AMENABILITY AND SEMISIMPLICITY FOR SECOND DUALS OF QUOTIENTS OF THE FOURIER ALGEBRA A(G)

EDMOND E. GRANIRER

(Received 23 April 1996; revised 8 April 1997)

Communicated by G. Robertson

Abstract

Let $F \subset G$ be closed and $A(F) = A(G)/I_F$. If F is a Helson set then $A(F)^{**}$ is an amenable (semisimple) Banach algebra. Our main result implies the following theorem: Let G be a locally compact group, $F \subset G$ closed, $a \in G$. Assume either (a) For some non-discrete closed subgroup H, the interior of $F \cap aH$ in aH is non-empty, or (b) $R \subset G$, $S \subset R$ is a symmetric set and $aS \subset F$. Then $A(F)^{**}$ is a non-amenable non-semisimple Banach algebra. This raises the question: How 'thin' can F be for $A(F)^{**}$ to remain a non-amenable Banach algebra?

1991 Mathematics subject classification (Amer. Math. Soc.): primary 46H20, 43A30; secondary 43A20.

1. Introduction

Let G be a locally compact group and $J \subset A(G)$ a closed ideal with zero set $Z(J) = \{x \in G; u(x) = 0 \text{ for all } u \in J\} = F$. Consider the second dual $(A(G)/J)^{**}$, of the quotient algebra A(G)/J, equipped with Arens multiplication.

If $F \subset G$ is a Helson set (thus A(F) = C(F)) then $A(F)^{**}$ is a commutative C^* algebra and is hence amenable, by a result of Sheinberg (see [CL] for amenability of Banach algebras and references).

The subset S of the real line R is symmetric if there are $t_n > 0$ such that $t_n > \sum_{n+1}^{\infty} t_i$ for all $n \ge 1$ and $S = \{\sum_{i=0}^{\infty} \varepsilon_i t_i; \varepsilon_i = 0, 1\}$. The Cantor 1/3 set is such (see [GMc, p. 88]). Analogously for $S \subset T$ (the unit circle). This is the only sense in which 'symmetric' is used in this paper.

Our main result implies the

THEOREM. Let G be a locally compact group $J \subset A(G)$ a closed ideal with

^{© 1997} Australian Mathematical Society 0263-6115/97 \$A2.00 + 0.00

Z(J) = F and $a, b \in G$. Assume one of

(a) For some non-discrete closed subgroup of $H \subset G$, $\operatorname{int}_{aHb} F \neq \emptyset$ or

(b) R is a closed subgroup of G, $S \subset R$ is a symmetric set with $aSb \subset F$.

Then $(A(G)/J)^{**}$ is a non-amenable non-semisimple Banach algebra.

Furthermore, in case (a) the result holds for the algebras $A_p(G)/J$, $1 , where <math>A_2(G) = A(G)$ is the Fourier algebra of G; see [Hz1].

As a very mild consequence one gets that $A(G)^{**}$ (or $B(G)^{**}$) is an amenable Banach algebra if and only if G is finite. This is a dual result of a theorem of Ghahramani, Loy and Willis [GLW] who have shown that $L^1(G)^{**}$ (or $M(G)^{**}$) is amenable if and only if G is finite. And yet, if $E \subset Z$ is a Sidon set $A(E)^{**}$ is amenable (see the sequel).

2. Notation and definitions

We follow the notation in [Ey] for the Fourier algebra A(G), except that we denote its dual module $A(G)^*$, where $(u \cdot \Phi, v) = (\Phi, uv)$ for $u, v \in A(G), \Phi \in A(G)^*$, by PM(G), while VN(G) is used in [Ey]. Thus B(G) is the linear span of the continuous positive definite functions on G.

