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Abstract

Let F C Gbeclosedand A(F) = A(G)/Ir. If F is aHelson set then A(F)** is an amenable (semisimple)
Banach algebra. Our main result implies the following theorem: Let G be a locally compact group, F C G
closed, a € G. Assume either (a) For some non-discrete closed subgroup H, the interior of F NaH in
aH is non-empty, or (b) R C G, § C R is a symmetric set and aS C F. Then A(F)** is a non-amenable
non-semisimple Banach algebra. This raises the question: How ‘thin’ can F be for A(F)** to remain a
non-amenable Banach algebra?

1991 Mathematics subject classification (Amer. Math. Soc.): primary 46H20, 43A30; secondary 43A20.

1. Introduction

Let G be a locally compact group and J C A(G) a closed ideal with zero set
Z(J)={x € G;u(x) =0forallu € J} = F. Consider the second dual (AG)Y/ )y,
of the quotient algebra A(G)/J, equipped with Arens multiplication.

If F C G is a Helson set (thus A(F) = C(F)) then A(F)** is a commutative C*
algebra and is hence amenable, by a result of Sheinberg (see [CL] for amenability of
Banack algebras and references).

The subset S of the real line R is symmetric if there are ¢, > 0 such thatz, > Zﬁl t;
foralln > 1and § = {ch &t;; & =0, 1}. The Cantor 1/3 set is such (see [GMc,
p- 881). Analogously for S C T (the unit circle). This is the only sense in which
‘symmetric’ is used in this paper.

Our main result implies the

THEOREM. Let G be a locally compact group J C A(G) a closed ideal with

© 1997 Australian Mathematical Society 0263-6115/97 $A2.00 + 0.00
289

https://doi.org/10.1017/51446788700000938 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700000938

290 Edmond E. Granirer [2]

Z(J) = F and a, b € G. Assume one of

(a) For some non-discrete closed subgroup of H C G, int,y, F # @ or
(b) R is aclosed subgroup of G, S C R is a symmetric set withaSb C F.

Then (A(G)/J)*™ is a non-amenable non-semisimple Banach algebra.
Furthermore, in case (a) the result holds for the algebras A,(G)/J, 1 < p < 0,
where A>(G) = A(G) is the Fourier algebra of G, see [Hz1].

As a very mild consequence one gets that A(G)** (or B(G)**) is an amenable
Banach algebra if and only if G is finite. This is a dual result of a theorem of
Ghahramani, Loy and Willis [GLW] who have shown that L'(G)** (or M(G)**) is
amenable if and only if G is finite. And yet, if E C Z is a Sidon set A(E)** is
amenable (see the sequel).

2. Notation and definitions

We follow the notation in [Ey] for the Fourier algebra A(G), except that we denote
its dual module A(G)*, where (u - @, v) = (P, uv) foru, v € A(G), ® € A(G)*, by
PM(G), while VN (G) isused in [Ey]. Thus B(G) is the linear span of the continuous
positive definite functions on G.

If u € M(G), the bounded Borel measures on G, let A € PM(G) be given by
(A, v) = fvdp where v € A(G). Thus (AS,,v) = v(x) if x € G,v € A(G). If
® € PM(G), denote its support by supp ®. Thus x € supp @ if and only if for each
neighborhood V of x there is some v € A(G) such that suppv C V and (A, v) # 0.

If P C PM(G)is a w*closed A(G) module and a € G, let Ep(a) = ncl {P ¢
P : a ¢ supp ®} (where ncl denotes norm-closure), Tlp(a) = {V € P* : ¥ =0
on Ep(a)} and, if A8, € P, TIMp(a) = (¥ e P* : (W,A5,) =1 = |¥|,¥ =0on
Ep(a)} (this being the set of topologically invariant means on P at a).

Let J C A(G) be a closed ideal with zero set Z(J) = F. Let P = (A(G)/J)*
where A(G)/J is taken with the quotient norm. If F C G is closed then I = {v €
A(G) : v=0on F}and A(F) = A(G)/Ir. We consider P* = (A(G)/J)** equipped
with the Arens multiplication given by (¥,[JW,, ®) = (\V,, ¥,00®) for ¥,, ¥, € P*,
® € P where W,[1® € P is given by (V,00PD, u) = (V,, u - ®) foru € A(G)/J;
see [DH]. Thus (P*, 0J) is a Banach algebra in which A(G)/J is embedded and O
extends the multiplication in A(G)/J.

