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MECHANIZING NONSTANDARD REAL ANALYSIS

JACQUES D. FLEURIOT and LAWRENCE C. PAULSON

Abstract

This paper first describes the construction and use of the hyperre-
als in the theorem-prover Isabelle within the framework of higher-
order logic (HOL). The theory, which includes infinitesimals and
infinite numbers, is based on the hyperreal number system devel-
oped by Abraham Robinson in his nonstandard analysis (NSA). The
construction of the hyperreal number system has been carried out
strictly through the use of definitions to ensure that the foundations
of NSA in Isabelle are sound. Mechanizing the construction has re-
quired that various number systems including the rationals and the
reals be built up first. Moreover, to construct the hyperreals from the
reals has required developing a theory of filters and ultrafilters and
proving Zorn’s lemma, an equivalent form of the axiom of choice.

This paper also describes the use of the new types of numbers and
new relations on them to formalize familiar concepts from analysis.
The current work provides both standard and nonstandard defini-
tions for the various notions, and proves their equivalence in each
case. To achieve this aim, systematic methods, through which sets
and functions are extended to the hyperreals, are developed in the
framework. The merits of the nonstandard approach with respect to
the practice of analysis and mechanical theorem-proving are high-
lighted throughout the exposition.

1. Introduction

In the early 1960’s, Abraham Robinson finally provided a rigorous foundation for the use
of infinitesimals in analysis by developing the new concept ofnonstandard analysis(NSA)
[29]. The idea was to introduce a new number system known as thehyperreals, which
contains not only the real numbers but also infinitesimals and infinite numbers. The notions
of infinitesimals and other nonstandard numbers introduce many subtleties into the theory
that need to be dealt with.

In this paper, we first describe the constructions of Robinson’s hyperreals in Isabelle. Our
approach is purely definitional, to ensure that infinitesimals and other nonstandard numbers
have a sound foundation in the system. To reach our goal has required constructing the
various number systems leading to the reals, and then going one step further to define the
hyperreals by working on sequences of reals. The hyperreals have considerable intrinsic
interest since they exhibit many new properties. Moreover, as a tool, they are of great value
to the formalization of analysis — an aspect that will be described as we report on the
mechanization of nonstandard real analysis.
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Mechanizing NSA in Isabelle

This paper consists of two main parts: Sections2–8are concerned with the construction
of the hyperreals, while Sections9–16describe their application to mechanized analysis.
We start by giving a description of Isabelle, and of the HOL object logic in which this work
was carried out.

2. Isabelle/HOL

Isabelle [25] is a generic theorem-prover, written in ML, into which users can encode
their own object-level logics. Examples of such object logics are higher-order logic (HOL),
Zermelo–Fraenkel set theory (ZF), and first-order logic (FOL). Terms from the object logics
are represented and manipulated in Isabelle’s intuitionistic higher-order meta-logic, which
supports polymorphic typing.

2.1. Theories in Isabelle

Isabelle’s theories provide a hierarchical organization for the syntax, declarations and
axioms of a mathematical development, and are developed using theory definition files [25].
A typical theory file will organize the definitions of types and functions. It may also contain
the primitive axioms that are asserted (without proofs) by the user. A particular theory will
usually collect (in a separate file) the proven named theorems, and make them available to
all its children theories.

The meta-level connectives are implication (H⇒), the universal quantifier and equal-
ity. In Figure 1, we give the description of some of the notations used in Isabelle/HOL.
Throughout the presentation, we will mostly be using conventional mathematical notations
when describing our development. However, there are cases where we might use the ASCII
notations actually used to express terms and rules in Isabelle as explicit examples.

An inference rule withn premises or antecedents has the following form in Isabelle:

[|φ1; . . . ;φn|] H⇒ ψ.

This abbreviates the nested implicationφ1 H⇒ (. . . φn H⇒ ψ . . . ). Such a rule can also
be viewed as the proof state with subgoalsφ1, . . . , φn and maingoalψ [25]. Alternatively,
this can be viewed as meaning ‘ifφ1 ∧ · · · ∧ φn thenψ ’.

2.2. Proof construction

Rules can be combined in various ways to derive new ones using higher-order resolution;
this process is known as ‘proof construction’, and can proceed in both backward and forward
directions.

• In backward fashion, the user supplies a goal and reduces it to simpler subgoals by
applying existing rules until they are solved. A goal is solved when it becomes the
instance of some previously proved theorem.

• In forward proofs, the antecedents or assumptions of a rule can be resolved with
other rules to derive new assumptions. This process can be carried on until either the
conclusion is the instance of some assumption, or the goal is an instance of a theorem.