If $\mu \in M(G)$, the bounded Borel measures on G, let $\lambda \mu \in PM(G)$ be given by $(\lambda \mu, v) = \int v \, d\mu$ where $v \in A(G)$. Thus $(\lambda \delta_x, v) = v(x)$ if $x \in G, v \in A(G)$. If $\Phi \in PM(G)$, denote its support by supp Φ . Thus $x \in \text{supp } \Phi$ if and only if for each neighborhood V of x there is some $v \in A(G)$ such that supp $v \subset V$ and $(\lambda \mu, v) \neq 0$.

If $P \subset PM(G)$ is a w^* closed A(G) module and $a \in G$, let $E_{\mathbf{P}}(a) = \text{ncl} \{\Phi \in \mathbf{P} : a \notin \text{supp } \Phi\}$ (where ncl denotes norm-closure), $\text{TI}_{\mathbf{P}}(a) = \{\Psi \in \mathbf{P}^* : \Psi = 0 \text{ on } E_{\mathbf{P}}(a)\}$ and, if $\lambda \delta_a \in \mathbf{P}$, $\text{TIM}_{\mathbf{P}}(a) = \{\Psi \in \mathbf{P}^* : (\Psi, \lambda \delta_a) = 1 = \|\Psi\|, \Psi = 0 \text{ on } E_{\mathbf{P}}(a)\}$ (this being the set of topologically invariant means on \mathbf{P} at a).

Let $J \subset A(G)$ be a closed ideal with zero set Z(J) = F. Let $P = (A(G)/J)^*$ where A(G)/J is taken with the quotient norm. If $F \subset G$ is closed then $I_F = \{v \in A(G) : v = 0 \text{ on } F\}$ and $A(F) = A(G)/I_F$. We consider $P^* = (A(G)/J)^{**}$ equipped with the Arens multiplication given by $(\Psi_1 \Box \Psi_2, \Phi) = (\Psi_1, \Psi_2 \Box \Phi)$ for $\Psi_1, \Psi_2 \in P^*$, $\Phi \in P$ where $\Psi_2 \Box \Phi \in P$ is given by $(\Psi_2 \Box \Phi, u) = (\Psi_2, u \cdot \Phi)$ for $u \in A(G)/J$; see [DH]. Thus (P^*, \Box) is a Banach algebra in which A(G)/J is embedded and \Box extends the multiplication in A(G)/J.

The Banach algebras $A_p(G)$, $1 , are as defined in [Hz1] and are such that <math>A_2(G) = A(G)$ is the Fourier algebra of G. Thus $PM_p(G) = A_p(G)^*$. Let $B_p^M(G) = B_p^M = \{v \in C(G): vu \in A_p \text{ for all } u \in A_p\}$, where $C(G) [C_c(G)]$ are the bounded continuous [with compact support] functions on G. The reader not interested in these may assume that $A_p(G)$ is A(G) and proceed.

In any case, as in [Gr2, Gr3], the above notation makes sense for $P \subset PM_p(G)$. If $p \neq 2$ then $A_p(G)$ is very different from A(G); see [Gr2, p. 49].

We denote for simplicity A(G) by A, $A_p(G)$ by A_p , and $A_p(F) = A_p/I_F$.

If F, H are subsets of G then $\operatorname{int}_H F$ is the interior of $F \cap H$ in H (with the relative topology from G). If $u \in C(G)$, let $\operatorname{supp} u = \operatorname{cl} \{x : u(x) \neq 0\}$.

3. The main results

In what follows, let $J \subset A_p$ be a closed ideal with F = Z(J) and $P = (A_p/J)^*$.

LEMMA 1. (a) $\Psi \in \text{TI}_{\mathbf{P}}(a)$ if and only if $(*)(\Psi, u \cdot \Phi) = u(a)(\Psi, \Phi)$ for all $u \in B_p^M$ and $\Phi \in \mathbf{P}$. (b) $\text{TIM}_{\mathbf{P}}(a) \neq \emptyset$ for all $a \in F$.

