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Experimental study of a single bubble’s motion
in a liquid metal under a horizontal magnetic
field
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An ultrasonic phased array system is introduced to study the three-dimensional (3-D)
movement of a single bubble in a GaInSn alloy under a transverse magnetic field
(MF), which is verified by bubble experiments in water. The 3-D motion trajectories of
individual bubbles in the GaInSn are obtained under a horizontal MF. As the MF becomes
stronger, the bubble successively oscillates in random directions (R mode), a direction
perpendicular to the MF (V mode), a direction parallel to the MF (P mode) and finally
it rises straight (S mode). The significant anisotropy of the oscillation directions at a
moderate MF intensity may be due to the anisotropy of the vortex structure around the
bubble. Furthermore, the oscillation amplitude gradually declines with increasing MF
intensity until the bubble trajectory finally becomes a straight line. Our measurements
allow us to specify the characteristic regions for the observed bubble modes in the
N − Eo − Re parameter space (N is the magnetic interaction parameter, Eo is the Eötvös
number and Re is the Reynolds number). In addition, more detailed characteristics of
bubble terminal velocity are revealed, showing that the bubble velocities are closely related
to the motion modes. The increase in bubble velocity at a moderate MF intensity is caused
by the weakening oscillation. At a high strength, the MF monotonically suppresses the rise
velocity of the bubble with a fixed scaling law.

Key words: bubble dynamics

1. Introduction

Bubble motion is widely applied in metallurgical and nuclear industries to enhance the
efficiency of stirring (Thomas, Huang & Sussman 1994; Jin, Vanka & Thomas 2018)
or heat transfer (Bender & Hoffman 1977; Serizawa et al. 1990; Morley et al. 2000)
and a magnetic field (MF) offers an approach to control the bubble movement with a
contactless method in conductive liquids. In these situations, bubbles are considered to
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have complex motion characteristics in a liquid metal, and it is of significance to study the
bubble motion mechanism with a MF applied. However, the physical properties of liquid
metals bring great difficulties to experimental research, and traditional optical methods are
almost impossible to apply due to the opacity of liquid metal.

Electrical probes were used by Mori, Hijikata & Kuriyama (1977) and Eckert, Gerbeth
& Lielausis (2000a,b) to measure the bubble velocity and distribution of the void fraction
in a liquid metal. However, as electrical probes must be immersed in a liquid metal, they
can influence the bubble motion. With the development of acoustic theory and detection
technology, an acoustic method was partially applied to measure the characteristics of
liquid metal flow in a contactless way (Andreini, Foster & Callen 1977; Ishimoto et al.
1995; Schmerr 2014). Based on the development of ultrasonic Doppler velocimetry (UDV),
Zhang, Eckert & Gerbeth (2005) measured the bubble velocities in a GaInSn alloy with
a streamwise MF applied, and it was revealed that the influence of the MF on the
bubble velocity is related to the bubble size. When the Eötvös number Eo < 2.5, the
MF increased the drag coefficient of the bubble, while for those bubbles with Eo > 3.6
their velocities were greater. The Eötvös number represents the ratio of the buoyancy
force to the surface tension, and it is often used to represent the dimensionless size of
a bubble. Zhang, Eckert & Gerbeth (2007) also found an anisotropy of the void fraction
obtained by UDV when bubble chains were influenced by a horizontal MF, and the void
fraction was much higher in the direction perpendicular to the MF. Then, UDV was
applied to measure the argon bubble velocity in GaInSn under a horizontal MF by Wang
et al. (2017) and the results indicated that the MF would accelerate the bubble when the
magnetic interaction parameter N < 1 and suppress its rise when N > 1. This conclusion
was also proven in the experimental research by Strumpf (2017). The magnetic interaction
parameter is the ratio of the electromagnetic force to the inertial force, which is often used
in magnetohydrodynamics (MHD) research, such as in the study of Davidson (2001).

