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ON THE KÄHLER–EINSTEIN METRIC OF
BERGMAN–HARTOGS DOMAINS

LISHUANG PAN, AN WANG and LIYOU ZHANG

Abstract. We study the complete Kähler–Einstein metric of certain Hartogs

domains Ωs over bounded homogeneous domains in Cn. The generating

function of the Kähler–Einstein metric satisfies a complex Monge–Ampère

equation with Dirichlet boundary condition. We reduce the Monge–Ampère

equation to an ordinary differential equation and solve it explicitly when we

take the parameter s for some critical value. This generalizes previous results

when the base is either the Euclidean unit ball or a bounded symmetric domain.

§1. Introduction

Let (M, ds2) be a Kähler manifold of complex dimension n with

the Kähler metric ds2 =
∑
gjk̄dzj ⊗ dz̄k in local coordinates. Let ω =√

−1/2π
∑
gjk̄dzj ∧ dz̄k be the positive (1, 1)-form associated to the Kähler

metric ds2, and let Ric(ω) =−
√
−1/2π∂∂̄ log det(gjk̄) be the Ricci form of

ω. Then ds2 is called Kähler–Einstein if Ric(ω) is proportional to the Kähler

form ω.

In the present paper, we focus ourselves on the explicit Kähler–Einstein

metrics of certain bounded pseudoconvex domains in Cn. It is proved that

for any domain of holomorphy, there is a unique complete Kähler–Einstein

metric, with the Ricci curvature −λ, whose generating function g satisfies

the following Monge–Ampère equation with Dirichlet boundary condition:

det

(
∂2g

∂zj∂zk

)
= eλg (z ∈D),(1)

g(z)→∞ (z→ ∂D),(2)

where (∂2g/∂zj∂zk) = (gjk̄) (see [6], [12], [19]).

Usually, it is difficult to solve the above nonlinear partial differential

equation (1) for general bounded pseudoconvex domains in Cn. It is well
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known that, for any bounded homogeneous domain in Cn, the Bergman

metric has constant Ricci curvature −1 [4]. Thus, the Bergman metric is

identical to the Kähler–Einstein metric constructed by Cheng and Yau in

[6]. For nonhomogeneous cases, it was Bland who first described the Kähler–

Einstein metric for the Thullen domain Ωp := {(z, w) ∈ Cn−1 × C : |w|2 <
(1− ‖z‖2)1/p}, p > 0 in [5], where the Monge–Ampère equation was reduced

to an ordinary differential equation. Later, Yin and Roos generalized the

Thullen domain to Cartan–Hartogs domains (see [18] for the definition).

With Wang and Zhang, they obtained the explicit Kähler–Einstein metrics

for Cartan–Hartogs domains in some critical cases [17, 18]. In general, the

Cartan–Hartogs domains are not homogeneous due to [1] and [14], where

the full holomorphic automorphism groups have been described explicitly

already.

One observation of the above special domains is that both of them can

be regarded as certain kinds of Hartogs domains, which are based on the

unit ball or, more generally, bounded symmetric domains. The right-hand

side of the defining inequality for either the Thullen domain or Cartan–

Hartogs domains is exactly some negative power of the Bergman kernel (up

to a constant). Besides, it is well known that bounded symmetric domains

are special kinds of homogeneous domains. Therefore, we consider a more

general type of Hartogs domain in this paper, named the Bergman–Hartogs

domain, which is based on a bounded homogeneous domain. The setting of

the Bergman–Hartogs domain is as follows.

Let D be a bounded homogeneous domain in Cn, and let KD(z, ζ) denote

the Bergman kernel off the diagonal for D. Then we define the Bergman–

Hartogs domain as

Ωs :=
{

(z, zn+1) ∈D × C : |zn+1|2 <KD(z, z)−s
}
,(3)

where z = (z1, . . . , zn) ∈D, and s is a positive real number.

It is known that D is Bergman exhaustive since D is homogeneous,

that is, KD(z, z)→+∞ as z→ ∂D (see [9], Proposition 5.2), then Ωs is

a bounded domain in Cn+1. Note that D is pseudoconvex and log KD(z, z)

is plurisubharmonic; we know that Ωs is a bounded pseudoconvex domain in

Cn+1(see [15, p. 142]). Consequently, there exists a unique complete Kähler–

Einstein metric on Ωs due to Mok and Yau [12], and we have the following

result.

Theorem 1.1. Let Ωs be the Bergman–Hartogs domain defined as in

(3). Assume that the Bergman kernel on D satisfies KD(z, 0) =KD(0, 0),
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then the generating function g for the complete Kähler–Einstein metric of

Ωs0 is given by

g(z, zn+1) =−log
(
KD(z, z)−s0 − |zn+1|2

)
+ C,(4)

where s0 = 1/(n+ 1) and the constant C is given by

C =
1

n+ 2
log

det TD(0, 0)

(n+ 1)nKD(0, 0)
.

The notations KD(0, 0) and TD(0, 0) denote the Bergman kernel and the

Bergman metric matrix of D at the point 0, respectively.