PROOF. (a) The proof of Lemma 8' of [Gr3] holds for all locally compact groups G with A(G), B(G) replaced by $A_p(G)$, $B_p^M(G)$, since only results in [Hz1] (which are valid in this context) were used in its proof. Thus $E_{\mathbf{P}}(a) = \operatorname{ncl} \{\Phi - v \cdot \Phi : \Phi \in \mathbf{P}, v \in S_3(a)\}$ where $S_3(a) = \{v \in B_p^M : v(a) = 1\}$. Thus $\Psi \in \operatorname{TI}_{\mathbf{P}}(a)$ if and only if $(\Psi, u \cdot \Phi) = (\Psi, \Phi)$ for all $\Phi \in \mathbf{P}$ and $u \in S_3(a)$. If $\Psi \in \operatorname{TI}_{\mathbf{P}}(a)$ and $u \in B_p^M$ with $u(a) \neq 0$, then $(\Psi, u \cdot \Phi) = u(a)(\Psi, \Phi)$ for all $\Phi \in \mathbf{P}$. If now $u \in B_p^M$ and u(a) = 0, then since $1 \in B_p^M$ we have $(\Psi, (1-u) \cdot \Phi) = (1-u(a))(\Psi, \Phi) = (\Psi, \Phi)$. Thus $(\Psi, u \cdot \Phi) = 0$ and (*) holds for Ψ . If now $\Psi \in \mathbf{P}^*$ and (*) holds for Ψ then $(\Psi, \Phi - v \cdot \Phi) = 0$ if $\Phi \in \mathbf{P}$ and $v \in S_3(a)$. Thus $\Psi = 0$ on $E_{\mathbf{P}}(a)$.

(b) This is shown for example as in [Gr2, p. 122] with e replaced by $a \in F$.

LEMMA 2. (a) If $a \in F$ then $\Psi \to (\Psi, \lambda \delta_a)$ is a multiplicative w^{*}-continuous non-zero linear functional on P^* .

- (b) If $\Psi \in \mathbf{P}^*$, $\Psi_1 \in \mathrm{TI}_{\mathbf{P}}(a)$ then $\Psi \Box \Psi_1 = (\Psi, \lambda \delta_a) \Psi_1$.
- (c) If $I_a = \{\Psi \in \mathbf{P}^* : (\Psi, \lambda \delta_a) = 0\}$ then $I_a \Box \operatorname{TI}_{\mathbf{P}}(a) = \{0\}$.
- (d) For any $u \in A_p/J$, $\Phi \in P$, $\Psi \in P^*$, $\Psi \Box (u \cdot \Phi) = u \cdot (\Psi \Box \Phi)$.

PROOF. (a) holds by [DH, p. 316]. Alternatively, note that $\Psi \Box \lambda \delta_a = (\Psi, \lambda \delta_a) \lambda \delta_a$. (b) If $u \in A_p$, $\Phi \in P$ then $(\Psi_1 \Box \Phi, u) = (\Psi_1, u \cdot \Phi) = u(a)(\Psi_1, \Phi) = ((\Psi_1, \Phi)\lambda \delta_a, u)$. Hence $(\Psi \Box \Psi_1, \Phi) = (\Psi, \Psi_1(\Phi)\lambda \delta_a) = ((\Psi, \lambda \delta_a)\Psi_1, \Phi)$.

(c) Immediate from (b).

(d) If $v \in A_p/J$ then $(\Psi \Box (u \cdot \Phi), v) = (\Psi, (uv) \cdot \Phi) = (\Psi \Box \Phi, uv) = (u \cdot (\Psi \Box \Phi)v).$

PROPOSITION 3. For any $a, b \in F$, $a \neq b$:

(a) $\operatorname{TI}_{\mathbf{P}}(a)$ is a non-zero w^* -closed two-sided ideal of (\mathbf{P}^*, \Box) such that $I_a \Box \operatorname{TI}_{\mathbf{P}}(a) = \{0\}$.