However, it is also difficult for UDV to detect three-dimensional (3-D) bubble motion
in a liquid metal as the UDV measures the velocity distribution along the ultrasonic
wave direction. Benefitting from the strong penetration ability of high-energy rays, a
radiographic technology was also utilized to visualize the bubble trajectories in several
liquid metals. Irons & Guthrie (1980) obtained bubble images in an indium-gallium melt
using an X-ray system and Gnyloskurenko & Nakamura (2003) also used X-rays to study
the wettability effect of nozzles on the bubble motion in liquid aluminium. Considering
the influence of the MF, Richter et al. (2018) and Keplinger, Shevchenko & Eckert (2019)
analysed the bubble paths, velocities and shapes when a horizontal MF was applied and
found that the MF greatly suppressed the bubble motion. Due to the limited ability of
X-rays to penetrate GaInSn, the observation of the bubble oscillation is limited in a
container whose thicknesses are smaller than 12 mm (Keplinger, Shevchenko & Eckert
2017). Meanwhile, the cost and safety of radiographic equipment also greatly restrict
experimental research. Numerical research for bubble motions have rapidly developed
after a consistent and conservative scheme (Ni et al. 2007a,b; Ni & Li 2012) was presented
for the simulation of MHD flows at a low magnetic Reynolds number. Zhang & Ni (2014,
2017) and Zhang, Ni & Moreau (2016) performed detailed numerical simulations with the
bubble motion controlled by streamwise and horizontal MFs. The results revealed that the
vortex structure behind the bubble would be greatly suppressed in a streamwise MF. The
MF would stabilize the bubble movement by suppressing oblique, spiral and oscillating
motion, thus bringing the bubble trajectory closer to a rectilinear movement. The bubble
velocity increases with a moderate MF intensity while it declines rapidly in a strong MF
when N > 1. Moreover, Zhang & Ni (2014) observed a ‘second path instability’ when a
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streamwise MF was applied, which was not obtained with a horizontal MF (Zhang et al.
2016). To reveal the mechanism triggering the bubble oscillations, Zhang & Ni (2017)
conducted a detailed analysis of the streamwise vorticity ωz. It was found that vortex
shedding was triggered by the accumulation of ωz on the bubble surface. However, with
a streamwise MF applied, the bubble would revert to zigzag and rectilinear motion as the
shape deformation would be widely suppressed with a more asymmetric ωz distribution.
In general, previous numerical simulations explored the bubble rise characteristics and
velocities under several MF intensities, and found that MFs can change the bubble motion
mode by reducing the deformation. However, due to the limitation of the number of
calculations required for simulations, various patterns of the rise motion of bubbles
under different MFs have not been determined. In addition, the results of numerical
simulations need to be verified by experiments. In previous experimental studies, due
to the limited experimental techniques, the velocity measurements of vertically rising
bubbles were relatively good, but the free rise trajectories of individual bubbles were not
clearly observed yet. To obtain the motion characteristics of a bubble in a wide range
of parameters and verify the numerical results, this study examines new experimental
techniques to measure the 3-D motion trajectories of bubbles rising in a liquid metal
under different horizontal MF intensities. Based on the development of phased array
theory and high-performance transducers (Schmerr 2014), the ultrasonic phased array
(UPA) technique has been frequently applied to detect flaws in engineering applications.
It is feasible to consider a bubble to be a moving flaw in a liquid metal that can be
detected by a UPA system. Samet, Maréchal & Duflo (2011) and Samet, Marechal & Duflo
(2015) measured the velocity of a bubble moving in a narrow channel filled with silicone
oil, which confirmed the possibility of measuring bubble motion by the UPA method.
Therefore, the UPA method is applied in this work to study 3-D bubble motions in a liquid
metal under a horizontal MF.

The structure of this paper is as follows. § 2 presents the experimental design and brief
theory of the UPA method, as well as data processing methods and the verification of
this method. Finally, the motion features of a bubble rising in GaInSn under a horizontal
MF, including path instabilities and velocity variations of the bubble, are experimentally
studied in § 3.

2. Experimental set-up and validation

The feasibility of using a UPA system for the measurement of bubble motion in an opaque
liquid metal is demonstrated in this study.

2.1. Brief ultrasonic phased array theory
Ultrasonic phased array systems utilize the principle of phase adjustment, where the
emission time of a series of ultrasonic pulses is altered to make the individual wavefronts
generated by each element in the array converge. This operation can effectively strengthen
or weaken the energy of the sound waves, allowing for the sound waves to be efficiently
deflected to form a sound beam. To achieve this, it is necessary to trigger pulses for
the elements with minimal time differences. Transducer elements are typically grouped
for pulse emission, with each group containing 4 to 32 elements. By lengthening the
aperture, undesirable sound beam spreading can be reduced, achieving sharper focus
and effectively enhancing sensitivity. Software known as the ‘focusing law calculator’
establishes specific delay times for the emission of each element group based on the
characteristics of the probe, the wedge, the geometric shape and the acoustic properties
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Figure 1. Excitation and reception process of the UPA system.

of the tested material to generate the desired sound beam shape. Then, a pre-programmed
pulse emission sequence chosen by the instrument’s operating software generates a series
of individual wavefronts within the tested material. The energy of these converging
wavefronts is enhanced at some locations and diminished at others, forming a single
primary wavefront. The primary wavefront propagates within the tested material and, like
conventional ultrasound, is reflected when it encounters cracks, discontinuities, interfaces
and other material boundaries. Echoes are received by different elements or element
groups and then undergo the necessary time-shift calculations to compensate for changes
in wedge delays before being summed up. Due to their convenience, UPA systems are
applied in a wide range of industrial sectors such as aerospace, electricity generation and
petrochemicals.

As the key component for transmitting and receiving signals, UPA probes generally
contain multiple elements, and every element can be independently excited to generate
spherical waves (Wooh & Shi 1998; Huang & Schmerr 2009). While a group of elements
are excited to generate spherical waves according to the delay and phase rules, the spherical
waves generate a wavefront at a predetermined position, as shown in figure 1.

In the experiments, the large difference in the acoustic impedance between the bubbles,
spheres and liquids produces significant reflected signals, which contain information about
the ‘flaw’. To cover the 3-D regions of the bubbles and sphere motion, a custom 2-D UPA
probe consisting of 121 elements arranged in an 11 × 11 matrix is developed in the study.
The UPA transducer is located at the top of the liquid column as well as immersed in the
liquid shown in figures 2 and 3. The side length of each element is a = 3.81 mm, and the
centre-to-centre distance between adjacent elements is b = 3.61 mm, as shown in figure 4.
For adjacent elements, each group of 4 elements generates a focal law. The first 4 elements
are excited and form a focal law, and then the elements are sequentially excited backward
with an offset of one element. In this way, 118 focal laws on the horizontal plane are
included in each time step scan. Each focal law scans all points on the detection depth
with a resolution of 0.5 mm to record the flaw information in the entire 3-D region, which
is transmitted to the Olympus MX2 to compute the flaw location.

