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NUMBERS OF CONJUGACY CLASS SIZES
AND DERIVED LENGTHS FOR 4-GROUPS

MARY K. MARSHALL

ABSTRACT.  An A-group is a finite solvable group all of whose Sylow subgroups are
abelian. In this paper, we are interested in bounding the derived length of an A-group
G as a function of the number of distinct sizes of the conjugacy classes of G. Although
we do not find a specific bound of this type, we do prove that such a bound exists. We
also prove that if G is an A-group with a faithful and completely reducible G-module
V, then the derived length of G is bounded by a function of the number of distinct orbit
sizes under the action of G on V.

1. Introduction. The concern in this paper is with finite solvable groups all of
whose Sylow subgroups are abelian. Such groups will be referred to as A-groups. We
wish to find, for an A-group G, a bound on the derived length of G as a function of the
number of distinct sizes of the conjugacy classes of G. Although we do not find a spe-
cific bound of this type, we do prove that such a bound exists, as stated in Theorem B.
Here, we use the symbol d/(G)t .enote the derived length of G. Also, we write cs(G)
to denote the set of all conjugacy class sizes of G, that is,

cs(G) = {|G : Co(x)| | x € G}.
THEOREM B.  There exists a function g: 1% — 7" such that
dl(G) < g(|es(G)|)
for every A-group G.

The following result is also proved, and it is the key to our proof of Theorem B.

THEOREM A.  There exists a function f: 1+ — 1 for which the following holds: If G
is an A-group and V' is a faithful and completely reducible G-module, then d((G) < f(b),
where b is the number of distinct orbit sizes under the action of G on V.

2. Preliminary Lemmas. The first two lemmas appear as Hilfssatz 14.17 and
Satz 14.18ain [2].
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LEMMA 1. Suppose G is an A-group and a subgroup of GL(n, F), where n is an
integer and F is a field whose characteristic does not divide |G|. Then d{(G) < n.

PROOF. Note that if K is a field containing F, then G C GL(n,K). Thus, we may
replace F by its algebraic closure and assume that F is algebraically closed. We induct
onn. If n = 1, then G C F* and so G is abelian and d/(G) < 1, as needed. Thus, we
may assume that n > 2.

Since 1 is an F-representation of G with F algebraically closed and since G is an M-
group, we know that every element of G is a monomial matrix. For each g € G, define

N(g) € GL(n, F) by | ifg, 40
L 11 gij

N =10 ifg,=o.
That is, we obtain A((g) by replacing all nonzero entries of the matrix g by 1’s. One can
check that A: G — GL(n, F) is an F-representation of G. Note that if {v|,v2,...,v,} is
an F-basis for F”, then for any g € G, multiplication by A/(g) fixes the 1-dimensional
subspace (v; + v, + -+ + v,) of F", since each A(g) is a monomial matrix. Thus, by
possibly replacing A by a similar F-representation of G, we may assume that there exists
an F-representation \| of G such that

N = [(l) M()(g)]

for each g € G. Then ker Al = ker | and we see that G/ ker A. = G/ker\] is
isomorphic to a subgroup of GL(n — 1, F). By the inductive hypothesis, it follows that
d{(G/ ker \) < n— 1. Butker Al is the set of all diagonal matrices in G, and so ker A\
is abelian. Hence, d¢(G) < n. [

LEMMA 2. Suppose G is an A-group and G has no normal elementary abelian sub-
group with rank greater than k. Then d{(G) < k+ 1.

PROOF. For a prime g, let B; = 0,(G) and let 4, = Q,(B,). Using Fitting’s The-
orem and the fact that Sylow subgroups of G are abelian, we have Cg(B;) = Cg(4y).

Then G/Cg(B,) is isomorphically embedded in Aut(4,), which is isomorphic to
GL(rank(Aq), q). Also, since a Sylow g-subgroup centralizes B,, G/Cg(B,) must be a
q’-group. Thus, by Lemma 1, dl’,(G/Cg(Bq)) < rank(4,). But rank(4,) < k. Therefore,
d{(G/Cs(B,)) < k for all primes g.

We now have G¥' C NCq(B,). But since F(G) = T1B,, we also have CG([F(G)) =
MCq(8,). Hence, GM C Cg(IF(G)) = F(G). Finally, since F(G) is abelian, it follows that
di(G) <k+1. .

The final lemma is rather technical and is designed to simplify the proof of Theorem A.

LEMMA 3. Suppose A is an elementary abelian q-group with rank(4) > k. Suppose
{Ki | 1 <i<r}isa collection of subgroups of A with A | K; cyclic for each i. Then no
subcollection of k or fewer of the K; s can intersect trivially.