2.3. Higher-order logic in Isabelle

One of Isabelle’s logics is HOL, a higher-order logic that supports polymorphism and
type constructors. Isabelle/HOL is based on Gordon’s HOL90 theorem-prover [12], which
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syntax description
& ∧, and
˜ ¬, not
==> H⇒, implication (meta level)
--> −→, implication (object level)
= ≡, if and only if
! or ALL ∀, for all
? or EX ∃, exists
@ ε, Hilbert choice
% λ, lambda abstraction
- A A, set complement
Union c

⋃
c, union over sets of sets

Figure 1:ASCII notation for HOL.

itself originates from Church’s paper [7]. Isabelle/HOL is well developed and widely used.
It has a wide library of theories defined in it, including the natural numbers, set theory,
well-founded recursion, inductive definitions and equivalence relations. Isabelle/HOL has
been applied to reasoning in many fields, including the verification of security protocols
[26] and verifying the type system of the Java programming language [24].

Though Isabelle is mainly used interactively as a proof assistant, it also provides sub-
stantial support for automation. It has a generic simplification package, which is set up
for many of the logics, including HOL. Isabelle’s simplifier performs conditional and un-
conditional rewritings and makes use of context information [25]. The user is free to add
new rules to the simplification set (thesimpset), either permanently or temporarily. Isabelle
also provides a number of generic automatic tactics that can execute proof procedures in
the various logics. The automatic tactics provided by Isabelle’sclassical reasonerinclude
a fast tableau prover calledBlast_tac, coded directly in ML, and Auto_tac, which
attempts to prove all subgoals by a combination of simplification and classical reasoning.
Other powerful theorem-proving tactics include those which, unlikeBlast_tac, con-
struct proofs directly in Isabelle: for example,Fast_tac implements a depth-first search
automatic tactic.

2.3.1. The HOL methodology
Isabelle/HOL has been chosen as the logic in which to carry out our proofs. One of the main
reasons is that it provides strong typing, and therefore ensures that only type correct terms
are accepted. Moreover, the HOL methodology, an approach that originated in Gordon’s
early work using HOL88, admits only conservative extensions to a theory. This means
defining and deriving the required mathematical notions rather than postulating them. The
definitional approach of HOL requires that assertions be proved about some model instead
of being postulated. Such a rigorous definitional extension guarantees consistency, which
cannot be ensured when axioms are introduced. As pointed out by Harrison [14], such an
approach provides a simple logical basis that can be seen to be correct once and for all. With
regard to the foundations of infinitesimals, the definitional approach is certainly advisable
when one considers the numerous inconsistent axiomatizations that have been proposed in
the past [9]. Of course, care still needs to be exercised, as a wrong definition will almost
certainly yield the wrong properties.
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3. Properties of an infinitesimal calculus

We first look at some of the requirements for a set of infinitesimals that could be useful
for the development of an infinitesimal calculus. Keisler [20] and Vesley [33], for example,
discuss the various properties that need to hold for developing a calculus for the infinitesi-
mals. Let the setInfinitesimal denote the set of infinitesimals, where an infinitesimal
can, for the time being, be viewed intuitively as a number smaller in magnitude than all
positive reals.

We would like the following properties.

1) Zero is anInfinitesimal.

2) There is a nonzero infinitesimal.

3) Infinitesimal is a ring.

It might seem reasonable to want the following properties as well.

4) Infinitesimal is a subring of the real numbersR .

5) Infinitesimal is an ideal inR :

∀r ∈ R ∀x ∈ Infinitesimal rx ∈ Infinitesimal.

6) Also, we expectInfinitesimal to be non-Archimedean:

∃x ∈ Infinitesimal. ∀n. nx < 1.

The above properties, (1)–(6), look sufficient for a simple theory of infinitesimals, but un-
fortunately such a theory would be inconsistent. Furthermore, as Vesley [33] notes, ifR is the
set of classical reals, thenany nontrivial ideal inR is equal toR. Thus, ifInfinitesimal
satisfies properties (2), (4) and (5) thenInfinitesimal = R. This problem is tackled
in NSA by dispensing with property (4). Instead, using the axioms of classical set theory,
a setR∗ of hyperreals is obtained with properties that includeInfinitesimal ⊆ R∗,
R ⊆ R∗ and properties (1)–(3) and (6), butnot Infinitesimal ⊆ R, and therefore not
property (4). As a result, property (5) now requiresInfinitesimal to be an ideal in
the set of finite members ofR∗. This set includes the reals and the infinitesimals, amongst
other numbers.

Though an axiomatic approach seems the easiest way to get quickly to the infinitesimals,
there is always the possibility that the set of axioms might lead to an inconsistency, as we
saw above. We would rather have a development of infinitesimals that is guaranteed to be
sound — especially, given the stormy history of infinitesimals.