Notice that the condition for the Bergman kernel KD(z, 0) =KD(0, 0)

holds true when D is the Harish-Chandra realization of a bounded symmet-

ric domain, especially when D is one of the classical domains. This means

that Theorem 1.1 generalizes the conclusions in [5] and [17]. A complex

domainD whose Bergman kernel satisfies the conditionKD(z, 0) =KD(0, 0)

is said to be a minimal domain with center 0 (see, e.g., [8] for the definition

of minimal domain). In 2010, Ishi and Kai proved that any bounded

homogeneous domain is holomorphically equivalent to a minimal domain

because a homogeneous representative domain is minimal [8, Proposition

3.8]. As an application of the above arguments and Theorem 1.1, we have

the following corollary.

Corollary 1.2. Let U be a bounded homogeneous representative

domain in Cn, and let Ω̂s be the corresponding Bergman–Hartogs domain

based on U . Then the Kähler–Einstein metric for Ω̂s0 is generated by

ĝ(z, zn+1) =−log
(
KU (z, z)−s0 − |zn+1|2

)
+ C ′,(5)

where s0 = 1/(n+ 1), and the constant C ′ is given similarly to (4).

The authors knew the definition of the Bergman–Hartogs domain in

the winter of 2012, communicated by Roos. Recently, the full holomorphic

automorphism group Aut(Ωs) was given by Roos in [14]. Therefore, we know

that Ωs is not homogeneous in general, except for when Ωs is the Euclidean

unit ball in Cn+1. Park and Yamamori [13] have computed the Bergman

kernel for Ωs and considered the corresponding Lu Qikeng problem. The

authors would like to thank Professor Roos for giving them the preprint

[14] and Park for showing them the preprint [13].
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The paper is organized as follows. In Section 2, we give a subgroup of

the holomorphic automorphism group Aut(Ωs) for the Bergman–Hartogs

domain Ωs. This allows us to reduce the Monge–Ampère equation to an

ordinary differential equation in Section 3, following the method used in

[17], where D is one of the classical domains in the sense of Loo-Keng

Hua. The reduced ordinary equation can be solved explicitly for a special

value s0 of the parameter s. In Section 4, we consider the minimality of

bounded representative homogeneous domains introduced by Ishi and Kai

in [8], and give a sufficient condition for a bounded homogeneous domain to

be minimal by comparing the Jacobi of the representative mapping and the

automorphism transformation of the domain. Finally, we give some examples

of Bergman–Hartogs domains, on which the Kähler–Einstein metrics are

calculated explicitly.

§2. Holomorphic automorphism subgroup

In this section, we present a holomorphic automorphism subgroup for the

Bergman–Hartogs domain Ωs.

Recall that the domain D in the definition of Ωs is homogeneous, that

is, for any two points p, q ∈D, there exists ψ ∈Aut(D) such that ψ(p) = q.

Without loss of generality, we may assume that 0 ∈D. Then, for any z ∈D,

there exists ψ ∈Aut(D) such that ψ(z) = 0.

Proposition 2.1. Let Ωs be the Bergman–Hartogs domain in Cn+1.

Let

(6) G := {φ= φψ,θ; ψ ∈Aut(D), θ ∈ R},

where φψ,θ(z, zn+1) := (ψ(z), (det Jψ(z))se
√
−1θzn+1) for (z, zn+1) ∈ Ωs, and

det Jψ(z) denotes the Jacobian of ψ at z, then G is a subgroup of Aut(Ωs).

It is known that any bounded homogeneous domain is simply connected

[16], hence one can take a branch of (det Jψ(z))s to be a single-valued

holomorphic function on D since det Jψ(z) is a nonzero holomorphic

function on D, and other branches can be obtained by multiplying e
√
−1θ

by appropriate constants θ.

Proof of Proposition 2.1. A direct calculation shows that

(7)
∣∣∣(det Jψ(z))s e

√
−1θzn+1

∣∣∣2 KD(ψ(z), ψ(z))s = |zn+1|2 KD(z, z)s,

where KD denotes the Bergman kernel of the bounded homogeneous domain

D. This means that φ(z, zn+1) ∈ Ωs for any point (z, zn+1) ∈ Ωs.
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It is obvious that φ is invertible and φ1 ◦ φ2 ∈G for any φ1, φ2 ∈G, since

ψ ∈Aut(D). Therefore, G is a subgroup of Aut(Ωs).

Remark 2.1. In [14], Roos proved that G= Aut(Ωs), that is, G is the

full holomorphic automorphism group unless Ωs is the Euclidean unit ball.

The method is almost the same as in [1] (see [1] and [14] for more details).

Remark 2.2. Since D is homogeneous, we know from Proposition 2.1

that for any point (z, zn+1) ∈ Ωs, there exists φ ∈G such that φ(z, zn+1) =

(0, wn+1).

Now we define a G-invariant function on Ωs, which is used frequently in

the following text for convenience.

Proposition 2.2. For any point (z, zn+1) ∈ Ωs, we define

(8) x(z, zn+1) = |zn+1|2 KD(z, z)s.

Then x is invariant under the holomorphic automorphism subgroup G, that

is, x(φ(z, zn+1)) = x(z, zn+1) for any element φ ∈G.

Proof. This is obviously due to the formula (7).

One can immediately see that the real-valued function x takes values in

the interval [0, 1) by the definition of the Bergman–Hartogs domain Ωs.