2.2. Experimental systems
The sketches of the experimental systems are shown in figures 2 and 3, which are used for
the verification experiment and the measurement of the bubble motion in a liquid metal
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Figure 2. Schematic diagram of the verification experimental set-up.
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Figure 3. Schematic diagram of the MF experimental set-up.

under a horizontal MF, respectively. In the verification experiment, air bubbles generated
by a needle and polypropylene spheres with a density of 906 kg m−3 are released in a
50 mm × 50 mm × 150 mm rectangular container which is filled with water or opaque
liquids, as shown in figure 2. Deionized water is chosen to avoid the influences of
impurities, and a GaInSn alloy is newly prepared for the experimental study. The GaInSn
used in our experiments is composed of 68 wt% Ga, 20 wt% In and 12 wt% Sn based on
the studies of Zhang et al. (2007), and the physical properties were mentioned in their
previous study (Zhang et al. 2005). Physical properties of GaInSn used in this paper are
also consistent with their parameter values. The physical properties are shown in table 1.
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a

Figure 4. Schematic diagram of the elemental distribution and excitation sequence on the surface of the 2-D
UPA probe. The first 4 elements are excited and form a focal law, and then the elements are sequentially excited
backward with an offset of one element.

Parameters Watera GaInSna,b Ar(gas)c Air

Density ρ (kg m−3) 998.0 6361.0 1.654 1.205
Dynamic viscosity μ (Pa s) 9.8 × 10−4 2.2 × 10−3 1.176 × 10−5 1.825 × 10−5

Surface tension σ (N m−1) 0.072 0.533 — —
Electric conductivity σe (�m−1) — 3.270 × 106 0.1 —
Sound velocity cl (m s−1) 1480.0 2730.0 322.0 343.0
Acoustic impedance Z (g cm−2 s−1) 1.477 × 105 1.722 × 106 53.2 41.3

Table 1. The physical parameters of the liquids and gas used at 21 ◦C.

The parameters refer to: a Wang et al. (2017), b Zhang et al. (2005), c Zhang & Ni (2014).

For convenient comparisons, the height of the liquid is set to be same as the study
of Zhang et al. (2016). On the horizontal plane, two VEO-170L cameras are arranged
in orthogonal directions to photograph the trajectories of bubbles and spheres rising in
water for comparison with the trajectories obtained by the UPA system. The shooting
frequency of the camera is fc = 1000 Hz, and the obtained images are processed by a
self-developed Matlab program. The scanning frequency in water is set to fscan = 37 Hz. In
the MF experiment, the liquid metal container is placed under a horizontal MF generated
by an electromagnet, as shown in figure 5. The electromagnet consists of two direct current
(DC) coils wrapped around two pure iron cores, between which horizontal MFs (18 cm in
length, 8 cm in width and 110 cm in height) will be produced. By adjusting the DC current,
the MF intensity generated by the electromagnet ranges from 0 to 1.8 T. The parameter
details of the electromagnet can be found in Wang et al. (2017). To ensure the uniformity
of the MF, the liquid metal container is placed entirely within the central region of the
MF where the MF strength can reach 99 % of the set value. Bubbles are generated on two
stainless steel needles. The inner diameters of the two needles selected in the experiment
are 0.26 and 0.5 mm, respectively. In this paper, a GaInSn alloy and argon are selected as
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Figure 5. The DC electromagnet offers a horizontal MF up to B = 1.8 T.

the liquid metal and gas, respectively. The physical parameters of all liquids are shown in
table 1; here, ρ, μ, σ , σe, cl and Z represent the density, dynamic viscosity, surface tension,
electrical conductivity, sound velocity and specific acoustic impedance, respectively.

Due to the high surface tension coefficient and poor wettability of the GaInSn alloy,
it is difficult to obtain the required small-sized bubbles at the needle head by extruding
gas through a syringe. To solve this problem, we refer to the research of Shirota et al.
(2008), and build a bubble generation system, as shown in figure 3. In this system, the
pressure controller PACE5000 stabilizes the argon pressure output from the gas cylinder
at a critical value, which is basically the same as the liquid pressure of the GaInSn to
ensure that the gas–liquid interface at the needle head is almost unstable. Then, a function
generator generates a pulse signal acting on the loudspeaker in the gas tank through
the power amplifier such that the loudspeaker generates a sound pulse. The sound pulse
generates a pressure disturbance at the bottom of the gas tank, which is transmitted to the
needle through the pipeline. After that, the pressure disturbance destabilizes the gas–liquid
interface at the needle, and individual bubbles with the required diameter and release
frequency are generated by adjusting the function generator. The needles used in the study
are divided into two specifications. When the target diameter of the bubble is less than
4 mm, the inner diameter of the needle is 0.26 mm, and if the target diameter is greater
than 4 mm, a needle with an inner diameter of 0.5 mm is used. Through this approach,
the difficulty of generating bubbles of specific sizes with a desired frequency is overcome
by controlling the frequency of the pulse signal generated by the function generator and
adjusting the intensity of the output signal of the power amplifier. Moreover, the UPA
probe located at the top of the liquid column scans the bubbles in the entire 3-D region.
The scanning frequency of the UPA system in the GaInSn is fscan = 55 Hz.

