z*

(2.16) can be used; hence

(U.2) 0 = 2a(g2-S3) + 2a(g1-2e2) + haA + 2y + U01 - 262 + 2B3 .

If we replace y from equation (U.l) and put 6 = g - g - B , we get

(U.3) 3g2 = (30+2)8̂ ^ + (3A-2)a - U^ ,

and from this

(U.U) 3g3 = -{3a+5)^1 - (34+1)a - 5A .

Thus we can put g? and g in terms of 3 , a, A whenever they appear.

From the ag and ag_ equations it is straightforward to obtain

(U.5) Y5 = Yx + 3-L + a + 54 ,

Y3 = Yx + (l/3)|g1(2-2a-34)+(/l+2)a+10/l-34
2| ,

and hence Y?
 + YK = Y - Y-i ~ Y, - Ys

 c a n also be expressed in terms of

Y, , g, , a, A • The main problem is to find an equation for Y2 ~ Yj, as a

replacement for equation (2.16).

An unexpected bonus came from the equation for a6 , which is

(U.6) a 6 3 = A(a+g+Y-g^Yg) + z + &1 + 6 + y +
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As mentioned in Section 2, it is easy to solve for the 6's in terms of

Yv> &„•> a , 4 and these solutions were substituted for 6 , 6 and 6_

in equation (k.6). The results in equations (U.l), (k.3), (U.1*) and C+.5)

were used to obtain an equation for 3 and this gave

(U.7) B1(U-34+a) = 34
2 - 34 - kaA ,

a surprisingly neat result. Note that if the co-factor of' 8 is zero in

this equation, then the right-hand side of the equation must be zero also

and we either have

3A = k + a , with A = 0 ,

or

3A = k + a , with 34 = ka + 3 .

Neither of these is compatible with the assumption that C = 0 . Thus we

can take Q = h - 34 + a + 0 and regard equation (U.7) as an equation for

31 , in terms of a and A . From equations (U.3), (k.k) and (lt.l),

(U.8) <332 = 3A
2 - 8A + (2A-2)a , Q&3 = 3A

2 - 2A + (2A-i)a ,

£Y = -3A + (2-134+9i42)a ,

§6 = -64 + 17A2 - 943 + (-2+84-342)a ,

Qe = _34 + 842 - 343 + (l-l04+2042-943)a .

To obtain similar equations for Y-, to y , the equations used were

(U.9) B2 = 742 + hAa + &± ()

e2 = 742 + 24a + B2

62 = 742 + 24a + 3 3 1 u ^ )

2
These equations are valid in the general case and the B equation can be

o

used in evaluating y , which occurs in equations (2.7) and (2.8). If we
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2 2take 3p - Bo and substitute for 6 and 6, , the resulting equation is

- 1A

63

The essential point about this equation is that Yo> Yc and Yo + Yi, c a n

be expressed in terms of Y-, (plus terms in a, A, $. ) and in the special

case (7=0 this leads to

(It.11) 2Q2y± = -hkA + J2A2 - 30A3 + (-8+234-i*Oyl2+l8/l3)oi .

Similar expressions for 2Q y , 2Q y and 2Q (Y?+YL) follow immediately

and the 3, equation gives 2Q (Y2~YI,) • This gives a set of equations

for the Y* an^ solut ions for 6 . , e . follow in a straightforward way.

Equations (2.7) and (2.8) gave

(U.12) 2Q2Q = 8A + 56A2 - 116A3 + -J6A - 1845 + [-k+^A-l8A2+kkA3-6A)i)a ,

(U.13) l>t<22S = -5hA + 5O5A2 - 69OA3 + 308Ak - h2A5

+ [2-l6A+586A2-922A3+57hAk-126A3)a

and equation (3.11) was used as a check for these expressions. Thus for

given values of a and A , i f i t turns out that C is zero or close to

zero we have to switch from the equations in Section 2 and instead use

equations (U.T), (^.8) or (U.l) , (U.12) and (1+.13) to calculate the

coefficients in the polynomial h (x) . As before, the roots of hAx) = 0

give the elements of the C\ solution and the value of t, t e l l s whether

the cycle is stable or unstable.