The Banach algebras A,(G), 1 < p < o0, are as defined in [Hz1] and are such
that A;(G) = A(G) is the Fourier algebra of G. Thus PM,(G) = A,(G)*. Let
B”,”(G) = B;” ={ve C(G): vu € A, forall u € A,}, where C(G) [C.(G)] are the
bounded continuous [with compact support] functions on G. The reader not interested
in these may assume that A,(G) is A(G) and proceed.
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In any case, as in [Gr2, Gr3], the above notation makes sense for P C PM,(G). If
p # 2 then A,(G) is very different from A(G); see [Gr2, p. 49].

We denote for simplicity A(G) by A, A,(G) by A,,and A,(F) = A,/IF.

If F, H are subsets of G then inty F is the interior of F N H in H (with the relative
topology from G). If u € C(G), letsuppu = cl {x : u(x) # 0}.

3. The main results

In what follows, let J C A, be a closed ideal with F = Z(J) and P = (A,/J)*.

LEMMA 1. (@) ¥ € Tlp(a) ifand only if (x)(V, u - ®) = u(a)(¥, ®) forallu € B[',”
and ® € P. (b) TIMp(a) # B foralla € F.

PROOF. (a) The proof of Lemma 8’ of [Gr3] holds for all locally compact groups G
with A(G), B(G) replaced by AP. (G), B;” (G), since only results in [Hz1] (which are
valid in this context) were used in its proof. Thus Ep(a) = ncl{® —v-d: P € P,
v € Si(a)} where S;(a) = {v € BI’,”: v(a) = 1}. Thus ¥ € TIp(a) if and only if
W,u-®) = ¥, P)forall ® € Pand u € S5(a). If ¥ € Tlp(a) and u € B,’,”
with u(a) # 0, then (W, u - ®) = u(a)(¥, P) forall ® € P. If now u € BI’,” and
u(a) =0, thensince 1 € BI’J” we have (W, (1 —u)-®) = (1 —u(a))(¥, &) = (¥, D).
Thus (¥, u - ®) = 0 and () holds for ¥. If now W € P* and (*) holds for ¥ then
WV, d—v - P)=0if d € Pand v € S3(a). Thus ¥ = 0 on Ep(a).

(b) This is shown for example as in [Gr2, p. 122] with e replaced by a € F.

LEMMA 2. (a) Ifa € F then ¥ — (W, A3,) is a multiplicative w*-continuous
non-zero linear functional on P*.
(b) IfV e P*, V¥, € Tlp(a) then VW, = (¥, A8,)V,.
(c) Ifl,={V eP*: (¥, A4,) =0} then 1,10 TIp(a) = {O}.
(d) Foranyue A,/J, P, ¥V eP VYu-®)=u - (YOPD).

PROOF. (a) holds by [DH, p. 316]. Alternatively, note that WLIAS, = (W, A5,)A6,.

b) If u € A,, & € P then (0P, u) = (V,u - ®) = u(@)(¥,,P) =
(¥, ®)AS,, u). Hence (WO, ) = (¥, ¥ (DP)AS,) = (W, AS,) VY, D).

(c) Immediate from (b).

@ If v € A,/J then (WO - ®),v) = (¥, (wv) - ¢) = (VYUOD,uv) =
(u - (WOP)v).

PROPOSITION 3. Foranya,b € F,a # b:
(a) Tlp(a) is anon-zero w*-closed two-sided ideal of (P*, () such that I,[(1Tlp(a) =
{0}
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(b) TI(a) = L,NTIp(a) is a w*-closed two-sided ideal such that TIs(a) D TIo(a) =
{0}.

If card TIMp(a) > 2 then TI3 (a) # {0}.
(¢) TIe(a) NTIp(b) = {0}.

PROOF. (a) Tlp(a) is a left ideal by Lemma 2(b). If ¥, € Tlp(a), ¥ ¢ P*,
ueAy,/J,and ® € P, then (¥V,0V, u - ) = (¥, ¥(u - ®)) = (¥, u - (YOD))
(by Lemma 2(d)) = u(a)(¥,00¥, ) (by Lemma 1). Hence, again by Lemma 1,
W, 0¥ € TIp(a). Now WOIW, = (¥, A8,)W¥, by Lemma 2(b). Thus I,[1TIp(a) = 0.

(b) Since I, and Tlp(a) are w*-closed two-sided ideals, TI(I’,(a) 1s such and even
LOTIp(a) = {0}). If ¥ # W, are in TIMp(a) then 0 £ ¥, — ¥, € I, N Tlp(a) =
T (a).