In order to simplify the computations in Section 3, we present the

Jacobian determinant of φ ∈G here.

Proposition 2.3. For Z = (z, zn+1) ∈ Ωs, the Jacobian of φ= φψ,θ ∈G
is given by

(9) |det Jφ(Z)|2 =

(
KD(z, z)

KD(ψ(z), ψ(z))

)s+1

,

where ψ ∈Aut(D). In particular, one can choose one ψz ∈Aut(D) such that

ψz(z) = 0, and the Jacobian of the corresponding φz ∈G is

(10) |det Jφz(Z)|2 =

(
KD(z, z)

KD(0, 0)

)s+1

.

Proof. Let Z = (z, zn+1) ∈ Ωs. Because

φ(Z) =
(
ψ(z), (det Jψ(z))s e

√
−1θzn+1

)
,
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we have

Jφ(Z) =

(
Jψ(z) 0

∂Φ(Z)
∂z

∂Φ(Z)
∂zn+1

)
,

where Φ(Z) = (det Jψ(z))se
√
−1θzn+1. Thus, the conclusion (9) follows

immediately from the well-known formula

KD(z, z) =KD(ψ(z), ψ(z)) |det Jψ(z)|2 ,

and ∣∣∣∣∂Φ(Z)

∂zn+1

∣∣∣∣2 = |det Jψ(z)|2s .

In particular, for any point Z = (z, zn+1) ∈ Ωs, we can choose a special

ψz ∈Aut(D) such that ψz(z) = 0 since Aut(D) acts on D transitively.

Therefore, there exists a corresponding φz ∈G satisfying φz(z, zn+1) =

(0, wn+1), and consequently the Jacobian of φz is

|det Jφz(Z)|2 =

(
KD(z, z)

KD(0, 0)

)s+1

.

§3. Reduction of the Monge–Ampère equation

In this section, by using the holomorphic automorphism subgroup G,

we reduce the complex Monge–Ampère equation to an ordinary differential

equation with respect to the invariant function x, which was introduced in

Proposition 2.2. Then we solve the ordinary differential equation when the

parameter s of the Bergman–Hartogs domain Ωs takes some critical value.

3.1 Reduction of the complex Monge–Ampère equation

Let D be any bounded homogeneous domain in Cn, and let KD(z, z)

denote the Bergman kernel for D. The Bergman–Hartogs domain is

Ωs :=
{
Z = (z, zn+1) ∈D × C : |zn+1|2 <KD(z, z)−s

}
,

where z = (z1, . . . , zn) ∈D and s is a positive real number. According

to the arguments before Theorem 1.1, we know that Ωs is bounded and

pseudoconvex. Thanks to Mok and Yau [12], we know that the Bergman–

Hartogs domain Ωs admits a unique complete Kähler–Einstein metric with

the Ricci curvature −(n+ 2), and the generating function, say g, of the
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complete Kähler–Einstein metric satisfies the following complex Monge–

Ampère equation with Dirichlet boundary condition:

det

(
∂2g

∂zj∂zk

)
= e(n+2)g (z, zn+1) ∈ Ωs,(11)

g(z, zn+1)→∞ (z, zn+1)→ ∂Ωs.(12)

For simplicity of the notation, we write Z := (z, zn+1) and the image

φ(Z) = (w, wn+1) =:W for φ ∈G.

For any holomorphic automorphism transformation φ ∈G, W = φ(Z), we

have

(13) det

(
∂2g(Z)

∂zj∂zk

)
= |det Jφ(Z)|2 det

(
∂2g(W )

∂wj∂wk

)
,

where j, k run from 1 to n+ 1. According to the Monge–Ampère equation

(11), Equation (13) is equivalent to

(14) e(n+2)g(Z) = |det Jφ(Z)|2e(n+2)g(W ).

That is,

(15) g(Z) = g(φ(Z)) +
1

n+ 2
log |det Jφ(Z)|2 .

Now we fix a point Z = (z, zn+1) ∈ Ωs for a moment. As explained in the

proof of Proposition 2.3, we can take a special φz ∈G such that φz(Z) =

(0, wn+1). By Proposition 2.3, we know that

(16) |det Jφz(Z)|2 =

(
KD(z, z)

KD(0, 0)

)s+1

,

then Equation (15) yields

(17) g(Z) = g (0, wn+1) +
s+ 1

n+ 2
log KD(z, z)− s+ 1

n+ 2
log KD(0, 0).

As Z varies in Ωs, Equation (17) holds true on Ωs since we can always take

φz ∈G such that φz(Z) = (0, wn+1).

To obtain g(Z) explicitly, we need to know g(0, wn+1). We want to express

g(0, wn+1) in terms of the invariant function x, which is defined by

x(z, zn+1) = |zn+1|2 KD(z, z)s
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in Proposition 2.2. Note that x is invariant under G, that is, ∀φ ∈
G, x(φ(Z)) = x(Z), thus we have x(Z) = x(φz(Z)) = x(0, wn+1). It follows

that

(18) |wn+1|2 = xKD(0, 0)−s.

By taking a suitable θ in the automorphism φz, say θz, we can assume that

wn+1 is real. Therefore, one can regard g(0, wn+1) as a real-valued function

of the real variable x.