We also have to check on the equation for a in the case when

C = 0 . When the expressions obtained for 6, Y> <5 > E, 0 and £ were

substituted in equation (3-6) i t was found that the condition

(U.lU) 0 = 22U - 50671 + kOkA2 - 10kA3 + (80-107i4-1042+2U/l3la

had to be satisfied for equation (3.6) to hold. Another equation that is

available in the general case is
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(4.15) a? = a + 74 + 4(8+e1+61+Y1+61+a) ,

which is similar to equations (3.7) to (3-11), and this equation was also

used as a check equation in the case C = 0 . This gave a somewhat

different condition

(U.16) 0 = 224 - 3804 + 18842 - 2kA3 + (208-4354+31042-7243)a .

Equations (4.14) and (4.16) can obviously be combined in different ways to

obtain alternative conditions. For example, if we subtract equation (4.14)

from equation (4.16) we eliminate the constant term and obtain, after

cancelling a factor 8 ,

(4.17) 0 = 164 - 2742 + 1043 + (l6-4l4+4042-1243)a .

In the same way, we can eliminate the A a term by adding three times

equation (4.14) to equation (4.16). Again, a numerical factor can be

cancelled and the result is

(4. 18) 0 = 32 - 684 + 5042 - 1243 + (l6-274+1042)ct .

Equations (4.17) and (4.18) can be regarded as an alternative pair to

equations (4.14) and (4.16). However, equations (4.17) and (4.18) are

related, for if we multiply equation (4.18) by a and use a = A - a we

obtain equation (4.17). Thus we can regard equation (4.18) as the basic

equation for a , with equation (4.17) as a derived form and with equations

(4.16) and (4.14) as linear combinations of equations (4.17) and (4.18).

This is a satisfactory conclusion since it agrees with the equation

D(a, 4) = 0 obtained in Section 3. If we divide D(a, A) by a + a - A

and write the remainder as 2?(a, 4) , then

(4.19) D(a, 4) = (a2+a-4)s(a, 4) + R(a, A)

where S(ct, 4) is a polynomial of degree 16 in a and of degree 8 in

A and

(4.20) i?(ct, 4) = (32768){(32-684+5042-1243) + (l6-274+1042)a} .

Thus when C = 0 the equation D{a, A) = 0 reduces to equation (4.18).
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5. Numerical results

Although periodic solutions exist for A > 2 and the equations

obtained in Sections 2 , 3 and k remain valid for A > 2 , the results

obtained by Chaundy and Phil lips [2] indicate that the periodic solutions

are unstable for A > 2 . The numerical working has accordingly been

limited to -1/k < A £ 2 . For A = 2 , Lorenz [3] gives an exact solution

in terms of trigonometric functions and these trigonometric solutions were

of great help in checking the equations of Sections 2 and 3. For CJ

solut ions , the trigonometric solutions are

(5.1) bm = 2 cos(2m<})) , m = 1, 2, 3, . . . , 7 ,

with

(5.2) <$> = N-n/129 or <|> = tfir/127 ,

for any integer N . In pract ice , a l l 18 of the Cl solutions were

obtained by using in turn N = 1, 3, 5, 7, 9, 11, 13, 19, 21 . The 18

values of a were compared with the roots of D(a, 2) = 0 and the

agreement was excellent. For any particular solution, combinations of the

i ' s such as 3 , , Y-,J 3, Y> <$, e, 9, £ can be calculated and compared with

the values given by the formulae in Section 2.

I t i s fair ly easy to show that , with the above values for N , t, = +1

when <{> = tfir/127 and X, = -1 when <t> = Nv/129 . If 3 = exp(ki<t>) then

1 + z = (2 cos 2<}>)exp(2-t<l>) = b exp(2i<(>)

1 + 3 2 = (2 cos

[l+z6k) = (2 cos 128(J>)exp(l28i<j>) = fc exp(128i<i>) .

Also,

1 - 3 = -2 i ( s in 2<|>)exp(2£<t>) ,

1 PA

1 - z = -2£(sin 256<J>)exp(256i<)>) .