988 A21-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

42
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.429


H.-Y. Gou, M.-J. Ni and Z.-H. Yao

Breaking up

Bubble rising

Ar

GalnSn

Gas

expansion

Pushing

Water

Water Terminal position

Initial position

Pipe

PMMA

Bubble

n = i

Bubble

n = 0

2r
L

Figure 6. Sketch of the measurement method of the bubble radius. A liquid drop is arranged in a thin tube.
Bubbles continue to break visibly on the surface of the liquid metal, the gas in the enclosed space between the
gas–liquid interface and the liquid drop expands and the water drop is pushed upwards.

In order to accurately measure the size of a single bubble, a piece of Plexiglas plate
is used to cover above the liquid column and is sealed with a coupling agent. The centre
of the Plexiglas plate is punched and connected to a thin tube with an inner diameter
of r = 2.5 mm, as shown in figure 6. A small water column is placed in the thin tube.
With the continuous release of bubbles, the gas in the closed space between the gas–liquid
interface and the water column expands, and then the small water column rises upward.
By measuring the movement distance L of the water column and the number i of released
bubbles observed at the gas–liquid surface, the average diameter of the bubbles can be
calculated as

de = 3

√
6r2L

i
. (2.1)

2.3. Data processing
A MATLAB program is established to process the images of the bubbles and spheres.
First, the images are converted into binary images. Bubbles or spheres appear as regular
black areas on the image due to refraction or opacity. If there are n pixels in the black
area, and the coordinates of each pixel are (xi, yi, zi), we can obtain the coordinates of the
centroid of the bubble or sphere as

xc =

n∑
i=1

xi

n
, yc =

n∑
i=1

yi

n
, zc =

n∑
i=1

zi

n
. (2.2a–c)
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Figure 7. Sketch of the reflection point.

In this equation, zc is the ordinate of the actual centroid of the bubble or sphere. If the
ordinate of the centroid of the pth time scale is specified as zc | p, then the rise velocity of
the bubble or sphere at this time is

Vc | p = zc | p+1 − zc | p−1

2
fc. (2.3)

The raw data from the UPA system are converted into a text file containing the
amplitudes of the reflected signals at each time step, and then the characteristic signals
generated by bubbles or spheres are distinguished and reproduced using a self-developed
MATLAB program.

Schmerr (2014) indicated that the point with the strongest reflection signal obtained by
the UPA system was located at the specular reflection point of an arc-shaped interface,
as shown in figure 7. Therefore, we treat the strongest reflection point of the signal value
as the upper vertex. However, considering that the bubble or sphere may coincidentally
move to the centre of 2 or 4 elements in the horizontal direction, several similar peak
signal values can be obtained. In this case, it is difficult to identify which signal should be
chosen to represent the upper vertex. Therefore, a weighting algorithm is used to deal with
the multi-valued issue of the signals

xU =

n∑
i=1

xUiIi

n∑
i=1

Ii

, yU =

n∑
i=1

yUiIi

n∑
i=1

Ii

, zU = zUi. (2.4a–c)

Equation (2.4a–c) provides the corresponding weight for the horizontal coordinate
based on the relative magnitude of the amplitude of each signal. The parameters xUi,
yUi and zUi are the coordinates of the ith signal, while Ii is the amplitude of this signal.
By weighting each peak in the signals, the horizontal coordinate of the bubble or sphere
can be obtained. Moreover, zU , the vertical ordinate of the specular reflection point, is
obtained by the UPA system by calculating the propagation time. It is worth mentioning
that the horizontal coordinates of the centroid are consistent with the specular reflection
point. However, since the deformation of the bubble cannot be measured experimentally,
the bubble deformation is ignored in the calculation of the bubble centroid. Therefore, the
difference of vertical coordinates between the reflection point and the centroid is a radius
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Figure 8. Bubble trajectories in the verification experiment. The solid line represents the path recorded by
the cameras, and the dotted line represents the UPA results.

of de/2. After this processing, the spatial centroid coordinates of the bubbles or spheres
can be obtained.

2.4. Verification experiment
In the verification experiment, two cameras are used to obtain the trajectories of bubbles
in water and these trajectories are compared with those obtained by the UPA system. The
comparison of the trajectories of a single bubble recorded by the camera and the UPA
system is shown in figure 8, and the comparison with spheres (polypropylene spheres with
a density of 906 kg m−3) is shown in figure 9. It can be verified that the UPA system can
measure the 3-D motions of bubbles and spheres.

The spatial resolution in the vertical direction is 0.5 mm obtained by the phase
interference of the ultrasonic waves, and the spatial resolution in both of the horizontal x
and y directions is 3.81 mm. The UPA position measurement error in the vertical direction
is only 0.33 %. The position deviations of bubbles/spheres in the water acquired by the
camera and UPA are mainly caused by the low horizontal spatial resolution of the UPA.
The average error of the distance between two centroids is approximately 1.22 mm. To
reduce measurement errors, a large number of repeated experiments were carried out on
a single bubble: the diameter and oscillation direction of the bubble were measured more
than 100 times, and the amplitude, terminal velocity Vt of the bubble and the threshold
N numbers as Vt increases (Nt(Eo), mentioned later) under each condition were averaged
more than 20 times.