Let y(x) := g(0, wn+1), then Equation (17) becomes

(19) g(Z) = y(x) +
s+ 1

n+ 2
log KD(z, z)− s+ 1

n+ 2
log KD(0, 0).

Differentiating both sides of the above equation with respect to Z =

(z, zn+1), we have(
∂2g

∂zj∂zk

)
=

(
∂

∂Z

)t ∂

∂Z
g

=

(
∂

∂Z

)t ∂

∂Z
y +

s+ 1

n+ 2

(
∂

∂Z

)t ∂

∂Z
log KD(z, z),(20)

where ∂/∂Z = (∂/∂z1, . . . , ∂/∂zn, ∂/∂zn+1) and (∂/∂Z)t denotes the trans-

pose of ∂/∂Z. Notice that

∂y

∂Z
=

(
y′
∂x

∂z1
, . . . , y′

∂x

∂zn+1

)
= y′

∂x

∂Z

and(
∂

∂Z

)t ∂

∂Z
y =

(
∂

∂Z

)t (
y′
∂x

∂Z

)
= y′′

(
∂x

∂Z

)t ∂x
∂Z

+ y′
(
∂

∂Z

)t ∂

∂Z
x,

then Equation (20) can be reformulated as(
∂2g

∂zj∂zk

)
= y′′

(
∂x

∂Z

)t ∂x
∂Z

+ y′
(
∂

∂Z

)t ∂

∂Z
x

+
s+ 1

n+ 2

(
∂

∂Z

)t ∂

∂Z
log KD(z, z)

:= I1 + I2 + I3.(21)

Next, we want to calculate the values of I1, I2 and I3 at the point

(0, wn+1).
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Recall that

x(z, zn+1) = |zn+1|2 KD(z, z)s,

then a routine computation shows that

∂x

∂zj
= sx

∂ log KD(z, z)

∂zj
, j = 1, . . . , n;

∂x

∂zn+1
= zn+1KD(z, z)s.

The second-order derivatives of x give

∂2x

∂zj∂zk
= s2x

∂ log KD(z, z)

∂zj

∂ log KD(z, z)

∂zk
+ sx

∂2 log KD(z, z)

∂zj∂zk
,

∂2x

∂zj∂zn+1
= szn+1KD(z, z)s

∂ log KD(z, z)

∂zj
,

∂2x

∂zn+1∂zn+1
=KD(z, z)s,

where j and k run from 1 to n.

In order to get the values of the derivatives of x at the point (0, wn+1),

we need the following lemma.

Lemma 3.1. Let D be a bounded homogeneous domain in Cn containing

the origin. Assume that the Bergman kernel KD(z, ζ) satisfies the condition

KD(z, 0) =KD(0, 0), then

(22)
∂ log KD(z, z)

∂z

∣∣∣
z=0

=
∂ log KD(z, z)

∂z

∣∣∣
z=0

= 0.

Proof of the Lemma. The conclusion follows from the fact that

∂KD(z, z)

∂z

∣∣∣
z=0

=
∂KD(z, 0)

∂z

∣∣∣
z=0

=
∂KD(0, 0)

∂z
= 0.

Applying Lemma 3.1, we have

∂x

∂zj

∣∣∣
(0,wn+1)

= sx
∂ log KD(z, z)

∂zj

∣∣∣
(0,wn+1)

= 0, j = 1, . . . , n;

∂x

∂zn+1

∣∣∣
(0,wn+1)

= wn+1KD(0, 0)s;
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and

∂2x

∂zj∂zk

∣∣∣
(0,wn+1)

= sx
∂2 log KD(z, z)

∂zj∂zk

∣∣∣
z=0

, j, k = 1, . . . , n;

∂2x

∂zj∂zn+1

∣∣∣
(0,wn+1)

= 0;

∂2x

∂zn+1∂zn+1

∣∣∣
(0,wn+1)

=KD(0, 0)s.

Hence, we have

I1

∣∣
(0,wn+1)

= y′′
(
∂x

∂Z

)t ∂x
∂Z

∣∣∣
(0,wn+1)

=

(
0 0
0 xy′′KD(0, 0)s

)
,

I2

∣∣
(0,wn+1)

= y′
(
∂

∂Z

)t ∂

∂Z
x
∣∣∣
(0,wn+1)

=

(
sxy′TD(0, 0) 0

0 y′KD(0, 0)s

)
,

I3

∣∣
(0,wn+1)

=
s+ 1

n+ 2

(
∂

∂Z

)t ∂

∂Z
log KD(z, z)

∣∣∣
z=0

=
s+ 1

n+ 2

(
TD(0, 0) 0

0 0

)
,

where (
∂2 log KD(z, z)

∂zj∂zk

)
=: TD(z, z)

is the Bergman metric on D.

Summarizing I1, I2 and I3, we have(
∂2g

∂zj∂zk

) ∣∣∣
(0,wn+1)

= (I1 + I2 + I3)
∣∣
(0,wn+1)

=

(sxy′ + s+1
n+2

)
TD(0, 0) 0

0 (xy′′ + y′)KD(0, 0)s

 .