(b) $\operatorname{TI}_{\mathbf{P}}^{0}(a) = I_{a} \cap \operatorname{TI}_{\mathbf{P}}(a)$ is a w^{*}-closed two-sided ideal such that $\operatorname{TI}_{\mathbf{P}}^{0}(a) \square \operatorname{TI}_{\mathbf{P}}^{0}(a) = \{0\}.$

If card $\operatorname{TIM}_{\mathbf{P}}(a) \geq 2$ then $\operatorname{TI}_{\mathbf{P}}^{0}(a) \neq \{0\}$. (c) $\operatorname{TI}_{\mathbf{P}}(a) \cap \operatorname{TI}_{\mathbf{P}}(b) = \{0\}$.

PROOF. (a) $\operatorname{TI}_{\mathbf{P}}(a)$ is a left ideal by Lemma 2(b). If $\Psi_1 \in \operatorname{TI}_{\mathbf{P}}(a)$, $\Psi \in \mathbf{P}^*$, $u \in A_p/J$, and $\Phi \in \mathbf{P}$, then $(\Psi_1 \Box \Psi, u \cdot \Phi) = (\Psi_1, \Psi \Box (u \cdot \Phi)) = (\Psi_1, u \cdot (\Psi \Box \Phi))$ (by Lemma 2(d)) = $u(a)(\Psi_1 \Box \Psi, \Phi)$ (by Lemma 1). Hence, again by Lemma 1, $\Psi_1 \Box \Psi \in \operatorname{TI}_{\mathbf{P}}(a)$. Now $\Psi \Box \Psi_1 = (\Psi, \lambda \delta_a) \Psi_1$ by Lemma 2(b). Thus $I_a \Box \operatorname{TI}_{\mathbf{P}}(a) = 0$.

(b) Since I_a and $\text{TI}_{\mathbf{P}}(a)$ are w^* -closed two-sided ideals, $\text{TI}_{\mathbf{P}}^0(a)$ is such and even $I_a \Box \text{TI}_{\mathbf{P}}(a) = \{0\}$. If $\Psi_1 \neq \Psi_2$ are in $\text{TIM}_{\mathbf{P}}(a)$ then $0 \neq \Psi_1 - \Psi_2 \in I_a \cap \text{TI}_{\mathbf{P}}(a) = \text{TI}_{\mathbf{P}}^0(a)$.

(c) If $\Psi \in \text{TI}_{\mathbf{P}}(a) \cap \text{TI}_{\mathbf{P}}(b)$ then $(\Psi, u \cdot \Phi) = u(a)(\Psi, \Phi) = u(b)(\Psi, \Phi)$ for $u \in A_p/J$, $\Phi \in \mathbf{P}$. If we choose $u \in A_p/J$ with u(a) = 0, $u(b) \neq 0$, we get $(\Psi, \Phi) = 0$; thus $\Psi = 0$.

THEOREM 4. (a) If $\Psi_0 \in \text{TIM}_{\mathbf{P}}(a)$ then $\Psi \to \Psi_0 \Box \Psi$ is a projection operator from \mathbf{P}^* onto the two-sided ideal $\text{TI}_{\mathbf{P}}(a)$. Thus $\mathbf{P}^* = \text{TI}_{\mathbf{P}}(a) \oplus \{\Psi - \Psi_0 \Box \Psi : \Psi \in \mathbf{P}^*\}$. (b) If card $\text{TIM}_{\mathbf{P}}(a) \ge 2$ then $\text{TI}_{\mathbf{P}}(a)$ has no (even unbounded) right approximate identity, and is hence a non-amenable w^{*}-closed ideal of \mathbf{P}^* .

(c) If card $\text{TIM}_{\mathbf{P}}(a) \ge 2$ for some $a \in F$ then \mathbf{P}^* is a non-amenable non-semisimple Banach algebra.