PROOF. Assume ¢ < k and that a set of ¢ of the K;’s intersect trivially. Without
loss of generality, assume that Ky N K; N---NK; = 1. Foreacht € {1,2,...,(}, let
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N, = K;N---NK,. Note that since 4 /K is both cyclic and elementary abelian, we must
have |4 : K;| < g foreachi € {1,2,...,0}.Now, |4 : Ni| = |4 : K| < g. Also, for
t€{l,2,...,0 — 1}, we have

|N1 3Nt+|| = |N1 : szKt+l| = INIKHI : Kz+l|«

But since K;+; € N,K;+; C A, this implies that |N, : Nu| < |4 : Kuy| < g for each
t€{1,2,...,0 — 1}. Therefore, since

=N/ CN 1 C---CNCN C4,

we have
g  <|A| = |4 : N|INy i Na| - |Np_y o N < g

Hence, ¢ > k. This is a contradiction, as needed, and the lemma is proved. .

3. Proofs of Theorems. As a tool to be used in the proof of Theorem A, we first
define a sequence of positive integers,

I=/M<f@<--,

as follows. Put f(1) = 1. Then, whenever (i) > 1 is given, note that the exponential
function
2x=/(0)

grows faster than the polynomial function

o)

Thus, given f(i) > 1, we can define /(i + 1) to be the smallest integer such that /(i + 1) >

f(i) and
s 5, (A DY
\ /0
This defines a strictly increasing function f: Z* — Z* to be used in the proof of Theo-
rem A.

PROOF OF THEOREM A. Let f be the function defined in the preceding paragraph.
Note thatif b = 1, then G acts both faithfully and trivially on V, which means that G = 1
and so d£(G) < f(1). Thus, we may assume b > 2.

We claim that it is no loss to assume that V is an irreducible G-module. To see this,
write V' = WX --- x W, where each W; is an irreducible G-module. Then G/Cs(W))
is an 4-group and W; is a faithful irreducible G/Cg(W;)-module. Also, each orbit size
under the action of G/Cg(W;) on W; is also an orbit size under the action of G on V.
Hence, assuming the theorem is true in the case that the G-module is irreducible instead
of only completely reducible, we have dl’(G,/C(;(W,-)) <f)foralli € {1,2,...,k}.
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This means that GY®) C NCx(W;) = Cs(V) = 1. Hence, d{(G) < f(b), as needed.
Therefore, we may assume that V' is irreducible as a G-module.

Note that C(G) is a G-submodule of V. Thus, since V is irreducible, either C,(G) = 1
or Cy(G) = V. Butif Cy(G) = V, then G = Cg(V) = 1 since the action of G on V is
faithful. Hence, we have C,(G) = 1.

Note that if G has no normal elementary abelian subgroup of rank greater than f(b)— 1,
then d/(G) < f(b) by Lemma 2, and we’re done. Thus, we may assume that there exists
anormal elementary abelian g-subgroup 4 of G with rank(4) > f(b) — 1 for some prime
q. We will see that this leads to a contradiction.

By Clifford’s theorem and since 4 < G, we have

V="Vx--xV,

where {V,...,V,} are the 4-isotypic components of V, and where G transitively per-
mutes {V,...,V,}. Fori € {1,2,...,r}, let K; = C4(V;), and note that since 4/K; is
abelian and since any 4-simple submodule of V; is a faithful irreducible 4 /K;-module,
we know that each 4 /K is cyclic.

Since rank(4) > f(b)— 1, we know by Lemma 3 that no collection of /(b)— 1 or fewer
of the K;’s can intersect trivially. Since (-, K; = 1, we must have f(b) — 1 < r — 1.
Also, since b > 2, we have f(b) — 1 > f(2) — 1 > 2 — 1 = 1, which means that K| # 1.
Hence, since ()_; K; = 1, there exists some K; which does not contain K. Without loss
of generality we may assume that K|  K>. Now, if 2 < f(b) — 1, then K; N K; # 1 and
without loss of generality we may assume that K, MK, € Ks. In general, if i < f(b)— 1,
then we may assume that K| NK>; N -+ - NK; € K.

Fori € {1,2,..../(B)}, let N; = Ky N---NK;. Letx; € V; — {1}. Fori €
{2,3,....f(b)},note that N;_; C Abut Ny € K; = C4(V)). Thus, fori € {2,...,f(b)},
we can choose x; € V; with N;,_; & Cq(x)).