Consequently, we have

det

(
∂2g

∂zj∂zk

) ∣∣∣
(0,wn+1)

=
(
xy′′ + y′

) (
xy′ + b

)n
snKD(0, 0)s det TD(0, 0)

= a
[
(xy′ + b)n+1

]′
,(23)

where a= sn/(n+ 1)KD(0, 0)s det TD(0, 0) and b= (1 + 1/s)/(n+ 2) are

positive constants.
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Considering the Monge–Ampère equation (11) at the point (0, wn+1) ∈
Ωs, that is

(24) det

(
∂2g

∂zj∂zk

) ∣∣∣
(0,wn+1)

= e(n+2)g(0,wn+1),

Equations (23) and (24) yield the following differential equation:

(25) a
[
(xy′ + b)n+1

]′
= e(n+2)y.

Let u(x) := xy′ + b; we summarize the above arguments by the following

proposition.

Proposition 3.2. If

g(Z) = y(x) +
s+ 1

n+ 2
log

KD(z, z)

KD(0, 0)

is a solution of the Monge–Ampère equation

det

(
∂2g

∂zj∂zk

)
= e(n+2)g

with the boundary condition g(z, zn+1)→∞ when (z, zn+1)→ ∂Ωs, then the

function u(x) = xy′ + b satisfies the differential equation

a
(
un+1

)′
= e(n+2)y(26)

with the initial condition u(0) = b.

Proof. The differential equation (26) results from Equations (23) and

(24). Next, we give an illustration about the boundary condition. We

know that g(z, zn+1)→∞ ((z, zn+1)→ ∂Ωs) implies y(x) = g(0, wn+1)→
∞(x→ 1). From

xy′(x) = wn+1
∂g(0, wn+1)

∂wn+1
,

we deduce that xy′→ 0 as wn+1→ 0, or equivalently xy′→ 0 as x→ 0.

3.2 Solution of the Monge–Ampère equation

In what follows, we solve the above differential equation (26) and obtain

the generating function g for the complete Kähler–Einstein metric on Ωs.
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Integrating on both sides of Equation (26) with respect to x, we have

(27) aun+1 =

∫
e(n+2)y dx.

By the formula of integration by parts, the right-hand side yields∫
e(n+2)y dx= xe(n+2)y − (n+ 2)

∫
xy′e(n+2)y dx.(28)

By Equation (26), we have∫
xy′e(n+2)ydx = a

∫
xy′
(
un+1

)′
dx

= a(n+ 1)

∫
(u− b)un du

=
a(n+ 1)

n+ 2
un+2 − abun+1 + ac,(29)

where c is a constant.

Combining (26)–(29), we have

x
(
un+1

)′
= (n+ 1)un+2 + (1− b(n+ 2))un+1 + c1,(30)

where c1 is a constant to be determined.

Taking the initial condition in Proposition 3.2 into consideration, that is,

u(0) = b when x= 0, we have c1 = bn+1(b− 1).

Let

f(u) := (n+ 1)un+2 + (1− b(n+ 2)) un+1 + bn+1(b− 1).(31)

We have the following facts.

(1) f(u)> 0 for 0< x < 1 due to (26) and (30).

(2) For x= 0, it is easy to check that f(u(0)) = f(b) = 0.

(3) f ′(b) = (n+ 1)bn > 0, which means that ∃δ > 0 such that f(u)< 0 for

b− δ < u < b.

Claim: u(x) > b for 0 6 x < 1.

Proof of Claim. Otherwise, assume ∃x0 ∈ (0, 1) such that u(x0)< b.

Then, by the continuity of u (we know this since g is C2), ∃x1 ∈ (0, x0)

such that b− δ < u(x1)< b. Consequently, we have f(u(x1))< 0 by the fact

(3), which is in contradiction to the fact (1).
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Note that Equation (26) shows that the derivative of un+1 is positive

and tends to∞ when x→ 1 (since y(x)→∞ when x→ 1). Then, combined

with the above claim, we have u′ > 0. Therefore, the function u is strictly

increasing and maps [0, 1) onto [b,+∞).

In summary, we have the following proposition.

Proposition 3.3. Assume that

g(Z) = y(x) +
s+ 1

n+ 2
log

KD(z, z)

KD(0, 0)

is a solution of the Monge–Ampère equation (11) with Dirichlet boundary

condition, then the function u(x) = xy′ + b is the solution of the following

ordinary differential equation (ODE):

x
(
un+1

)′
= f(u),(32)

u→∞ as x→ 1,(33)

where f(u) is defined by (31).

Now suppose that u satisfies the ODE (32) with the boundary condition.

From the above arguments, we know that f(u) is positive on (b,∞), the

function u : [0, 1)→ [b,∞) is monotone and its inverse function satisfies the

differential equation

1

x

dx

du
=

(n+ 1)un

f(u)
,(34)

x→ 1 as u→∞.(35)

The solution of this equation is given by

−log x=

∫ ∞
u

(n+ 1)vn

f(v)
dv,(36)

which gives x as a function of u, and u as an implicit function of x. In

general, it is difficult to get the explicit u. In the next subsection, we prove

that when the parameter s takes some special value then we can solve (32)

with the boundary condition (32).
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3.3 The critical exponent

Letting b= 1, that is, s= 1/(n+ 1) in Equation (32), we have

xu′ = u2 − u,(37)

u→∞, (x→ 1).(38)

The solution of the ODE (37) is

(39) u=
1

1− c2x
,

where c2 is an arbitrary constant to be determined.