PROOF. (a) Let $Q(\Psi) = \Psi_0 \Box \Psi$. If $\Psi \in \text{TI}_{\mathbf{P}}(a)$ then $Q(\Psi) = (\Psi_0, \lambda \delta_a) \Psi = \Psi$ by Lemma 2(b). For any $\Psi \in \mathbf{P}^*$, $Q^2(\Psi) = \Psi_0 \Box (\Psi_0 \Box \Psi) = \Psi_0 \Box \Psi = Q(\Psi)$ since $\Psi_0 \Box \Psi \in \text{TI}_{\mathbf{P}}(a)$ by Proposition 3(a).

If now $Q\Psi = \Psi$ then $\Psi_0 \Box \Psi = \Psi$ hence $\Psi \in \text{TI}_{\mathbf{P}}(a)$ by Proposition 3(a). Thus $P^* = QP^* \oplus (I - Q)P^* = \text{TI}_{\mathbf{P}}(a) \oplus \{\Psi - \Psi_0 \Box \Psi : \Psi \in P^*\}$ where $I : P^* \to P^*$ is the identity.

(b) Let $\Psi_{\alpha} \subset \text{TI}_{\mathbf{P}}(a)$ be a right approximate identity. Let $\Psi_1 \neq \Psi_2$ be in $\text{TIM}_{\mathbf{P}}(a)$. Thus $\Psi_1 - \Psi_2 \in I_a$. Hence, by Proposition 3(a), $(\Psi_1 - \Psi_2) \Box \Psi_{\alpha} = 0$. But $\Psi_1 \leftarrow \Psi_1 \Box \Psi_{\alpha} = \Psi_2 \Box \Psi_{\alpha} \rightarrow \Psi_2$ which cannot be.

(c) If $\Psi_1 \neq \Psi_2$ are in $\text{TIM}_{\mathbf{P}}(a)$ then $0 \neq \Psi_1 - \Psi_2 \in \text{TI}^0_{\mathbf{P}}(a)$ and $\text{TI}^0_{\mathbf{P}}(a) \Box \text{TI}^0_{\mathbf{P}}(a) = \{0\}$. Hence $\{0\} \neq \text{TI}^0_{\mathbf{P}}(a) \subset \text{rad } \mathbf{P}^*$ and \mathbf{P}^* is not semisimple.

If now P^* is an amenable Banach algebra then $\text{TI}_P(a)$ is a w^* - (hence norm-) closed two-sided ideal which is complemented in P^* ; hence $\text{TI}_P(a)^{\perp}$ is complemented in P^{**} . But then by Khelemskii's Theorem (see [CL, p. 97, Thm 3.7]) $\text{TI}_P(a)$ has a bounded approximate identity, which cannot be the case by (b).

REMARK. Note that if $\Psi_0 \in \text{TIM}_{\mathbf{P}}(a)$ then $\{\Psi - \Psi_0 : \Psi \in \text{TIM}_{\mathbf{P}}(a)\} \subset \text{TI}^0_{\mathbf{P}}(a) \subset \text{rad } \mathbf{P}^*$.

We recall now some results of ours in the next theorem. The set $D_1(J) \subset F$ was defined in [Gr3] by: $a \in D_1(J)$ if there exists a sequence $u_n \in A_p$ with compact supports such that (i) $1 = u_n(a) = ||u_n||$, (ii) $\{F \cap \text{supp } u_n\}$ is a neighborhood base in F at a, and (iii) there is some d > 0 such that $||\sum_{i=1}^{n} \alpha_k u'_k|| \ge d \sum_{i=1}^{n} |\alpha_k|$, for all n and $\alpha_k \in C$, where $u'_k = u_k + J \in A_p/J$. Note that (iii) can be replaced by: (iii)' $\{u'_k\}$ has no weak Cauchy subsequence (by Rosenthal's Theorem).