4. Constructions leading to the reals

There are various classical methods in existence in the literature on the construction of
the various number systems. The usual approach is to arrange them in a lattice respecting
the inclusions between the sets. LetZ, Q, R be the sets of integers, rationals, and reals
respectively, andZ+, Q+, R+ be their positive elements. Note thatZ+ is the set of elements
of typepnat.
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As can be seen in the figure, there are several ways to reachR from Z+. These vari-
ous paths, however, differ greatly in the technical details of the constructions along them.
Conway [8] suggests that there is a best way through the lattice to the reals that avoids,
as much as possible, case splits. These are tedious and unnecessary complications that are
often treated superficially in textbooks. Conway proposes the following general methods
that we implement in Isabelle.

To add negative numbers, that is to proceed, for example, fromR+ to R, the signed
number,x ∈ R+, is represented as an ordered pair of unsigned numbers(a, b), meaning
a − b, and the equivalence relation

(a, b) ∼ (c, d) ⇐⇒ a + d = b + c (1)

is used. This is better than the obvious approach of the signed-magnitude representation,
which leads to too much case-splitting.

Similarly, one can go fromZ to Q or from Z+ to Q+ by taking ordered pairs(a, b)
meaninga/b and the equivalence relation

(a, b) ∼ (c, d) ⇐⇒ a · d = b · c. (2)

To proceed fromQ to R or fromQ+ to R+, the method ofDedekind cutsis used. There
are several other methods available, such as Cauchy sequences and positional expansions
[14]. The best path, as suggested by Conway, isZ+ −→ Q+ −→ R+ −→ R.

4.1. Equivalence relations in Isabelle/HOL

We use Isabelle’sEquiv theory, which defines equivalence relations in higher-order
set theory, to define the new type of positive rationals. First, we recall the definitions of
equivalence relations, set quotients and equivalence classes:

Definition 4.1. A relation∼ is said to be anequivalence relationif and only if it is reflexive
(x ∼ x), symmetric (x∼ y H⇒ y ∼ x), and transitive (x∼ y ∧ y ∼ z H⇒ x ∼ z).

Definition 4.2. Given an equivalence relation∼ on a setS, then thequotientof S with
respect to∼ is the set of all equivalence classes, and is defined byS/∼ ≡ {[x] | x ∈ S}
where[x] ≡ {y ∈ S | x ∼ y}.

The set of all equivalence classesS/∼ is called thequotient set of S by∼, and a member
of an equivalence class is often referred to as arepresentativeof the class.
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PRAT = PNAT + Equiv +

constdefs
(* equivalence relation *)
pratrel :: "((pnat * pnat) * (pnat * pnat)) set"
"pratrel ≡ {p. ∃ a b c d. p = ((a,b),(c,d)) ∧ a*d = b*c}"

typedef
prat =

"{x::(pnat*pnat). True}/pratrel" (Equiv.quotient_def)

instance
prat :: {ord, plus, times}

constdefs
prat_of_pnat :: pnat ⇒ prat
"prat_of_pnat m ≡ Abs_prat(pratrelˆˆ{(m,Abs_pnat 1)})"

qinv :: prat ⇒ prat
"qinv Q ≡ Abs_prat(

⋃
(x,y)∈Rep_prat(Q). pratrelˆˆ{(y,x)})"

defs
prat_add_def
"P + Q ≡ Abs_prat(

⋃
(a,b)∈Rep_prat(P).

⋃
(c,d)∈Rep_prat(Q).

pratrelˆˆ{(a*d + b*c, b*d)})"

. . .

prat_less_def
"P < (Q::prat) ≡ ∃T. P + T = Q"

end

Figure 2:Isabelle/HOL theory for rationals using equivalence classes.

4.2. Example: constructingQ+ fromZ+

In this section, we illustrate, by means of an example, how a new type can be introduced
in Isabelle as the quotient set of some equivalence relation. We also show how primitive
functions are defined on the new type usingabstractionandrepresentationfunctions. Other
operations derived from the primitive functions are also introduced.

The theoryPRAT, shown in Figure2and developed on our way to the reals (and beyond),
defines the typeprat of positive rational numbers and its associated operations. The new
type is defined on pairs of elements ofpnat, which denotes the positive natural numbers,
introduced as an explicit type in Isabelle.

Under theconstdefs keyword, we declare and define the equivalence relation (2)
specified at the beginning of Section4 above, that enables us to proceed fromZ+ to Q+ in
the lattice:

pratrel ≡ {p. ∃a b c d. p = ((a, b), (c, d)) ∧ a · d = b · c}.
Usingtypedef, we declare the new typeprat:

prat ≡ {x.True}/pratrel (Equiv.quotient_def).

The representing set of elements is defined as the set of equivalence classes of fractions;
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that is, the set of equivalence classes consisting of ordered pairs of positive natural numbers.
The theoremquotient_def (from the theoryEquiv) acts as a witness to prove the non-
emptiness of the new type, and is given in brackets next to the new type. Non-emptiness
needs to be proved to ensure that the quantifier rules of HOL are sound [27], otherwise the
new type is rejected.