3. Results and discussion of magnetic field experiment

For a bubble with a large Reynolds number Re in GaInSn, a path instability of the
bubble motion occurs and a bubble will experience highly violent oscillations. Due to the
conductivity of the liquid metal, the bubble motion will be affected by the MF due to the
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Figure 9. Sphere trajectories for 3 diameters in the verification experiment. The solid line represents the path
recorded by the cameras, and the dotted line represents the UPA results.

MHD effect. When the MF is strong enough, the flows in the liquid metal will be damped
due to Joule dissipation and the Lorentz forces caused by the induced current, which will
effectively change the rise velocity and path instability of the bubble. The bubble velocities
will be lower and path will have more slight oscillations.

3.1. Dimensionless parameters
The study involves these nine factors: the densities of liquid the ρl and gas ρg, bubble
diameter de, dynamic viscosity μ, surface tension σ , gravity g. If the MF is applied,
the electrical conductivity σe and MF strength B are considered. Additionally, the drag
force depends on the bubble velocity Vt. There are four independent dimensions: t, m, l,
I, which are time, mass, length, current. Therefore, by using Buckingham’s π theorem,
five important dimensionless parameters are introduced in the study. They respectively are
the Reynolds number (Re = ρldeVt/μ, the ratio of inertial force to viscous force), Weber
number (We = ρldeVt

2/σ , the ratio of inertial force to surface tension) and Froude number
(Fr = Vt/

√
gde, the ratio of the inertial force to gravity). As mentioned in the Introduction,

the Eo number (Eo = We/Fr2 = ρlgde
2/σ ) is used to represent the ratio of buoyancy force

to the surface tension and it can be used to represent the dimensionless bubble size as ρl,
g and σ are fixed. As the MF is applied, the MHD studies such as Sommeria & Moreau
(1982) and Davidson (2001) suggest that the interaction parameter N (N = σeB2de/ρlVt)
could be used to describe the ratio of Lorentz force and inertial force. So the bubble motion
depends on Re, Eo and N. As the bubble diameters and the MF intensities cover a wide
range, the dimensionless numbers of the bubbles involved in the experiment are shown in
table 2.
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Water GaInSn

Reynolds number Re 673 1500–3300
Eötvös number Eo 1.25 1.13–2.88
Weber number We 2.04 1.47–2.94
Magnetic interaction parameter N — 0–130

Table 2. Dimensionless numbers of the bubbles involved in the experiment. The bubble diameter de and rise
velocity Vt are applied to calculate these dimensionless parameters both in water and GaInSn.

3.2. Bubble motion mode
The 3-D trajectories of a bubble in GaInSn recorded by the UPA system are shown in
figure 10. The results show that, in the absence of a MF, the path of the bubble follows a
zigzag motion, but it does not oscillate strictly in plane, which is consistent with what is
predicted in the studies of Tripathi, Sahu & Govindarajan (2015) and Sharaf et al. (2017).
This feature differs from the helical path found in numerical studies. However, it should be
mentioned that oxide impurities in the GaInSn play an important role in vortex shedding.
The contaminated bubbles shed hairpin vortices unsteadily, leading to a zigzag path rather
than a helical path (Magnaudet & Eames 2000). As the intensity of the horizontal MF
parallel to the Y-direction gradually increases, the bubble transitions to a more strictly
zigzag motion, and the oscillations are close to being confined in a plane; eventually, the
path instability is gradually suppressed as the trajectory becomes a straight line, similar to
the results of Zhang et al. (2016). Furthermore, we find for the first time that the oscillation
plane is first in the direction perpendicular to the MF and then in the direction parallel to
the MF. Due to the anisotropy of the bubble oscillation plane, we stipulate that, without a
MF, the motion mode is a 3-D random mode (R mode) with a random oscillation plane;
when a MF is applied, the motion mode with the oscillation plane perpendicular to the MF
is called the vertical mode (V mode) and the mode with the oscillation plane parallel to
the MF is called the parallel mode (P mode). During the transition process (T mode), the
oscillation plane is gradually turning to the P mode from the V mode. When the bubble
finally rises in a vertical path under a strong MF, the motion mode is called a straight mode
(S mode). The five motion modes of the bubble are shown in figure 10 for Eo = 2.43 as
an example.

Stable straight rise paths are found when B > 0.4 T. Therefore, this study focuses on
the oscillation features with B < 0.3 T. Figure 11 shows the paths of five typical bubbles
with different Eo values. To clearly distinguish the directionality of the oscillation plane,
the paths in figure 11 are decomposed into two directions. When the oscillations in the
X-direction are much stronger than those in the Y-direction, the bubble oscillates in the V
mode, and vice versa. Figure 12 presents a flow regime map in the N − Eo space. In order
to intuitively express the plane of bubble oscillation, the XOZ plane and YOZ plane are
designated as the V-plane and P-plane in this study, respectively.