THEOREM 5. Let G be a locally compact group, J a closed ideal of $A_p(G)$, 1 , with <math>Z(J) = F, $a, b \in G$ and $P = (A_p(G)/J)^*$.

(i) If $D_1(J) \neq \emptyset$ and $x \in D_1(J)$ then card $\text{TIM}_{\mathbf{P}}(x) \ge 2^c$.

(ii) If for some non-discrete closed subgroup H of G, $\operatorname{int}_{aHb} F \neq \emptyset$, then $\operatorname{card} \operatorname{TIM}_{\mathbf{P}}(x) \geq 2^c$ for all $x \in \operatorname{int}_{aHb} F$.

(iii) If R is a closed subgroup of G, $S \subset R$ is a symmetric set (such as the Cantor 1/3 set) and $aSb \subset F$, then card $\text{TIM}_{\mathbf{P}}(x) \geq 2^c$ for all $x \in aSb$, provided p = 2.

For (i) see [Gr3, Theorem 4] and for (ii), (iii) see [Gr4, Theorems 6, 7].

THEOREM 6. Let G be a locally compact group, $J \subset A_p$ a closed ideal with Z(J) = F, $a, b \in G$, $1 . Assume that (i) or (ii) [or (iii)] of the above theorem holds. Then <math>(A_p/J)^{**}$ [$(A/J)^{**}$] is a non-amenable and non-semisimple Banach algebra.

PROOF. By Proposition 3, Theorem 4, and Theorem 5.

REMARKS. (a) In fact (the w^* -closed two-sided ideal) $\operatorname{Tl}^0_{\mathbf{P}}(x) \subset \operatorname{rad} \mathbf{P}^*$ (since $\operatorname{Tl}^0_{\mathbf{P}}(x) \Box \operatorname{Tl}^0_{\mathbf{P}}(x) = \{0\}$) and card $\operatorname{Tl}^0_{\mathbf{P}}(x) \geq 2^c$. In cases (ii) or (iii) there are at least c such ideals, by Proposition 3(c).

(b) In case (ii) [(iii)] $A_p(F)^{**}$ [$A(F)^{**}$] is not amenable.

(c) Theorem 6 says nothing about the amenability of the algebras A/J or A(F). For example, if G is abelian then A(G) is amenable, hence so are all the quotient algebras A/J [or A(F)] for any closed ideal $J \subset A(G)$ [set $F \subset G$]. Yet for sets $F \subset G$ as in Theorem 6, $A(F)^{**}$ and $(A/J)^{**}$ are not amenable.

The following is folklore.

PROPOSITION 7. Let $J_1 \subset J_2$ be closed ideals in A_p with $F_i = Z(J_i)$; thus $F_2 \subset F_1$. If $(A_p/J_2)^{**}[A_p(F_2)^{**}]$ is not amenable, then $(A_p/J_1)^{**}[A_p(F_1)^{**}]$ is not amenable.

PROOF. Let $q : A_p/J_1 \to A_p/J_2$ be the canonical quotient onto map. Then $q^{**} : (A_p/J_1)^{**} \to (A_p/J_2)^{**}$ is a homomorphism whose image *B* contains A_p/J_2 (considered as embedded in $(A_p/J_2)^{**}$). But by [Ru2, 4.14] *B* has to be w^* -closed.

Hence q^{**} is an onto continuous homomorphism and amenability is preserved by such ([CL]: see Lemma 1.1 in [LL]).

COROLLARY 8. (a) If G is non-discrete then $A_p(G)^{**}$ is not amenable and not semisimple.

(b) For any locally compact group G, $A(G)^{**}$ [or $B(G)^{**}$] is amenable if and only if G is finite.

PROOF. (a) Take H = G = F in Theorem 6(b). By Lau's result [La, Proposition 3.2(b)], if $A(G)^{**}$ is amenable then G is compact and by (a) it has to be discrete. Assume now that $B(G)^{**}$ is amenable. Since A(G) is a complemented ideal in B(G), $A(G)^{**}$ is a complemented ideal in $B(G)^{**}$. Thus by [CL], $A(G)^{**}$ is amenable; hence G is finite.