Once a new type has been successfully introduced, Isabelle provides coercion functions
— the abstraction and representation functions — that enable us to define basic operations
on the new type. Thus, in this particular example, the functions

Abs_prat :: (pnat ∗ pnat) set ⇒ prat
Rep_prat :: prat ⇒ (pnat ∗ pnat) set

are added to the theory such thatprat is isomorphic to

{x.True}/pratrel

by Rep_hyprat and its inverseAbs_prat. Using these functions and other operations
from Isabelle’sSet andEquiv theories, we are now ready to define operations on the
positive rationals. For example, the inverse functionqinv, which swaps the elements of
the ordered pairs(x, y) representingx/y around to givey/x, is constructed in Isabelle by:

qinv Q ≡ Abs_prat (
⋃
(x, y) ∈ Rep_prat (Q).pratrel ˆ ˆ {(y, x)})

where⋃
x ∈ A.B[x] ≡ {y. ∃x ∈ A. y ∈ B} (union of family of sets);

rˆ ˆs ≡ {y. ∃x ∈ s. (x, y) ∈ r} (image of sets under relationr).

Once the primitive operations such as addition and multiplication have been defined, we
can use them to derive other operations such as the ordering relation:

P < Q ≡ ∃T . P + T = Q.

We then show that the operations on the new type respect the various field properties, and
that we have indeed defined the densely ordered (but not Dedekind-complete) field of the
positive rationals.

As a final remark, it is worth noting that the use of equivalence classes leads to simpler
machine proofs than using notions of greatest common divisors (gcd) to choose unique
representatives.

4.3. A few important theorems

In this section, some of the more important theorems that we proved during our con-
structions leading up to the reals are given. We are especially concerned with those that will
be needed to establish properties of hyperreals and nonstandard real analysis later on.

Theorem 4.1 (Completeness of the reals).Thesupremum propertystates that every non-
empty set of realsX that has an upper bound has a least upper bound:

∀X. (∃x. x ∈ X) ∧ (∃U. ∀x ∈ X. x 6 U)

H⇒ ∃u. (∀x ∈ X. x 6 u) ∧ ∀u′. (∀x ∈ X. x 6 u′) H⇒ u 6 u′.

This simple result has far-reaching implications since it rules out the existence of in-
finitely small quantities or infinitesimals inR.
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Theorem 4.2 (The Archimedean property for the reals).Any such infinitesimal inRwould
mean that its reciprocal is an upper bound ofN in R, thereby contradicting the Archimedean
property:

∀x. ∃n. x < n.

Various mechanizations of standard analysis (see, for example, Harrison’s work using
the HOL-Light system[13,14]) have developed theories of limits, derivatives, continuity
of functions and so on, taking as their foundations the real numbers. Our work, however,
will now go one step further, and show how the reals can be used to build a richer number
system.

5. Filters and ultrafilters

In this section, the preliminaries necessary to our construction are presented. The defini-
tions and theorems that we need, and their formalization in the set theory of Isabelle/HOL,
are reviewed. Our aim is to establish an equivalence relation on the set of all infinite se-
quences of reals, and use the system of equivalence classes as a model forR∗. We start with
the concept of a filter.

Definition 5.1. Let S be any non-empty set. Afilter F overS is a collection of subsets of
S such that

F1) S ∈ F ∧ ∅ 6∈ F ;

F2) X ∈ F ∧ Y ∈ F H⇒ X ∩ Y ∈ F ;

F3) X ∈ F ∧X ⊆ Y ⊆ S H⇒ Y ∈ F .

Every filter is anonemptycollection of subsets sinceS ∈ F , and filters are closed under
finite intersection and supersets. There are numerous examples of filters including thetrivial
filter {S} and, ifS is infinite, theFréchetorcofinitefilter {X. finite (S−X)}. In Isabelle,
we develop a theoryFilter, and formalize the notions described above as follows:

Filters S ≡ {X. F ⊆ PowS ∧ S ∈ F ∧
(∀X ∈ F. ∀Y ∈ F. X ∩ Y ∈ F) ∧
(∀X Y. X ∈ F ∧ Y ⊆ S −→ Y ∈ F)}.

We note in the above definition the occurrence ofFilters S, which is defined to be the set
of all filters overS. We adopt this general approach of defining sets of the various structures
that are dealt with for clarity; this is possible since in Isabelle/HOL’s set theory the type
α set is isomorphic to the typeα ⇒ bool [25].

Let us mention some of the terminology often encountered when filters and related
concepts are used. A setX ⊆ S is sometimes said to belarge [30] or quasi-big[15] if
X ∈ F . Other terms used includeresidualor genericwhen dealing with directed sets or
Baire category theory. Moreover, and of relevance to our development, a conditionP on
pointsx ∈ S is said to be satisfiedalmost everywhere(a.e.) oralmost always, or is F-true
or almost true, if the set{x ∈ S. P is satisfied atx} is a member ofF .