According to our experimental results, it can be seen that the V mode only exists in a
narrow range of MF intensity, so there is no relevant report on the V mode of a single
bubble in previous experiments and numerical simulations; the P mode has been reported
in the numerical simulation of Zhang et al. (2016) in which a bubble oscillates towards the
MF direction at N = 0.93. The variation of motion modes may be caused by the 2-D effect
of the MF. Based on the classical MHD research (Sommeria & Moreau 1982; Moreau
1990), the MF will suppress the vortices perpendicular to the MF and retain the vortices
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Figure 10. Variations of motion modes for Eo = 2.43 under horizontal MFs. (a) Three-dimensional
trajectories. (b) Horizontal motion trajectories, where the directionality of the different motion modes can
be seen clearly.

parallel to the MF, causing the flow to be two-dimensional. Without the MF, the vortex
shedding will happen at a random position around the bubble. As the MF gets stronger, the
2-D structures due to the MHD effect appear and the vortices parallel to the MF will be
strengthened due to the kinetic energy conversion (Fauve et al. 1984; Zhang et al. 2007).
Therefore, accompanied by the strengthened vortices parallel to the MF, the shedding of
the vortex parallel to the MF plays a major role, so the bubble will oscillate perpendicularly
to the MF direction, i.e. the V mode, as shown in figure 13.

When the MF gets stronger, the bubble will oscillate in P mode. It is known that the
MF will suppress ωx and keep ωy generated by the bubble. Then ωy will be tilted and
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Figure 11. Three-dimensional trajectories of bubbles with five Eo values in horizontal MFs with intensities
of 0–0.4 T. The black, red, green, blue and cyan lines correspond to B = 0, 0.1, 0.2, 0.3, 0.4 T respectively. To
analyse the anisotropy of bubble oscillations, the trajectories are decomposed into the X–Z and Y–Z planes.
Panels show: (a) Eo = 1.13 − X; (b) Eo = 1.13 − Y; (c) Eo = 1.53 − X; (d) Eo = 1.53 − Y; (e) Eo = 1.97 −
X; ( f ) Eo = 1.97 − Y; (g) Eo = 2.43 − X; (h) Eo = 2.43 − Y; (i) Eo = 2.88 − X; ( j) Eo = 2.88 − Y .
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Figure 12. The N − Eo map of the bubble motion mode. Bubbles stay in the S mode when N > 1. The red
crosses represent the critical N where the bubble begins to accelerate.

Z V-plane

Strengthened flow in the V-plane and

non-steady large-scale vortices shedding

X Y

B

Figure 13. The diagram of the strengthened flow in the V-plane and non-steady large-scale vortices shedding
due to the 2-D effect.

stretched to cause the accumulation of the streamwise vortex ωz according to Legendre &
Magnaudet (1998). Therefore, the accumulation of ωz in the P-plane can be predicted as
N gets larger. According to their previous numerical study, Zhang et al. (2016) found the
non-isotropic suppression of the bubble wake by the MF, as shown in the figure 14. Thus,
based on the study of Shew & Pinton (2006), it can be speculated that the lift force grows
in the P-plane due to the distribution of streamwise vorticity, and it causes the bubble to
oscillate in this plane. Another possible explanation is conjectured that the P mode may be
caused by the overall 2-D circulation in the container. The 2-D effect will become stronger
as N increases, leading the 2-D convection rolls to extend along the direction of the MF
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Bubble

Z

B
X Y

Figure 14. The schematic diagram of the non-isotropic streamwise vorticity distribution after a P-mode bubble
based on the study of Zhang et al. (2016). The dark blue line represents the positive streamwise vorticities and
the green line represents the negative, as the vorticities on the backside of the bubble are marked in short dash
lines.

and form an overall 2-D circulation in the fluid container. Therefore, it will limit the bubble
path in the plane parallel to the MF. The physical mechanism of the P mode will be verified
in further experimental and numerical studies.

According to the π theorem from § 3.1, the flow caused by the bubble depends on Re, Eo
and N, leading to transitions between different modes controlled by these parameters. To
study the critical states of the mode transitions, the N − RemEon diagram for the three
parameter combinations is plotted. When m = −1 and n = 1.5, the fits are shown in
figure 15. Line 1 represents the fitted line for the transition from the R mode to the V
mode, and line 2 represents the fitted line for the transition to the T mode, with their
respective fitting formulas as

1000Re−1Eo1.5 =
{−17N + 1.8, Line1
−5.2N + 2.2, Line2.

(3.1)

It can be seen from figure 15 that all of the bubbles involved in the study experienced
four motion modes: from the initial R mode to the V mode, then to the P mode and finally
to the S mode. All the bubbles transition to the S mode after N = 0.95, which is very close
to the equilibrium state of the Lorentz force and the inertial force represented by N = 1.
In the study, it is found that the transition of the larger bubbles occurs earlier as they are
more sensitive to the MF, and their motion modes change at smaller MFs.

The relationship between the average relative amplitude A/A0 of the bubble oscillations
and the interaction parameter N is shown in figure 16, where A is the average amplitude
and A0 is the average amplitude with no MF. It is clear that the amplitudes of the three
large bubbles decline rapidly when N ≥ 0.5, while those of the other two smaller bubbles
continue to stably decrease until N ≥ 0.75. This trend also indicates that large bubbles are
more sensitive to the MF, also corresponding to the mode transition in figure 15.
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Figure 15. The N ∼ Re−1Eo1.5 map of the bubble motion modes. The black line is the fitted line for the
transition from the R mode to the V mode, and the orange line is the fitted line for the transition to the T mode.
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Figure 16. Relationship between the average relative amplitude of bubble oscillations and N. The red cross
represents the critical N where the bubble begins to accelerate.