Since u→∞ when x→ 1, then c2 has to be 1. Substituting the unique

solution (39) into Equation (25), we have

g (0, wn+1) =
1

n+ 2
log
[
a(un+1)′

]
= −log(1− x) +

1

n+ 2
log(n+ 1)a,

where the constant a= (n+ 1)−(n+1)KD(0, 0)s0 det TD(0, 0) as in Equation

(23). According to Equation (19), we have

g(Z) =−log(1− x) +
1

n+ 1
log KD(z, z) + C,

where C is a constant defined as

C =
1

n+ 2
log

det TD(0, 0)

(n+ 1)nKD(0, 0)
.

We claim that

g(Z) = −log(1− x) +
1

n+ 1
log KD(z, z) + C

= −log
(
KD(z, z)−s0 − |zn+1|2

)
+ C(40)

is the solution of the complex Monge–Ampère equation (11) with the

boundary value condition on Ωs0 , where s0 = 1/(n+ 1).

Proof. First, g solves the complex Monge–Ampère equation (11) since

the generating function g for the Kähler–Einstein metric on Ωs0 is a solution

of the ODE (32) due to Proposition 3.3, while u= (1− x)−1 is the unique
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solution of (32) with the boundary condition. (Of course, one can also check

directly that g satisfies the Monge–Ampère equation (11).) Now we need

only to check that g satisfies the boundary value condition, that is, g→∞
as (z, zn+1)→ ∂Ωs0 .

(1) When (z, zn+1) goes to the strongly pseudoconvex boundary points

{(z, zn+1) ∈D × C : |zn+1|2 =KD(z, z)−s0 , zn+1 6= 0}, we know that

(z, zn+1)→ ∂Ωs0 implies x→ 1. Obviously, g→∞ as x→ 1.

(2) When (z, zn+1) approaches the weakly pseudoconvex boundary points

∂D × {0}, we have x→ 0. In this case, the Bergman kernel KD(z, z) of

the bounded homogeneous domain D blows up as z→ ∂D. Therefore,

we still have g→∞ when (z, zn+1)→ ∂D × {0}.

Now we can say that

g(Z) =−log(KD(z, z)−s0 − |zn+1|2) + C(41)

solves the complex Monge–Ampère equation with Dirichlet boundary value

problem on Ωs0 , where

C =
1

n+ 2
log

det TD(0, 0)

(n+ 1)nKD(0, 0)
.

We call s0 = 1/(n+ 1) the critical exponent. The corresponding Kähler form

of the unique complete Kähler–Einstein metric on Ωs0 is given by

(42) ∂∂̄g =−∂∂̄ log(KD(z, z)−s0 − |zn+1|2),

and we conclude the proof of Theorem 1.1.

§4. The homogeneous domains with K(z, 0) =K(0, 0)

In this section, we turn back and take a look at the condition KD(z, 0) =

KD(0, 0) for the Bergman kernel KD(z, ζ) in Theorem 1.1.

The condition KD(z, 0) =KD(0, 0) holds true when D is the Harish-

Chandra realization of a bounded symmetric domain, especially when D is

one of the classical domains. In this case, the Bergman kernels were obtained

by Hua [7] explicitly and one can verify the above condition directly.

In general, we do not always know whether this condition does hold for

homogeneous domains in Cn. Ishi and Kai [8, Proposition 3.8] proved that

when D is a representative bounded homogeneous domain (see Section 4.1

for the definition of representative domains) in Cn, one has KD(z, 0) =

KD(0, 0). Before the statement of the corollary, let us recall the definition

of the representative domain.
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4.1 Representative domains

The representative domain of a bounded domain D ⊂ Cn was introduced

by Bergman in [3]. Let KD(z, ζ) denote the Bergman kernel of D. If

KD(z, ζ) 6= 0, then the Bergman representative mapping ρp :D→ Cn for

a fixed point p ∈D is defined by

(43) ρp(z) :=
∂

∂ζ
t log

KD(z, ζ)

KD(p, ζ)

∣∣∣
ζ=p

TD(p, p)−1,

where ∂

∂ζ
t = ( ∂

∂ζ1
, . . . , ∂

∂ζn
)t, and TD(z, ζ) := ( ∂2

∂zj∂ζk
log KD(z, ζ)) is an

n× n complex matrix. The image ρp(D) is called the representative domain

of the bounded domain D. If ρp is one-to-one, then the image ρp(D), say U ,

is indeed a domain.

In general, Lu [10] pointed out that ρp is not necessarily globally defined.

Following this idea, he gave an alternative definition of the representative

domain. A bounded domain U is called a representative domain if there is

a point p ∈ U such that the Bergman metric matrix TU (z, p) is independent

of z. The point p is called the center of the representative domain U .

For example, the Harish-Chandra realization of an irreducible bounded

symmetric domain is a representative domain (up to a constant multiple).

Any bounded circular domain with origin as the center is a representative

domain with center 0. Recently, Yamamori proved that a normal quasi-

circular domain in C2 is a representative domain with the center at the

origin (see [21, Proposition 3.2] and the definition of normal quasi-circular

domains therein).