A refinement of the concept of a filter is now introduced by defining the notion of an
ultrafilter over the nonempty setS.

Definition 5.2. An ultrafilter U overS is a filter overS such that

U1) U ⊆ F ∧ F ∈ Filters S H⇒ U = F .
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An ultrafilter is thus amaximalfilter; that is, a filter that cannot be enlarged. An ultrafilter
(and hence a filter) is said to befreeif and only if it does not contain any finite sets. A filter
which is not free is said to befixed. We are mainly interested in free ultrafilters. The
definitions used in Isabelle’sFilter theory follow:

Ultrafilters S ≡ {X. X ∈ Filters S ∧
∀G ∈ Filters S. X ⊆ G −→ X = G};

FreeUltrafilters S ≡ {X. X ∈ Ultrafilters S ∧
∀x ∈ X. ¬finite x}.

We proceed to prove various properties of filters, ultrafilters and so on from these definitions.
These include a theorem about ultrafilters that reads as follows.

Theorem 5.1. U is an ultrafilter onS if and only if for any subsetA of S, eitherA belongs
to U or else its complementS − A belongs toU, but not both:

U ∈ Ultrafilters S ⇐⇒ (U ∈ Filters (S)∧∀A ∈ PowS.A ∈ U∨S−A ∈ U).

The content of this theorem is critically important to our development, and an outline of
its proof in Isabelle is given below.

Proof. Suppose thatU is a filter such that for everyA ⊆ S eitherA ∈ U or S − A ∈ U.
LetG be asuperfilterof U; that is, a filter such thatU ⊆ G, and suppose thatB ∈ G and
B 6∈ U. But then, from our initial assumption, it follows thatS − B ∈ U ⊆ G, and so
∅ = B ∩ (S−B) ∈ G which contradicts property (F1) for a filter. Hence there is no proper
filter includingG, and soU is an ultrafilter.

Conversely, suppose thatU is an ultrafilter andA 6∈ U. Define a setG ≡ {X ⊆ S. ∃J ∈
U. A ∩ J ⊆ X}. ThenU ⊆ G andU 6= G sinceA ∈ G, and soG cannot be a filter
since by assumptionU is maximal. ButG is not empty, and ifB,C ∈ G andB ⊆ D then
B ∩ C ∈ G andD ∈ G (verifying conditions (F2) and (F3) for G to be a filter). Since
S ∈ G,G can fail to be a filter only if∅ ∈ G. That is, we haveA∩ J = ∅ for someJ ∈ U
for which we must then haveJ ⊆ (S − A). It follows thatS − A ∈ U.

From this result, it can be seen, using the axiom of choice, that the Fréchet filter on an
infinite setS is not an ultrafilter, though it follows that it is free. What is needed to progress
any further in the development is to show the existence of a free ultrafilter on any infinite
set — this result is a corollary of the importantultrafilter theorem[16,30]. Using the result
above, we can see that for an ultrafilterU to be free, every cofinite subset ofS, and hence
the Fréchet filter, has to be contained inU. This result will be useful to us in Section5.2but
first, we give an overview of our proof ofZorn’s lemmaand how we appeal to it to guarantee
the existence of an ultrafilter. We then extend this result, and show that the ultrafilter can
be free as well.

5.1. Zorn’s lemma

The existence of free ultrafilters is not obvious at first sight. To show that the ultrafilter
theorem holds and to carry out our construction, we need Zorn’s lemma. This is an equivalent
form of the axiom of choice (AC), and first needs to be proved in Isabelle/HOL.

Lemma 5.1 (Zorn’s lemma). LetS be a nonempty set of sets such that each chainc ⊆ S

has anupper boundin S. ThenS has amaximalelementy; that is, a sety ∈ S such that
no member ofS properly containsy.
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The statement of Zorn’s lemma involves the idea of a partially ordered set and related
concepts. We present briefly various mathematical concepts, and theorems about them,
needed in Isabelle/HOL to express Zorn’s lemma.

Paulson has already proved Zorn’s lemma in Isabelle’s Zermelo–Fraenkel set theory
(Isabelle/ZF) [28] by mechanizing a paper by Abrial and Laffitte [1]. Reporting on the
mechanization, Paulson remarks that the formal language used by Abrial and Laffitte is
close to higher-order logic, and thus should be useful to Isabelle/HOL amongst other proof
assistants. In our current work, we have adapted the mechanization of Zorn’s lemma devel-
oped in Isabelle/ZF to Isabelle/HOL. Below, we briefly mention how our formalization in
Isabelle/HOL compares with the one in Isabelle/ZF.