3.3. Bubble velocity
The bubble terminal velocity is an important feature of bubble motion. As suggested by
Mendelson (1967), large bubbles can be treated as interfacial disturbances in an ideal fluid.
Consequently, their rise velocities resemble the velocity of a wave propagated over deep
water as

Vt =
√

2σ

deρ
+ deg

2
. (3.2)
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Figure 17. Comparison of terminal velocities of different bubbles obtained by UPA, Mendelson equation,
UDV (Zhang et al. 2005; Wang et al. 2017) and numerical results (Zhang & Ni 2014).

In comparison with water, bubbles in GaInSn exhibit higher Re values due to the
significantly greater density difference. This suggests that the influence of viscosity is
relatively smaller in GaInSn compared with water. In the absence of a MF, the bubble
terminal rise velocities predicted by the Mendelson equation have been verified by the
studies of Zhang et al. (2005), Zhang & Ni (2014) and Wang et al. (2017). Thus, the
Mendelson equation is employed as the base of velocity of our prediction model under the
action of a MF. The results from the Mendelson equation (3.2) are shown in figure 17.

It is evident that the velocity, Vt, obtained through the UPA system, agrees favourably
with previous experimental findings, which diverge somewhat from the predictions of
the Mendelson equation. This discrepancy might be attributed to three factors. First,
Mendelson (1967) neglected the fluid viscosity in their analysis, assuming that large
bubbles functioned as interfacial disturbances akin to waves within an ideal fluid.
Consequently, the predicted velocities tend to be higher than the experimental or numerical
results. Second, this discrepancy can also be attributed to the oxide impurities, as the
size limitations of the MF device makes it challenging to establish an argon-protected
environment for GaInSn to avoid oxide impurities. The influence of oxide impurities on
the bubble motion characteristics has been emphasized in previous studies. Magnaudet
& Eames (2000) indicated that, when the bubble surface was intentionally contaminated,
its trajectory shifted from a helical pattern to a zigzag pattern, a phenomenon consistent
with the work of Garner & Hammerton (1954). This explanation elucidates the frequent
observation of zigzag paths when the MF is not applied. As Handschuh-Wang, Stadler
& Zhou (2021) revealed, the surface tension of Ga-oxide impurities is smaller than that
of the alloy. Therefore, the surface tension is remeasured after the experiment, and the
value is found to be 0.515 N m−1, which is slightly smaller than the standard value. When
considering Ga-oxide impurities in the Mendelson equation with the remeasured surface
tension, the difference compared with the standard surface tension is not significant, as
shown in figure 17, which indicates that the decrease in the surface tension caused by
the impurities is not the main cause of the velocity difference. Additionally, Veldhuis,
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Figure 18. Oscillating velocity of the bubble (Eo = 2.88) as N < 1.

Biesheuvel & Van Wijngaarden (2008) highlighted that the surface tension gradient
attributed to impurities could lead to a no-slip condition on the stagnant bubble cap,
thereby augmenting the drag experienced by the bubble. Consequently, the velocities
computed through direct simulations by Zhang & Ni (2014) are lower than those obtained
through the Mendelson equation predictions due to the latter’s disregard of the viscosity.
Furthermore, the experimental results diverge further from Mendelson’s predictions due to
the no-slip condition on the stagnant bubble cap. Considering that the Vt values obtained
by the UPA are basically consistent with those obtained by the UDV, the bubble terminal
velocities measured in the study are considered to be acceptable.

The horizontal MF will greatly influence the bubble velocity characteristics. As an
example, the bubble velocities with Eo = 2.88 for various MF intensities are shown in
figure 18. It can be seen that, in the absence of the MF, the bubble velocity increases rapidly
to a maximum velocity of approximately 250 mm s−1, and then it drops to approximately
220 mm s−1 with oscillations. The varying velocity trend agrees with that reported by
Shew & Pinton (2006), who conducted a study on the zigzag bubble velocity. When the
MF intensity increases, the velocity stays in an oscillating state for N < 1. However, these
oscillations are significantly weakened as N increases and disappears when N ≥ 1. The
weakened velocity oscillations are consistent with the changes in the bubble trajectories
and the reductions in relative amplitudes are described in the previous section.

The relationship between the dimensionless terminal velocity Vt
∗ = Vt/Vt0 and N is

shown in figure 19, where Vt0 is the terminal velocity without a MF. It can be concluded
that the Vt

∗ values of all the bubbles with various Eo values in the experiments increase
with the increase in N, and the maximum value occurs near N = 1, which has also been
found in the previous experimental research (Wang et al. 2017). The inertial and Lorentz
forces will reach a balance when N = 1, and while the MF becomes stronger (N > 1), the
velocity will decline rapidly with increasing N.

According to the experimental results, the velocity increase is closely related to the
motion mode and relative amplitude. The N thresholds at which the bubbles begin to
accelerate are directly dependent on the bubble size. For example, Vt

∗ with Eo = 1.13
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Figure 19. Dimensionless velocities of five bubbles under a large range of N.

begins to grow at N = 0.6, while for Eo = 2.88, N = 0.32. The N threshold at which Vt
∗

begins to increase significantly is denoted as NT(Eo). With the NT(Eo) plots of the five
bubbles shown in figure 16, it can be concluded that, in the initial R mode, the subsequent
V mode and the T mode, the oscillation amplitudes of the bubbles decrease slightly, and
the corresponding bubble velocities show no significant changes. The bubbles begin to
accelerate when N is slightly larger than the N threshold of the P mode. Moreover, it can
be determined that, near NT(Eo), the relative amplitude A/A0 experiences more significant
damping. This relationship between the bubble velocity and path was also suggested by
Zhang et al. (2005), who showed that the reduction of the drag coefficient may result from
a modification of the bubble path caused by the MF.