PROPOSITION 9. Let A(G) be amenable. Then $A_p(G)/J$ is amenable for all $1 and for all closed ideals <math>J \subset A_p(G)$.

PROOF. G is necessarily amenable; hence, by Herz's Theorem C in [Hz2], $A_2(G) \subset A_p(G)$ for all $1 , with contraction of norms. Thus the identity embedding <math>h : A_2 \to A_p$ is a homomorphism such that $||h|| \le 1$. But hA_2 contains the functions $f * \tilde{g}$ with $f, g \in C_c(G)$, the linear span of which is norm dense in A_p (see [Hz1]). Thus hA_2 is norm dense in A_p . By a theorem of Johnson ([Jo1, (5.3)]) $A_p = A_p(G)$, hence A_p/J is an amenable Banach algebra.

REMARKS. (a) Proposition 9 improves Theorem 3.10 of [Fo1].

(b) Corollary 8(b) is the dual result to Theorem 1.3 and Corollary 1.4 of [GLW].

(c) It has been proved by Gourdeau [Go] that for any Banach algebra B the amenability of B^{**} implies that of B (see also [GLW]). Thus $A(G)^{**}$ amenable implies that A(G) is so. It has been proved by Johnson in [Jo2] that there exist compact groups for which A(G) is not amenable. If, however, G is infinite and contains an abelian subgroup of finite index then A(G), hence $A_p(G)$, is amenable (see [LLW, Corollary 4.2] and [Fo2]), yet $A(G)^{**}$ is not amenable by Corollary 8(b).

(d) It has been proved by Brown and Moran [BM] that if G is a non-compact abelian locally compact group then B(G), hence $B(G)^{**}$, is not amenable. If G is compact abelian infinite then A(G) = B(G) is amenable yet $A(G)^{**} = B(G)^{**}$ is not amenable by, say, our Corollary 8.

(e) If G is abelian, every perfect compact set F contains a perfect Helson set $E \subset F$ by Varopoulos [V, Ch. 4.3]. Taking $F \subset R = G$ to be the Cantor 1/3 (or any symmetric) set and $E \subset F$ a Helson set we get that $A(E)^{**}$ is amenable while $A(F)^{**}$ is not.

(f) There exist continuous [smooth] curves E in \mathbb{R}^2 [in \mathbb{R}^n , $n \ge 3$] which are Helson sets as shown by Kahane; see [Mc]. Thus if $G = \mathbb{R}^n$ then $A(E)^{**}$, and hence $A(E_1)^{**}$ for all closed $E_1 \subset E$, is an amenable Banach algebra.

(g) Let G be infinite discrete and abelian. Then any infinite set $F \subset G$ contains an infinite Sidon set E; thus $A(E) = c_0(E)$ ([Ru1, (5.7.3) (5.7.6)]). Hence $A(E)^{**} = C(X)$ (for some compact X) is amenable. Yet $A(F)^{**}$ need not be amenable (take F = G and use our Corollary 8(b)).

QUESTIONS. (1) Characterize the closed sets $E \subset \mathbb{R}^n$ for which $A(E)^{**}$ is an amenable Banach algebra.

(2) Let $G = \mathbb{Z}$, the integers, or $G = \mathbb{Z}^n$. Characterize all infinite sets $F \subset G$ for which $A(F)^{**}$ is amenable.

(3) The only examples of sets $E \subset G$ for which $A(E)^{**}$ is amenable, given here, are Helson sets or Sidon sets. Do other such exist?