The definitions used by Abrial and Laffitte require thechoiceoperator since, starting
from AC, they prove Hausdorff’s maximal principle and then derive Zorn’s lemma. Unlike
its ZF counterpart, Isabelle/HOL provides such an operator, the so-calledHilbert epsilon
operator,ε. Thus, the formulation of the various theorems in Isabelle/HOL is somewhat
simpler than that given by Paulson for ZF. The latter requires that the existence of the choice
function be stated explicitly as a temporary additional assumption [28].

We also use Isabelle’s inductive package to define a set that is totally ordered by set
inclusion. In general, the construction of the inductive set relies on defining a suitable
successor function which, in our case, is defined using the choice operator:

succ S c ≡ if (c 6∈ chain S ∨ c ∈ maxchain S)

then c else (εc′. c′ ∈ super S c).

Our other definitions of set of chains, super chains and maximal chains are similar to those
in Isabelle/ZF. Note that the definitions suppose that the setS has somepartial ordering
defined on it, which is denoted by6:

chain S ≡ {F. F ⊆ S ∧ (∀x ∈ F. ∀y ∈ F. x 6 y ∨ y 6 x)}
super S c ≡ {d. d ∈ chain S ∧ c ⊂ d}
maxchain S ≡ {c. c ∈ chain S ∧ super S c = ∅}.

We tried to simplify these definitions at first by removing references to the inductive setS,
since it is actually used by Abrial and Laffitte to provide typing in their version of ZF. Thus,
S as a parameter seems redundant when working in Isabelle’s typed higher-order logic.
However, relying on the type made some of our proofs about ultrafilters unnecessarily
complicated, and prompted us to refer explicitly to the underlying set in definitions, and
hence in our proof of Zorn’s lemma. In outline, with these definitions, we prove the theorem
of Hausdorff: every partially-ordered set contains a maximal chain. So, with the subset
relation as the partial ordering onS, we have

∃c. c ∈ maxchain S.

We then consider an upper boundu of such a maximal chainc — this is guaranteed to
exist according to the premise of Zorn’s lemma. The last step in the proof simply involves
showing thatu is in fact a maximal element that we are looking for. Expressed formally in
Isabelle, the following theorem is established:

∀c ∈ chain S. ∃u ∈ S. ∀x ∈ c. x ⊆ u

H⇒ ∃y ∈ S. ∀x ∈ S. y ⊆ x −→ y = x.

149https://doi.org/10.1112/S1461157000000267 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000267


Mechanizing NSA in Isabelle

5.2. The ultrafilter theorem

The ultrafilter theorem (UFT) is a complicated but important principle that lies midway
between AC and the axiom of choice for finite sets [30]. Moreover, the ultrafilter theorem,
like the axiom of choice, has many important equivalent forms. Schechter presents and
discusses twenty-five of these, occurring in many areas of mathematics [30], and points to
the many more equivalents occurring in the literature. The version that we are interested in
is as follows.

Theorem 5.2 (Ultrafilter theorem (Cartan): UFT). If F is a filter on a setS then there
is an ultrafilterU onS with F ⊆ U.

This result can be proved using Zorn’s lemma. In fact, we are really interested in proving
a corollary of the ultrafilter theorem about the existence of free ultrafilters. (Some authors
like Hoskins [16] and Keisler [20] state the corollary — or even one of its special cases —
as the actual ultrafilter theorem.)

Corollary 5.1. On every infinite set there exists a free ultrafilter. Expressed in Isabelle, we
want to prove that

¬finite S H⇒ ∃u. u ∈ FreeUltrafilters S.

To do so, we define in the theoryFilter, the set, SuperFrechet S, of all filters on
S that contain the Fréchet filter (that is, the set of superfilters of the Fréchet filter):

Frechet S ≡ {A. finite S − A};
SuperFrechet S ≡ {G. G ∈ Filters S ∧ Frechet S ⊆ G}.

Our proof consists first in showing thatSuperFrechet S contains a maximal element,
that is, an ultrafilter on the (infinite) setS, and then in showing that this maximal element
does not contain any finite sets. Stated formally in Isabelle, the following goal needs to be
established:

¬finite S H⇒ ∃U ∈ SuperFrechet S.

∀G ∈ SuperFrechet S. U ⊆ G −→ U = G ∧
∀x ∈ U. ¬finite x.

5.2.1. Existence of the ultrafilter
We split the main goal above into two parts, and outline in this section how the existence
of the ultrafilter is proved. Formally, we need to prove that

¬finite S H⇒ ∃U ∈ SuperFrechet S.

∀G ∈ SuperFrechet S. U ⊆ G −→ U = G.

Applying Zorn’s lemma (as an introduction rule in Isabelle) and with some simplification,
this reduces the above to the following new subgoal:

[|¬finite S; c ∈ chain (SuperFrechet S)|]
H⇒ ∃u ∈ SuperFrechet S. ∀x ∈ c. x ⊆ u.