The i d e n t i t y
U+Z)(l+Z2)[l+Zk) . . .
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which i s val id for z # 1 , now gives

C exp(25!+i<))) = {(sin 256<{>)/(sin 2()>)}exp(251ti<}))

and hence

(5-3) X, = (sin 2564>)/(sin 2(j)) .

For cj> = #TT/129 , 256<j> = 2ffir - 2<j> and £ = -1 . For (j> = WTT/127 ,

256(j) = 2Nv + 2(j> and C = +1 .

A corresponding result was noted [/] in discussing the C6 solutions

for A = 2 and the proof above can easily be modified to deal with that

case. Indeed i t appears that for A = 2 the only cyclic solution which

does not have |£| = 1 is the equilibrium solution w = 2 .

In looking at the solutions of D(a, A) = 0 for different values of

A i t was clear that the real solutions occurred in pairs. For each pair

there was a crit ical value of A , denoted by A* , at which the pair first

appeared. At A = A* , there was a double root a = a* and the stability

criterion, t, , equalled 1/128 , that is the solution was at the upper

limit for local stability. For A > A* the double root split into two

distinct roots, with Z, < 1/128 in one case and £ > 1/128 in the other.

Thus one family of a values gives unstable solutions while the other

gives stable solutions until £ becomes less than -1/128 , say for

A* < A < A** where A** is the value of A at which C, = -1/128 . Table

1 l i s t s the critical values A* and A** for each pair of roots, with the

roots numbered in order of increasing magnitude. The table also shows

which root in each pair gives stable solutions and, in the last column,

values of b. for a typical solution. In each case, the trigonometric

solution (for A = 2 ) corresponding to the stable sequence was used to

provide these typical values. I t will be seen that there is a marked

change in the type of solution as a* increases. A rough figure is given

for the interval of stabil i ty, A** - A* , and i t will be seen that i t

varies by a factor of about 3000 from the widest to the narrowest

interval.

The solutions for the case A = 2 can be paired off in the same way

as the pairs of roots in Table 1. For example, <|> = 21ir/127 corresponds

to OL and <p = 21TT/129 corresponds to a . The values of C, for the
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trigonometric solutions provide a check on the identification of the stable

family of roots, in the sense that for the a. family t, goes from

+1/128 at A = A* to +1 at A = 2 , whereas for the a family t,

goes from 1/128 at A = A* to -1 at A = 2 . Thus we can expect the

a_ family to have \l,\ < 1/128 for some range of A-values. A similar

argument applies for the other pairs of roots.

As A increases, the first C~[ solution to occur is for A = 1.575

(which corresponds to a = 1.851 ). It looks like a perturbation of the

equilibrium solution W = 1 - a and, as was true for C3, Ck, Cj and C6

solutions, the smallest value of a* is associated with this smallest

value of A* . However, there is numerical evidence that this association

does not extend to C8 solutions. For the latter, the smallest value of

a* appears to arise from a solution which is a perturbation of the

equilibrium solution but the smallest value for A* is for a C8 solution

which arises when a Ch solution becomes unstable and bifurcates.

For the special case C = 0 , we have

2 „ 2
a + a = A = a -a

and hence a = -a or a = a - 1 . If we start with a specified value for

the constant a , with 1/2 < a 5 2 , i t is easy to calculate A and then

(5.U) aQ = [l2A3-50A2+6QA-32)/[lOA2-27A+l6) .

From equation (U.18), a is the value of a appropriate to the case

C = 0 and we can compare i t with -a and a - 1 . The calculations gave

aQ = -a for a = 1.959^73 . corresponding to A = 1.879986 , so the

equations in Section 1* would be appropriate in this case. The other

possibility, a = a - 1 , did not occur for the range of values tested.

In concluding this section I should like to thank Dr B.L. Martin who

carried out the calculations which form the basis of Table 1 and who

checked a number of other points numerically. Because of the large powers

of a required in calculating 0(ot, A) double precision was needed in the

computer programmes and the values for A* and A** were obtained to an

-12
accuracy of at least 10 , although not al l of the figures have been
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included in Table 1.
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