References

- [BM] G. Brown and W. Moran, 'Point derivations in M(G)', Bull. London Math. Soc. 8 (1976), 57–64.
 [CL] P. C. Curtis Jr. and R. J. Loy, 'The structure of amenable Banach algebras', J. London Math. Soc. 40 (1989), 89–104.
- [DH] J. Duncan and S. A. R. Hosseinium, 'The second dual of a Banach algebra', Proc. Royal Soc. Edinburgh Sect. A 84 (1979), 309–325.
- [Ey] P. Eymard, 'L'algèbre de Fourier d'un groupe localement compact', Bull. Soc. Math. France 92 (1964), 181–236.
- [Fo1] B. Forrest, 'Amenability and the structure of the algebras $A_p(G)$ ', *Trans. Amer. Math. Soc.* **343** (1994), 233–243.
- [Fo2] _____, 'Amenability and weak amenability of the Fourier algebra', preprint.
- [Go] F. Gourdeau, Amenability of Banach algebras (Ph. D. Thesis, Cambridge University, 1989).
- [Gr1] E. Granirer, 'On some spaces of linear functionals on the algebras $A_p(G)$ for locally compact groups', *Colloq. Math.* **52** (1987), 119–132.
- [Gr2] ———, 'On convolution operators with small support which are far from being convolution by a bounded measure', *Colloq. Math.* **67** (1994), 33–60.
- [Gr3] _____, 'Day points for quotients of the Fourier algebra A(G), extreme nonergodicity of their duals and extreme non Arens regularity', *Illinois J. Math.* 40 (1996), 402–419.
- [Gr4] ——, 'On the set of topologically invariant means on an algebra of convolution operators on $L^{p}(G)$ ', *Proc. Amer. Math. Soc.* **124** (1996), 3399–3406.
- [GLW] F. Ghahramani, R. J. Loy and G. A. Willis, 'Amenability and weak amenability of second conjugate Banach algebras', Proc. Amer. Math. Soc. 124 (1996), 1489–1497.
- [GMc] C. C. Graham and O. C. McGehee, Essays in commutative harmonic analysis (Springer, New York, 1979).
- [Hz1] C. Herz, 'Harmonic synthesis for subgroups', Ann. Inst. Fourier (Grenoble) 37 (1973), 91–123.

296	Edmond E. Granirer	[8]
[Hz2]	, 'The theory of <i>p</i> -spaces with an application to convolution operators', <i>Trans. Am Math. Soc.</i> 154 (1971), 69–82.	er.
[Jo1]	B. E. Johnson, 'Cohomology in Banach algebras', <i>Mem. Amer. Math. Soc.</i> 127 (Amer. Mar Soc., Providence, 1972).	th.
[Jo2]	, 'Weak amenability of group algebras', Bull. London Math. Soc. 23 (1991), 281-28	34.
[La]	A. TM. Lau, 'The second conjugate algebra of the Fourier algebra of a locally compa- group', <i>Trans. Amer. Math. Soc.</i> 267 (1981), 53–63.	ict
[LL]	A. TM. Lau and R. J. Loy, 'Amenability of convolution algebras', Math. Scand., to appe	ar.
[LLW]	A. TM. Lau, R. J. Loy and G. A. Willis, 'Amenability of Banach and C*algebras on local compact groups', <i>Studia Math.</i> 119 (1996), 161–178.	lly
[Mc]	O. C. McGehee, 'Helson sets in T ⁿ ', in: Conference in Harmonic Analysis, College Pa Maryland 1971, Lecture Notes in Math. 266 (Springer, Berlin, 1979) pp. 229–237.	ırk
[Ru1]	W. Rudin, Fourier analysis on groups (Interscience, New York, 1960).	
[Ru2]	, Functional analysis (McGraw-Hill, New York, 1973).	
[V]	N. Th. Varopoulos, 'Tensor algebras and harmonic analysis', Acta Math. 119 (1967), 51-11	2.
Departm	ent of Mathematics	
University of British Columbia		

Vancouver V6T 1Z2

Canada

e-mail: granirer@math.ubc.ca