When N > 1, all the bubbles enter the S mode. The velocities decrease rapidly with
the enhancement of the MF under the action of the Lorentz forces. Because the velocity
oscillations are suppressed, the bubble drag force Fd = (π/2)ρl(de/2)2CdVt

2 is balanced
with the buoyancy force Fb = (4π/3)�ρg(de/2)3 when an equilibrium state is reached.
Therefore, the drag coefficient Cd can be calculated by

Cd = 4�ρdeg

3Vt
2ρl

. (3.3)

The parameter Cd satisfies the scaling rule Cd ∝ N0.5, as shown in figure 20. This
scaling rule also agrees with those of Yonas (1967) and Pan, Zhang & Ni (2018) for a
particle in a liquid metal under a MF with different Re values. This means that, under a
strong MF, the drag coefficient and N will always obey the same scaling law, regardless of
Re and the geometric shape.

Considering the experimental results without a MF shown in figure 17, the bubble
terminal velocity in GaInSn predicted by the Mendelson equation (3.2) can be modified as

Vtr = 0.85

√
2σ

deρl
+ deg

2
. (3.4)
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Figure 20. Drag coefficient Cd satisfies the relationship of Cd ∝ N0.5.
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Figure 21. Equation (3.4), the modified bubble terminal velocity prediction equation in GaInSn. In this figure
the equation is compared with experimental results.

In the modified equation, a correction factor of 0.85 is applied to comprehensively consider
the influence of the viscosity and oxide impurities. The modified velocity prediction curve
is closer to the experimental results, as shown in figure 21.

Based on the experimental results, the dimensionless terminal velocity of the bubbles
in GaInSn under the influence of a MF, denoted as Vt

∗(N) = Vt/Vtr, can be categorized
into three distinct stages: the invariable velocity stage for 0 < N < NT(Eo), the increasing
stage for NT(Eo) ≤ N < 1 and the descending stage for N ≥ 1. The critical N at which
the bubble begins to accelerate, denoted as NT(Eo), is determined by averaging the
results obtained with individual Eo values. As a result, we obtained five NT(Eo) values
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Figure 22. Comparison of (3.5) and Nt(Eo) obtained in this paper.

corresponding to five different bubbles. Subsequently, a fitted function can be formulated
to describe the dependence of NT(Eo) on Eo

NT(Eo) = 0.52Eo−1.5. (3.5)

The graphical representation of this fitted function can be found in figure 22.
During the invariable velocity stage, the velocities remain essentially consistent with

those observed without the presence of the MF. In the increasing stage, due to the relatively
minor velocity variations from Vt

∗, precise formulation of a velocity prediction equation
becomes challenging. Hence, further investigations are required to accurately determine
this relationship. Nonetheless, a consistent deceleration trend Vt

∗(N) ∼ N−0.25 is evident
when N ≥ 1. Considering the influence of Eo, the velocity prediction equation for N ≥ 1
is derived as

Vt
∗(N) = 1.038Eo0.1N−0.25, N ≥ 1. (3.6)

This prediction equation is depicted graphically in figure 23.

4. Conclusions

The motion characteristics of bubbles in a liquid metal under the action of a horizontal MF,
including the oscillation trajectories and the rise velocities, are experimentally studied. To
study the bubble motion in opaque liquids, a UPA system is introduced and its ability to
detect bubbles as moving defects in a liquid metal is verified.

With a gradually increasing MF, the bubbles in the GaInSn experience four different
motion modes: from the initial R mode to the V mode and then to the P mode (with a
T mode between the V and P modes) and finally to the S mode. The transition of the
motion modes occurs with a small N and a large Eo, indicating that a larger bubble is
more sensitive to the MF. With N ≈ 1, a bubble almost loses its path instabilities and rises
straight. The anisotropy of the oscillation direction at a moderate N is revealed for the
first time. The variation of the terminal velocity is closely related to the transition of the
motion mode. Magnetic fields with N < 1 suppress the path oscillations but also increase

988 A21-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

42
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.429


A bubble’s motion in a liquid metal under a magnetic field

100
0

0.2

Eo = 1.13

Eo = 1.53
Eo = 1.97
Eo = 2.43
Eo = 2.88

0.4

0.6

0.8

1.0

1.2

1.4

101 102

N

V t
∗  (

N
)/

Eo
0
.1

Vt
∗ (N )/Eo0.1 = 1.038N –0.25, N > 1

Figure 23. The comparison of the dimensionless predicted velocity Vt
∗(N) and the experimental results

when N ≥ 1.

the terminal velocity Vt, which reaches its maximum value around N = 1. This increasing
tendency of Vt is consistent with the suppression of the oscillation amplitude, which
indicates that the energy originally lost in the horizontal oscillations is partially converted
into Vt. For N > 1, all of the bubbles enter the S mode in which MFs monotonically
suppress Vt satisfying the scaling law Vt ∝ N−0.25, and the computed drag coefficient Cd
satisfies the scaling law of Cd ∝ N0.5.
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