4.2 Minimal domains

Let D denote a domain in Cn with finite volume, and fix p ∈D. We say

that D is a minimal domain with a center p if for every biholomorphism Ψ :

D ' D̃ with det JΨ(p) = 1, we have vol(D̃) > vol(D), where vol(D) denotes

the Euclidean volume ofD, and JΨ(p) denotes the Jacobian matrix of Ψ at p.

Theorem 4.1. [11, Theorem 3.1] Let D ⊂ Cn be a bounded univalent

domain and p ∈D. Then D is a minimal domain with a center p if and

only if KD(z, p)(z ∈D) is constant on D.

In general, Maschler [11] proved that a representative domain is not

necessarily minimal. Fortunately, for bounded homogeneous domains, Ishi

and Kai [8] proved the following theorem.
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Corollary 4.2. [8, Corollary 3.8] The representative domain U of a

bounded homogeneous domain D ∈ Cn is minimal with a center 0.

Therefore, combined with Theorem 1.1 and Corollary 4.2, we have the

following corollary.

Corollary 4.3. Assume that U is the representative domain of

a bounded homogeneous domain D ⊂ Cn. Let Ω̂s be the corresponding

Bergman–Hartogs domain built on U . Then the Kähler–Einstein metric for

Ω̂s0 is generated by

ĝ(z, zn+1) =−log
(
KU (z, z)−s0 − |zn+1|2

)
+ C,(44)

where s0 = 1/n+ 1, and C is a constant as in (40).

For general bounded domains in Cn, even for homogeneous domains, we

cannot expect KD(z, 0) =KD(0, 0) any more. It was pointed out by the

referee that KD(z, 0) =KD(0, 0) is actually equivalent to the domain D

being minimal with the center 0. The authors are grateful to the referee for

interpreting the following example. A simply connected domain Ω⊂ C is

symmetric because it is biholomorphic to the unit disc ∆ by the Riemann

mapping theorem, while Ω is minimal with some center only if Ω is the

image of ∆ by an affine map z 7→ az + b, thanks to [8, Proposition 3.4].

Indeed, the minimality and the representativeness of Ω are equivalent in this

case. Hence, there exist many bounded symmetric domains whose Bergman

kernels do not satisfy the condition KD(z, 0) =KD(0, 0).

4.3 A sufficient condition for KD(z, 0) =KD(0, 0)

From the above arguments, we know that the minimality of a bounded

domain is not an intrinsic property, that is, it is not biholomorphically

invariant. Therefore the Bergman kernel conditionKD(z, 0) =KD(0, 0) does

not always hold even for homogeneous domains. In the following, we give

a sufficient condition such that KD(z, 0) =KD(0, 0) holds for all bounded

homogeneous domains D in Cn.

Proposition 4.4. Let D be a bounded homogeneous domain in Cn and

0 ∈D. Let U := ρp(D) be the representative domain of D. Take ψp ∈Aut(D)

satisfying ψp(p) = 0, then KD(z, 0) =KD(0, 0) if

(45) det Jρp(z) =
det Jψp(z)

det Jψp(p)
,

where det Jψ(z) denotes the determinant of the Jacobian matrix of ψ at z.
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Proof. Under the assumptions in the proposition, it is well known that

KD(z, p) =KU (ρp(z), 0) det Jρp(z) det Jρp(p), z ∈D;(46)

KD(z, p) =KD(ψp(z), 0) det Jψp(z) det Jψp(p), z ∈D.(47)

Noting that Jρp(p) = In, it follows that

(48)
KU (ρp(z), 0)

KD(ψp(z), 0)
=

det Jψp(z) det Jψp(p)

det Jρp(z)
.

Let z = p in (48), then we have

(49)
KU (0, 0)

KD(0, 0)
=

∣∣det Jψp(p)
∣∣2∣∣det Jρp(p)
∣∣2 =

∣∣det Jψp(p)
∣∣2 .

By Proposition 4.2, we know that

KU (ρp(z), 0) =KU (0, 0).

Then (48) and (49) imply that KD(ψp(z), 0) =KD(0, 0) if and only if

det Jρp(z) =
det Jψp(z)

det Jψp(p)
.

This completes the proof.

§5. Applications of the main theorem

In this section, we give some examples of Bergman–Hartogs domains.

We first investigate the relation between two generating functions of

the complete Kähler–Einstein metrics on two holomorphically equivalent

domains. More precisely, let Φ : Ω1 ' Ω2 be the biholomorphic mapping

between two bounded pseudoconvex domains Ω1 and Ω2 in Cn+1. Assume

that g1 and g2 generate the complete Kähler–Einstein metrics on Ω1 and

Ω2, respectively, then it follows that

(50) det

(
∂2g1

∂zj∂zk

)
= |det JΦ(z)|2 det

(
∂2g2

∂wj∂wk

)
.