(© If ¥ € Tlp(a) N TIp(b) then (W, u - &) = u(a)(V¥, ) = u(b)(¥, ®) for
u e A,/J, ® € P. If wechoose u € A,/J with u(a) = 0, u(b) # 0, we get
(¥, ®) =0; thus ¥ = 0.

THEOREM 4. (a) If ¥y, € TIMp(a) then ¥V — W00V is a projection operator
Jrom P* onto the two-sided ideal Tlp(a). Thus P* = Tlp(a) ® {¥ —V,0O0¥ : ¥ € P*}.
(b) If card TIMp(a) > 2 then Tlp(a) has no (even unbounded) right approximate
identity, and is hence a non-amenable w*-closed ideal of P*.
(c) Ifcard TIMp(a) = 2 for some a € F then P* is a non-amenable non-semisimple
Banach algebra.

PROOF. (a) Let Q(V) = V,[OW. If ¥ € Tlp(a) then Q(¥) = (W, A8,)¥ = ¥
by Lemma 2(b). For any ¥ € P*, Q*(¥) = V,0(¥Y,0¥) = ¥,0¥ = Q(¥) since
Yo € Tlp(a) by Proposition 3(a).

If now QW = W then W,UOW = ¥ hence W € TIp(a) by Proposition 3(a). Thus
P*=0P ®(I— Q)P =Tlp(a) ®{¥ — Y[V : ¥ € P*} where I : P* — P*is
the identity.

(b) Let ¥, C TIp(a) be aright approximate identity. Let ¥, # ¥, be in TIMp(a).
Thus ¥, — ¥, € 1,. Hence, by Proposition 3(a), (¥, — ¥,)(O0¥, = 0. But ¥, «
v, 0V, = W,[J¥, — ¥, which cannot be.

(c) If W, # W, are in TIMp(a) then 0 # ¥, — ¥, € TI3(a) and T (a)O T3 (a) =
{0}. Hence {0} # TI‘,),(a) C rad P* and P* is not semisimple.

If now P* is an amenable Banach algebra then Tlp(a) is a w*- (hence norm-) closed
two-sided ideal which is complemented in P*; hence TIp(a)* is complemented in P**.
But then by Khelemskii’s Theorem (see [CL, p. 97, Thm 3.7]) TIp(a) has a bounded
approximate identity, which cannot be the case by (b).

REMARK. Note that if ¥y € TIMp(a) then {¥ — W;: ¥ € TIMp(a)} C TI3(a) C
rad P*.
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We recall now some results of ours in the next theorem. The set D,(J) C F was
defined in [Gr3] by: a € D,(J) if there exists a sequence u, € A, with compact
supports such that (i) 1 = u,(a) = |ju,|, (i) { F N supp u,} is a neighborhood base in
F at a, and (iii) there is some d > 0 such that || }_} a,u, || > d >} |al, for all n and
a, € C,where u;, = u,+J € A,/J. Note that (iii) can be replaced by: (iii)’ {u;} has
no weak Cauchy subsequence (by Rosenthal’s Theorem).

THEOREM 5. Let G be a locally compact group, J a closed ideal of A,(G),
l<p<oo,withZ(J)=F,a,be GandP = (A,(G)/J)".
(i) If D, (J) # 0@ and x € D\(J) then card TIMp(x) > 2°.
(ii) If for some non-discrete closed subgroup H of G, int,y, F # 0, then
card TIMp(x) > 2° for all x € int,y,, F.
(iii) If R is a closed subgroup of G, S C R is a symmetric set (such as the Cantor
1/3 set) and aSb C F, then card TIMp(x) > 2° for all x € aSb, provided p = 2.

For (i) see [Gr3, Theorem 4] and for (ii), (iii) see [Gr4, Theorems 6 ,7].

THEOREM 6. Let G be a locally compact group, J C A, a closed ideal with
Z(J)=F,a,b e G, 1< p < oo Assume that (i) or (ii) [or (iii)] of the above
theorem holds. Then (A,/J)™ [(A/J)**] is a non-amenable and non-semisimple
Banach algebra.

PROOF. By Proposition 3, Theorem 4, and Theorem 5.

REMARKS. (a) In fact (the w*-closed two-sided ideal) TIOP(x) C rad P* (since
TI?,(x)D TI(I),(x) = {0}) and card TI(l’,(x) > 2¢, In cases (ii) or (iii) there are at least ¢
such ideals, by Proposition 3(c).

(b) In case (ii) [(iii)] A, (F)** [A(F)**] is not amenable.

