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NUMBERS OF CONJUGACY CLASS SIZES 
AND DERIVED LENGTHS FOR ,4-GROUPS 

MARY K. MARSHALL 

ABSTRACT. An /(-group is a finite solvable group all of whose Sylow subgroups are 
abelian. In this paper, we are interested in bounding the derived length of an ,4-group 
G as a function of the number of distinct sizes of the conjugacy classes of G. Although 
we do not find a specific bound of this type, we do prove that such a bound exists. We 
also prove that if G is an /i-group with a faithful and completely reducible G-module 
V, then the derived length of G is bounded by a function of the number of distinct orbit 
sizes under the action of G on V. 

1. Introduction. The concern in this paper is with finite solvable groups all of 
whose Sylow subgroups are abelian. Such groups will be referred to as ,4-groups. We 
wish to find, for an A -group G, a bound on the derived length of G as a function of the 
number of distinct sizes of the conjugacy classes of G. Although we do not find a spe­
cific bound of this type, we do prove that such a bound exists, as stated in Theorem B. 
Here, we use the symbol d£(G) t denote the derived length of G. Also, we write cs(G) 
to denote the set of all conjugacy class sizes of G, that is, 

cs(G) = {|G:CG(x)| \xeG}. 

THEOREM B. There exists a function g: Z+ —> Z+ such that 

d((G) < g(\ cs(G)|) 

for every A-group G. 

The following result is also proved, and it is the key to our proof of Theorem B. 

THEOREM A. There exists a function f: Z+ —> Z+ for which the following holds: If G 
is an A-group and V is a faithful and completely reducible G-module, then dl(G) < f{h), 
where b is the number of distinct orbit sizes under the action of G on V. 

2. Preliminary Lemmas. The first two lemmas appear as Hilfssatz 14.17 and 
Satz 14.18a in [2]. 
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LEMMA 1. Suppose G is an A-group and a subgroup ofGL(n,F), where n is an 
integer and F is afield whose characteristic does not divide \G\. Then d£(G) < n. 

PROOF. Note that if K is a field containing F, then G Ç GL(n, K). Thus, we may 
replace F by its algebraic closure and assume that F is algebraically closed. We induct 
on n. If n = 1, then G Ç Fx and so G is abelian and d£(G) < 1, as needed. Thus, we 
may assume that n>2. 

Since 1 G is an F-representation of G with F algebraically closed and since G is an M-
group, we know that every element of G is a monomial matrix. For each g E G, define 
fA£(g)GGL(/i,F)by 

1 i f g ^ O 

*L(g) 

That is, we obtain !A£(g) by replacing all nonzero entries of the matrix g by 1 's. One can 
check that 9\[: G —> GL(n, F) is an F-representation of G. Note that if {v\, V2,..., v„} is 
an F-basis for F77, then for any g E G, multiplication by fA£(g) fixes the 1-dimensional 
subspace (v\ + v2 + • • • + v„) of F \ since each !A£(g) is a monomial matrix. Thus, by 
possibly replacing 9\[ by a similar F-representation of G, we may assume that there exists 
an F-representation fAfi of G such that 

"1 0 

for each g G G. Then ker 5^ = ker fAfi and we see that G/ ker 9\C — G/ ker fAfi is 
isomorphic to a subgroup of GL(n — 1, F). By the inductive hypothesis, it follows that 
d£(G/ ker 0\[) <n—\. But ker !A£ is the set of all diagonal matrices in G, and so ker fA£ 
is abelian. Hence, c/£(G) < «. • 

LEMMA 2. Suppose G is an A-group and G has no normal elementary abelian sub­
group with rank greater than k. Then dl(G) <k+\. 

PROOF. For a prime q, let Bq = Oq(G) and let ^ = Oi(2^). Using Fitting's The­
orem and the fact that Sylow subgroups of G are abelian, we have Cc(Bq) = CG(Aq). 
Then G/Cc(Bq) is isomorphically embedded in Aut(^), which is isomorphic to 
Gh(mnk(Aq), qy Also, since a Sylow ^-subgroup centralizes Bq, G/Cc(Bq) must be a 
g'-group. Thus, by Lemma \,dl(G/Cc(Bq)^ < rank(^). But rank(^) < k. Therefore, 
dl(G/CG(Bq)) < k for all primes q. 

We now have G(A) Ç r£G(Bq). But since F(G) = UBq, we also have CG(F(G)) = 
C£G{Bq). Hence, G(A) Ç C C ( F ( G ) ) = F(G). Finally, since F(G) is abelian, it follows that 
dl{G)<k+\. m 

The final lemma is rather technical and is designed to simplify the proof of Theorem A. 