Since g1 and g2 satisfy the Monge–Ampère equations (11) on Ω1 and Ω2,

respectively, we have

(51) e(n+2)g1 = |det JΦ(z)|2e(n+2)g2 ,

which yields

(52) g1 = g2 +
1

n+ 2
log|det JΦ(z)|2 .
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5.1 Bergman–Hartogs domains over the unit ball

Denote by Bn the unit ball in Cn. The Bergman–Hartogs domain over

Bn is

ΩBn

s :=
{

(z, zn+1) ∈Bn × C : |zn+1|2 <KBn(z, z)−s
}
,

where KBn(z, z) = (n!/πn)1/(1− ‖z‖2)n+1 is the Bergman kernel of the

unit ball Bn. When s0 = 1/(n+ 1), we get the generating function of the

complete Kähler–Einstein metric by Theorem 1.1 (see also (40)) as

g(z, zn+1) = −log
(
KBn(z, z)−s0 − |zn+1|2

)
+ C

= −log
(
(πn/n!)s0(1− ‖z‖2)− |zn+1|2

)
+ C,(53)

where C =−log(n!/πn)/(n+ 2).

Notice that at the moment Ωs0 is biholomorphic to the unit ball Bn+1 ⊂
Cn+1 via the following map:

z̃k = zk, k = 1, . . . , n;

z̃n+1 = (n!/πn)s0/2zn+1.

Hence, by the formula (52), the solution (53) actually gives the Kähler–

Einstein metric of the unit ball Bn+1, that is

g̃(z̃, z̃n+1) =−log
(
1− ‖z̃‖2 − |z̃n+1|2

)
,

which is exactly the Bergman metric of Bn+1 up to a factor 1/(n+ 2).

5.2 Bergman–Hartogs domains over bounded symmetric

domains

Let RA (A= I, II, III, IV ) denote the Harish-Chandra realization of

bounded symmetric domains. We take, for example, the first type

RI(p, q) :=
{
Z = (zjk) : I − ZZ̄t > 0, where Z is a p× q matrix

}
(p6 q),

where I is the identity matrix of order p, Z̄ denotes the conjugate matrix

of Z, and Zt denotes the transposed matrix of Z.

The corresponding Bergman–Hartogs domain is defined as

ΩRI
s :=

{
(Z, W ) ∈RI × C : |W |2 <KRI

(Z, Z)−s
}
,

where the Bergman kernel KRI
(Z, Z) is [7]

KRI
(Z, Z) = vol(RI)

−1 det(I − ZZ̄t)−(p+q),
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and vol(RI) is the volume of RI . According to Theorem 1.1, when the

parameter s takes the critical value 1/(pq + 1), the generating function of

the complete Kähler–Einstein metric is given by

g(Z, W ) = −log
(
KRI

(Z, Z)−1/(pq+1) − |W |2
)

+ C

= −log
(

det(I − ZZ̄t)(p+q)/(pq+1) − |W |2
)

+ C̃,(54)

which coincides with the Kähler–Einstein metric of the Cartan–Hartogs

domain of the first type (see [18, page 47]). We omit RII , RIII and RIV
here since the conclusions are almost the same.

5.3 Bergman–Hartogs domains over a nonsymmetric bounded

homogeneous domain

In this subsection, we consider the Bergman–Hartogs domains over a

nonsymmetric bounded minimal homogeneous domain U . It was Yamaji

who observed this kind of U (see [20, Section 7.2]) when he considered the

compactness of composition operators on the weighted Bergman space of a

minimal bounded homogeneous domain.

Let TV := R5 + iV be the tube domain over the Vinberg cone V (see [2]),

where

V :=
{
x ∈ R5 :Qj(x)> 0, j = 1, 2, 3

}
and

Q1(x) := x1, Q2(x) := x2 −
x2

4

x1
, Q3(x) := x3 −

x2
5

x1
.

Let U be the representative domain of the tube TV . Then U is a nonsymmet-

ric minimal bounded homogeneous domain with center 0 by Proposition 4.2.

For z := (z1, z2, . . . , z5) ∈ TV , let

z[1] :=

(
z1 z4

z4 z2

)
and z[2] =

(
z1 z5

z5 z3

)
∈ Sym(2, C).

Then the Bergman kernel for U on the diagonal was given by Yamaji in [20],

that is,

KU (σ(z), σ(z)) =
1

vol(U)

(
1− L1(z1)L1(z1)

)2

×
2∏
j=1

(
det(I − L2(z[j])L2(z[j]))

)−3
,
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where σ is the Bergman mapping from TV to U at p0 := (i, i, i, 0, 0),

and Lm (m= 1, 2) denotes the Cayley transform Lm(Z) := (Z − iIm)

(Z + iIm)−1 for Z ∈Mat(m, C).

The corresponding Bergman–Hartogs domains over the nonsymmetric

homogeneous domain U are defined as

ΩUs :=
{

(ξ, ξ6) ∈ U × C : |ξ6|2 <KU (ξ, ξ)−s
}
,

where ξ := σ(z) ∈ U . Since U is minimal with the center 0, we have

KU (ξ, 0) =KU (0, 0). (One can also check this fact directly from the explicit

formula of the Bergman kernel of U .) Therefore, according to Theorem 1.1

or Corollary 1.2, we have obtained the generating function of the complete

Kähler–Einstein metric on ΩUs when s= 1/6. That is,

g(ξ, ξ6) =−log
(
KU (ξ, ξ)−1/6 − |ξ6|2

)
.
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