Thus, we now have to show that each chain ofSuperFrechet S has an upper bound
in SuperFrechet S. Since the empty set is also a chain, we need to consider the two
possibilities for the chainc, as follows.
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1) c = ∅. We simply use the fact thatFrechet S ∈ Filters S and hence that
Frechet S ∈ SuperFrechet S to prove the theorem for this case. (We have
noticed that many proofs given in the literature neglect to consider the case wherec

is the empty chain.)

2) c 6= ∅. This case is trickier. The proof consists in choosing the union of the nonempty
chain c,

⋃
c, as the upper bound we are looking for. It is trivially true thatx ⊆⋃

c for all x ∈ c. To bring the proof to conclusion, it just remains to show that
SuperFrechet S is closed under the union of nonempty chains:

[|c 6= ∅; ¬finite S; c ∈ chain (SuperFrechet S)|]
H⇒ ⋃

c ∈ SuperFrechet S.

The proof requires showing that
⋃
c is a filter. Property (F1) for a filter is proved easily

using Isabelle’s classical reasoner. In outline, to prove (F2), we choosex0 ∈ ⋃
c, and

x1 ∈ ⋃
c. Thenx0 ∈ G0 andx1 ∈ G1 for some filtersG1 andG2 in the chainc. Since

c is a chain we have thatG1 ⊆ G2 orG2 ⊆ G1. If G1 ⊆ G2 thenx0, x1 ∈ G2 and so,
by (F1),x0 ∩ x1 ∈ G2 ⊆ ⋃

c; the caseG2 ⊆ G1 is proved in a similar way. Finally,
we prove that Property (F3) also holds from the properties of chains and unions. We
shall omit the details for this last step, since they are easily deduced.

5.2.2. Freeness property
The second part of the main goal consists in proving that the ultrafilter does not contain any
finite set. Making use of the statement proved in the previous part, this reduces to solving
the following subgoal (that is, deriving a contradiction) in Isabelle:

[|U ∈ SuperFrechet S; x ∈ U ; finite x|] H⇒ False.

To prove this, we first deduce that(S − x) ∈ U since finite (S − (S − x)) and
Frechet S ⊆ U . Hence, sinceU is closed under set intersection, it follows that∅ =
x ∩ (S − x) ∈ U , which is a contradiction of Property (F1) of the filter. ThusU is free.

This concludes our proof of the existence of a free ultrafilter on any infinite set. This
important theorem will be used in the next section to define the hyperreals by considering
a special case known as theweak ultrafilter theorem.

We have described so far the mathematical foundations set up in Isabelle to enable the
definition of the new types of numbers going beyond the traditional number systems. After
carrying out constructions up to the reals, proving Zorn’s lemma in Isabelle and developing
a theory of filters, we are now ready to apply the so-calledultrapowerconstruction to get
thehyperreals.

6. Ultrapower construction of the hyperreals

Our aim is to construct a linearly ordered fieldR∗ that contains an isomorphic copy
of the realsR extended with other elements. This new, strictly larger field is known as a
nonstandardor hyperreal number system and obeys the same field laws as the reals.

As several authors have pointed out [17,31], the construction of the hyperreals is remi-
niscent of the construction of the reals from the rationals using equivalence classes induced
by Cauchy sequences. In this case, however, we use a free ultrafilter to partition the set of
all sequences of real numbers into equivalence classes. The set of these equivalence classes,
that is the quotient set, is used to define the new typehypreal, denoting the hyperreal
numbers.
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HYPREAL = REAL + FILTER +

constdefs
UN :: "nat set set"
"U N ≡ (ε U. u ∈ FreeUltrafilters (UNIV::nat set))"

(* equivalence relation *)
hyprel "((nat ⇒ real) * (nat ⇒ real)) set"
"hyprel ≡ {p. ∃ r s. p = (r,s) ∧ {n. r n = s n} ∈UN}"

typedef
hypreal ≡ "{x::(nat ⇒ real). True}/hyprel" (Equiv.quotient_def)

instance
hypreal :: {ord, plus, times}

defs
hypreal_zero_def "0hr ≡ Abs_hypreal(hyprelˆˆ{ λn::nat. 0r})"
hypreal_one_def "1hr ≡ Abs_hypreal(hyprelˆˆ{ λn::nat. 1r})"

constdefs
hypreal_minus :: hypreal ⇒ hypreal
"- P ≡ Abs_hypreal(

⋃
X∈Rep_hypreal(P). hyprelˆˆ{ λn::nat. - (X n)})"

(* embedding for the reals *)
hypreal_of_real :: real ⇒ hypreal
"hypreal_of_real r ≡ Abs_hypreal(hyprelˆˆ{ λn::nat. r})"

hrinv :: hypreal ⇒ hypreal
"hrinv P ≡ Abs_hypreal(

⋃
X∈ Rep_hypreal(P).

hyprelˆˆ{λn. if X n = 0r then 0r else rinv (X n)})"

defs
hypreal_add_def
"P + Q ≡ Abs_hypreal(

⋃
X∈Rep_hypreal(P).