LEMMA 3. Suppose A is an elementary abelian q-group with rank(̂ 4) > k. Suppose 
{Ki | 1 < i < r} is a collection of subgroups of A with A/Ki cyclic for each i. Then no 
subcollection ofk or fewer of the K, s can intersect trivially 

PROOF. Assume t < k and that a set of t of the AT/'s intersect trivially. Without 
loss of generality, assume that K\ HK\ P\- - • P\K? — 1. For each / E {1,2, . . . , £ } , let 
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Nt = K\n--nKt. Note that since A/Kj is both cyclic and elementary abelian, we must 
have \A : Kj\ < q for each / G {1,2, . . . , £ } . Now, \A \ N\\ = \A : K\\ < q. Also, for 
/G { 1 , 2 , . . . , £ - 1},we have 

\Nt : M+i | = \Nt : M H ^ + , | = \NtKl+l : £ „ , |. 

But since Kt+\ Ç A^+i Ç ,4, this implies that |Af, : Nt+\\ < \A : A^+)| < q for each 
/ G {1,2, . . . , £ — 1}. Therefore, since 

1 = 7V> Ç ty_, Ç • • • Ç N2 Ç N\ Ç A, 

we have 
qk < \A\ = M : MUM :^V2|"-|^-i : ty| < / • 

Hence, t > k. This is a contradiction, as needed, and the lemma is proved. • 

3. Proofs of Theorems. As a tool to be used in the proof of Theorem A, we first 
define a sequence of positive integers, 

l = / ( l ) < / ( 2 ) < . - - , 

as follows. Put/(1) = 1. Then, whenever/(/) > 1 is given, note that the exponential 
function 

2*-A0 

grows faster than the polynomial function 

« • 

Thus, given/(/) > 1, we can define/(/ + 1 ) to be the smallest integer such thatf(i + 1 ) > 
/(/) and 

This defines a strictly increasing function/: Z+ —> Z+ to be used in the proof of Theo­
rem A. 

PROOF OF THEOREM A. Let / be the function defined in the preceding paragraph. 
Note that if b — 1, then G acts both faithfully and trivially on V, which means that G — 1 
and so dl(G) < / ( l ) . Thus, we may assume b > 2. 

We claim that it is no loss to assume that V is an irreducible G-module. To see this, 
write V — W\ x • • • x Wk, where each W( is an irreducible G-module. Then G/CcW) 
is an ,4-group and W{ is a faithful irreducible G/CcWO-module. Also, each orbit size 
under the action of G / C G W ) on W, is also an orbit size under the action of G on V. 
Hence, assuming the theorem is true in the case that the G-module is irreducible instead 
of only completely reducible, we have dl(G/CG(Wj)) < f(b) for all / G {1,2, . . . , it}. 
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This means that G^b)) Ç f)CG(Wj) = CG(V) = 1. Hence, d£(G) < f(b), as needed. 
Therefore, we may assume that V is irreducible as a (/-module. 

Note that Cy(G) is a G-submodule of V. Thus, since Kis irreducible, either Cy(G) = 1 
or CV(G) - V. But if CV(G) = V, then G = CG(V) = 1 since the action of G on V is 
faithful. Hence, we have Cy(G) = 1. 

Note that if G has no normal elementary abelian subgroup of rank greater than f(b)— 1, 
then dt{G) <f(b) by Lemma 2, and we're done. Thus, we may assume that there exists 
a normal elementary abelian ^-subgroup A of G with rank(^4) >f(b) — 1 for some prime 
q. We will see that this leads to a contradiction. 

By Clifford's theorem and since A <\ G, we have 

V=V]x--xVr, 

where {V\9..., V,} are the ,4-isotypic components of V, and where G transitively per­
mutes {V\9...9 Vr}. For i G {1,2, . . . , r } , let Kt = C^(K,), and note that since A /K{ is 
abelian and since any ^-simple submodule of V\ is a faithful irreducible A/K,-module, 
we know that each A jK[ is cyclic. 

Since rank(/4) >f(b) — 1, we know by Lemma 3 that no collection off(b) — 1 or fewer 
of the Kj's can intersect trivially. Since (Xi=\ ^i — U we must have/(Z>) — 1 < r — 1. 
Also, since b > 2, we have/(Z?) — 1 >/(2) — 1 > 2 — 1 = 1, which means that K\ ^ 1. 
Hence, since f\r

i= j AT,- = 1, there exists some Kt which does not contain K\. Without loss 
of generality we may assume that K\ Ç. K2. Now, if 2 <f(b) — 1, then K\ (IK2 ^ 1 and 
without loss of generality we may assume that K\HK2 2 ^3- In general, if/ <f(b) — 1, 
then we may assume that ÀTi H ÂT2 n • • • n £/ 2 ^+1 • 

For / G {1,2, . . . ,/(Z?)}, let TV, = K\ D • • • H £,-. Let JCI G ^ - {1}. For / G 
{2,3, . . . ,/(&)}, note that #,-_, C A but ty_, g Kt = C ^ , ) . Thus, for / G {2,...,/(/?)}, 
we can choose xt G K, with 7V,_i <2 CG(.r/). 

For/ G {1,2, . . . ,£}, let>>, = x\x2 • • •*/•(,), the product of the first f(t)xi's. We claim 
that 

|CG(yi) |> |CG(y2) |>--->|CG(y,) | . 