Fort € {1,2,...,b}, let y, = x1x3 - - - xy), the product of the first f(7) x;’s. We claim
that

[Ca(r)] > |Co(y2)| > -+ > |Ce(wp)|-

Since Cy(G) = 1, this would provide a list,
|G : Co(n)| < |G :Co(n)| < --- < |G : Cayp)],

of b nontrivial orbit sizes under the action of G on ¥, which is the contradiction we need
to finish the proof.

Fix t € {1,2,...,b— 1}. Let T = Cg(y) N Cs(yi+1)- Note that CG(y,+) acts on
X ={x1,x2,..., X1y} Thus, Cs(ys+1) also acts on

Q={X CX:|X| =10}

and T = Cs(y1) N Cg(y,) is the stabilizer of Xo = {x,x,... ,x,(,)} under this action.
Hence, |Cg(y+1) : T| is an orbit size under the action of Cg(y,+1) on €, which means that
|Coym) : T| < 1Qf = (f(/’(t)l))
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Note that
Niy = Ky - N Ky € Colxrxz -+ xp) = Ca(r).

Thus, T C Ny, T C Cg(y1), and so
1C6) : TI = [Nio T+ T| = [Ny = Ny N T
Also, since Ny,) € 4 C Ng(Vi) foralli € {1,2,...,r} and since Ny, C Cs(y;) we have
NinNT = Ny NC6(r) N Ci (i)
= N/'(t) N CG(V;H)
= Ny N Cq(x1x2 -+ - Xppe1))
= Ny N C6(x1) NCGx2) M- - NCG(xyen))
= Njiy N Coxpine1) N Co(xpne2) N -+ - M ColXpeny)-

Now, note that
Nioy > Nyioy NV C6(Xipe1)s

since otherwise,
Niwy € Co(xpn)s
which we know is not the case. Also, we have
Nioy N Ca(xpin+1) > Nioy N Co(xpie1) N Co(Xpyea)s

since otherwise, ’
Nrwy1 C© Niioy NV C6(xpn+1) € Colxpn+2)s

which we know is false. In general, fori € {2,3,...,f(t + 1) —f(£)}, we have
Nioy N Ce (1) N -+ - N Ca(xpinyri—1) > Nyy N Caxpinpe1) M- -+ M Cilxpni),
since otherwise,
Nrapi-1 € Ny N Co(ype1) M- -+ N Coyinri-1) € Colxpom),
which is false. In summary, we have

Ny > Ny N Co(Xpinp1)
> Ny N Co(xyn1) N Coxyin2)
> -
> Nyiy N C6yip) N - N C6 )
=NiNT,

where there are a total of f(z + 1) — f{(¢) strict inequalities. Therefore,

INito Ny N T| = 270710,
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Then since [Cs(v/) : T| > [Ny : Ny N T), we have
[Co(vr) : T| > A+ D=0

However, by the definition of f(¢ + 1), we know that 2/(*D=/() > (/ %: )), and we have
already shown that '

. J+1)
ICG(VHI)'TlS(f(t) >

Hence, we have |Cg(yr) : T| > |Co(vis1) @ T|, which implies that |Cs(y/)| > |Co(vi+1)|, as
needed. As mentioned earlier, this provides a contradiction and the theorem is proved. m
We are now ready to prove Theorem B, which is a corollary of Theorem A.

PROOF OF THEOREM B. Let f be the function given by Theorem A, and define g by
g(b) =f(b)+1forallb € Z*. Let b = | cs(G)).

For every prime ¢, let B, = 04(G) and let 4, = Q,(B,). Then using the fact that
a Sylow g-subgroup of G is abelian, we have Cg(B;) = Cg(4,) for all primes g, by
Fitting’s Theorem. Write C, = Cg(B,) = Cs(4,).

Fix a prime g. Now, 4, is a faithful F(G/C,)-module, where F is the field with g
elements. Also, if O € Syl (G), then since B, C Q and Q is abelian, we have O C
Cs(B,y) = C,. Thus, char(F) = ¢ does not divide |G/C,|, and so Maschke’s theorem
implies that 4, is completely reducible as a B/ C;-module. Clearly, every orbit size under
the action of G/C, on 4, is also a conjugacy class size of G. Thus, there are no more
than b orbit sizes under the action of G/ C, on the faithful and completely G/ C;-module
Aq. Therefore, by Theorem A, we have d¢(G/C,) < f(b).

By the above paragraph, we have d¢(G/C,) < f(b) for all primes g. That is, GY®) C
C, for every prime g. But since F(G) = I1B,, we have CG(IF(G)) = NCq(By) = NC,.
Hence,

G c N ¢, = C6(F(G)) = F(G).

Finally, since F(G) is abelian, we conclude that GY®*1) = 1. That is, d{(G) < f(b)+1 =
g(b), as required. [
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