(c) Theorem 6 says nothing about the amenability of the algebras A/J or A(F).
For example, if G is abelian then A(G) is amenable, hence so are all the quotient
algebras A/J [or A(F)] for any closed ideal / C A(G) [set F C G]. Yet for sets
F C G as in Theorem 6, A(F)** and (A/J)** are not amenable.

The following is folklore.

PROPOSITION 7. Let J| C J, be closed ideals in A, with F; = Z(J;); thus F, C Fj.
If (A,/J2)™*[A,(F,)**] is not amenable, then (A,/J)**[A,(F|)**] is not amenable.

PROOF. Let g : A,/J, — A,/J, be the canonical quotient onto map. Then
q* 1 (A,/ )™ — (A,/J»)** is a homomorphism whose image B contains A,/J,
(considered as embedded in (A,/J>)**). But by [Ru2, 4.14] B has to be w*-closed.
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Hence ¢** is an onto continuous homomorphism and amenability is preserved by such
([CL}: see Lemma 1.1 in {LL]).

COROLLARY 8. (a) If G is non-discrete then A,(G)** is not amenable and not
semisimple.
(b) For any locally compact group G, A(GY* [or B(G)**] is amenable if and only
if G is finite.

PROOF. (a) Take H = G = F in Theorem 6(b). By Lau’s result [La, Proposi-
tion 3.2(b)], if A(G)** is amenable then G is compact and by (a) it has to be discrete.
Assume now that B(G)*" is amenable. Since A(G) is a complemented ideal in B(G),
A(G)™ is acomplemented ideal in B(G)**. Thus by [CL], A(G)** is amenable; hence
G is finite.

PROPOSITION 9. Let A(G) be amenable. Then A,(G)/J is amenable for all
1 < p < oo and for all closed ideals J C A,(G).

PROOF. G is necessarily amenable; hence, by Herz’s Theorem C in [Hz2], A,(G) C
A,(G) forall 1 < p < oo, with contraction of norms. Thus the identity embedding
h: A, — A, is ahomomorphism such that ||#|| < 1. But hA, contains the functions
f * g with f, g € C.(G), the linear span of which is norm dense in A, (see [Hz1]).
Thus 2 A, is norm dense in A,. By a theorem of Johnson ([Jol, (5.3)]) A, = A,(G),
hence A,/J is an amenable Banach algebra.

REMARKS. (a) Proposition 9 improves Theorem 3.10 of [Fol].

(b) Corollary 8(b) is the dual result to Theorem 1.3 and Corollary 1.4 of [GLW].

(c) It has been proved by Gourdeau [Go] that for any Banach algebra B the
amenability of B** implies that of B (see also {GLW]). Thus A(G)** amenable
implies that A(G) is so. It has been proved by Johnson in [Jo2] that there exist
compact groups for which A(G) is not amenable. If, however, G is infinite and
contains an abelian subgroup of finite index then A(G), hence A,(G), is amenable
(see [LLW, Corollary 4.2] and [Fo2]), yet A(G)** is not amenable by Corollary 8(b).

(d) It has been proved by Brown and Moran [BM] that if G is a non-compact
abelian locally compact group then B(G), hence B(G)**, is not amenable. If G is
compact abelian infinite then A(G) = B(G) is amenable yet A(G)** = B(G)** is not
amenable by, say, our Corollary 8.

(e) If G is abelian, every perfect compact set F contains a perfect Helson set
E C F by Varopoulos [V, Ch. 4.3]. Taking F C R = G to be the Cantor 1/3 (or any
symmetric) set and £ C F a Helson set we get that A(E)** is amenable while A (F)**
is not.
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(f) There exist continuous [smooth] curves E in R? {in R", n > 3] which are Helson
sets as shown by Kahane; see [Mc]. Thus if G = R" then A(E)™*, and hence A(E,)**
for all closed E, C E, is an amenable Banach algebra.

(g) Let G be infinite discrete and abelian. Then any infinite set F C G contains
an infinite Sidon set E; thus A(E) = ¢o(E) ([Rul, (5.7.3) (5.7.6)]). Hence A(E)** =
C(X) (for some compact X) is amenable. Yet A(F)** need not be amenable (take
F = G and use our Corollary 8(b)).

QUESTIONS. (1) Characterize the closed sets £ C R” for which A(E)** is an
amenable Banach algebra.
(2) Let G = Z, the integers, or G = Z". Characterize all infinite sets FF C G for
which A(F)** is amenable.
(3) The only examples of sets E C G for which A(E)** is amenable, given here,
are Helson sets or Sidon sets. Do other such exist?
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