Since Cf/(G) = 1, this would provide a list, 

\G : CCC,)| < \G : CG(y2)| < • • • < |G : CG(y6)|, 

of b nontrivial orbit sizes under the action of G on V, which is the contradiction we need 
to finish the proof. 

Fix t G {1,2, . . . ,b - 1}. Let T = CG(yt) H CG(y/+i). Note that CG(yt+l) acts on 
X = {xi,x2,... ,*/-(/+i)}. Thus, CG(y/+j) also acts on 

n = {X0ÇX:\X0\=f(t)}9 

and 7 = CG(yt+\)(~) CG(yt) is the stabilizer of XQ — {xi,x2,... ,*/(/)} under this action. 
Hence, |CG(y/+i ) : T\ is an orbit size under the action of CG(y/+i ) on Q, which means that 
|CG(y,+l):7l<|fi| = (%'>). 
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Note that 
Nm = K}n---n Km Ç CG(xix2 • • • xm) = CG(yt). 

Thus, T Ç Nf{t)T Ç CG(y,), and so 

\CG(yt):T\>\NnnT:T\ = \NM:NmnT\. 

Also, since Nf{t) Ç A Ç NG( V() for all / G {1,2, . . . , r} and since Nf{t) Ç CG(y{) we have 

% ) n r = Nm n cG(y,) n cG<>/+1 ) 
= NmnCG(yt+]) 

= Nf{t)r\CG(x\x2'"Xf{t+i)) 

= Nm n cG(x,) n cG(x2) n • • • n cG(x/(,+1)) 
= Nf{f) n cG(x/(0+1) n cG(x/(/)+2) n • • • n cG(x/(,+1)). 

Now, note that 
Nf{t) >% ) nc G (x / - ( / ) + 1 ) , 

since otherwise, 

Nf(t) Q CG(*/(O+I)> 

which we know is not the case. Also, we have 

% ) n cG(x/(0+1 ) > Nm n cG(x/(r)+1 ) n cG(x/(,)+2), 

since otherwise, 
Nm+\ Ç Nf{t) H CG(x/(/)+i) Ç CG(x/(r)+2), 

which we know is false. In general, for / G {2,3, . . . J(t + 1) —/(/)}, we have 

Nm n cG(x/(/)+1) n • • • n cG(x/(,)+/_,) > Nm n cG(x/(/)+1) n • • • n cG(x/(/)+/), 

since otherwise, 

#/(/)+/-1 Q A /̂(O n cG(x / ( / )+o n • • • n cG(x / ( /)+/_,) ç cG(x / (0+/), 

which is false. In summary, we have 

% ) > % n c G ( i / w + i ) 

> w/(/) n cG(x /(0+i) n cG(x/(/)+2) 
> . . . 

> Nm n cG(x/(/)+i) n • • • n cG(x / ( /+0) 
= NmnT9 

where there are a total off(t + 1) —f(t) strict inequalities. Therefore, 

|A^:^/«)nr|>2«'+'>-'<'>. 
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Then since \CG(yt) '- T\ > |A (̂/) : N^ D T\, we have 

\CG(y,) : T\ > 2^X)-^\ 

However, by the definition of /0 + 1), we know that 2f{t+])~f{t) > f ^ 0 ) , and we have 

already shown that 

Hence, we have |CG(yt) : T\ > \CG(yt+\) : T\, which implies that |Cc(y,)| > |CG(y/+i)|,as 
needed. As mentioned earlier, this provides a contradiction and the theorem is proved. • 

We are now ready to prove Theorem B, which is a corollary of Theorem A. 

PROOF OF THEOREM B. Let/ be the function given by Theorem A, and define g by 

g(b) =f(b) + 1 for all b G Z+. Let 6 = | cs(G)|. 
For every prime q, let Bq = Oq(G) and let Aq — Cl\(Bq). Then using the fact that 

a Sylow ^-subgroup of G is abelian, we have CG(Bq) = CG(Aq) for all primes q, by 
Fitting's Theorem. Write Cq = CG(Bq) = CG(Aq). 

Fix a prime q. Now, Aq is a faithful F(G/Q)-module, where F is the field with q 
elements. Also, if Q G Syl^(G), then since Bq Ç Q and g is abelian, we have Q Ç 
CG(Bq) = Cq. Thus, char(F) = g does not divide |G /Q | , and so Maschke's theorem 
implies that A q is completely reducible as a5/Q-module. Clearly, every orbit size under 
the action of G/Cq on Aq is also a conjugacy class size of G. Thus, there are no more 
than b orbit sizes under the action ofG/Cq on the faithful and completely G/Cq-module 
Aq. Therefore, by Theorem A, we have d£(G/Cq) <f(b). 

By the above paragraph, we have dl(G/Cq) <f(b) for all primes q. That is, G^ib)) Ç 
Cq for every prime q. But since F(G) = Y\Bq, we have CG(F(G)) = nCG(Bq) = HC^. 
Hence, 

G(/W) ç Q Q = cc(F(G)) = F(G). 

Finally, since F(G) is abelian, we conclude that G</W+,) = 1. That is, d£(G) </(6) + 1 = 
g(b), as required. • 
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