⋃
Y∈Rep_hypreal(Q).

hyprelˆˆ{λn::nat. X n + Y n})"

. . .

hypreal_less_def
"P < (Q::hypreal) ≡ ∃X Y. X∈Rep_hypreal(P) ∧ Y∈Rep_hypreal(Q) ∧

{n::nat. X n < Y n} ∈U N"

Figure 3:Isabelle/HOL theory for hyperreals.

152https://doi.org/10.1112/S1461157000000267 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000267


Mechanizing NSA in Isabelle

6.1. Choosing a free ultrafilter

To start the construction, a free ultrafilterUN is chosen on the set of natural numbersN.
Such an ultrafilter exists, according to the weak ultrafilter theorem.

Theorem 6.1 (Weak ultrafilter theorem: WUF). There exists a free ultrafilter onN.

As can be seen, this is a special case of the ultrafilter theorem’s corollary given in Section
5.2. In fact, we have the implications AC⇒ UFT ⇒ WUF, which are not reversible. Thus,
the ultrafilter theorem is strictly weaker than the axiom of choice, and the weak ultrafilter
theorem is weaker still. To prove the weak ultrafilter theorem, we show that the set of
naturals is not finite by an inductive proof, and then discharge the premise of the ultrafilter
theorem’s corollary.

This ultrafilter need not be explicitly defined; it does not matter which ultrafilter onN is
used. The set of all free ultrafilters onN determines a set of isomorphic fields from which
we can choose any member to be the set of hyperreal numbers. Thus, in our formalization,
we use Hilbert’sε-operator to defineUN:

UN ≡ (εU. U ∈ FreeUltrafilters (UNIV :: nat set)).

In this definition, (UNIV:: nat set) denotes {n:: nat. True}, the set N. Higher-order
logic provides a typed set theory in which the universal set exists.

Once we have definedUN, its properties that will be used in the proofs involving the
hyperreals are established. We give here a list of the theorems that we have proved, many
of which follow from the definitions given in the previous sections.

Theorem 6.2. (UNIV :: nat set) ∈ UN.

Theorem 6.3. ∅ 6∈ UN.

Theorem 6.4.X ∈ UN ∧ Y ∈ UN H⇒ X ∩ Y ∈ UN.

Theorem 6.5.X ∈ UN ∧X ⊆ Y H⇒ Y ∈ UN.

Theorem 6.6.X ∈ UN H⇒ ¬ finite X.

Theorem 6.7.X ∈ UN ⇐⇒ −X 6∈ UN.

Theorem 6.8. {n. P (n)} ∈ UN H⇒ ∃n. P (n).

Theorem 6.9.X ∪ Y ∈ UN H⇒ X ∈ UN ∨ Y ∈ UN.

6.2. Equality

UsingUN, the hyperreals are constructed by considering the set of all sequences of real
numbers indexed byN and defining the following equivalence relation on this set.

Definition 6.1. Given two sequences of real numbers〈rn〉 and〈sn〉,
〈rn〉 ∼UN 〈sn〉 ⇐⇒ {n ∈ N | rn = sn} ∈ UN.
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The sequences〈rn〉 and〈sn〉 are sometimes said to be equalalmost everywhere(a.e.).
This terminology is used to mean that the entries of a sequence determine some set in the
ultrafilterUN.

Figure3 shows Isabelle’s theoryHYPREAL, in which the new typehypreal is intro-
duced using the definition above. The relationhyprel denotes∼UN in the theory:

hyprel ≡ {p. ∃r s. p = (r, s) ∧ {n. r(n) = s(n)} ∈ UN}.
The first property that we prove is thathyprel is an equivalence relation.

Proposition 6.1. The relation∼UN is an equivalence relation.

Proof. Let 〈an〉,〈bn〉, 〈cn〉 be sequences of real numbers.

• Reflexivity: sinceN ∈ UN, we have 〈an〉 ∼UN 〈an〉 and thus∼UN is reflexive.

• Symmetry: if 〈an〉 ∼UN 〈bn〉 then, by symmetry of equality,〈bn〉 ∼UN 〈an〉, implying
that∼UN is symmetric.

• Transitivity: now, given 〈an〉 ∼UN 〈bn〉 and〈bn〉 ∼UN 〈cn〉, letA = {n ∈ N | an = bn}
andB = {n ∈ N | bn = cn}, andC = {n ∈ N | an = cn}; thenA ∩ B ⊆ C. Since
A,B ∈ UN, it follows thatA ∩ B ∈ UN sinceUN is ∩-closed, and henceC ∈ UN
sinceUN is also⊆-closed. Therefore,〈an〉 ∼UN 〈cn〉.

6.3. Defining operations on the hyperreals

Arithmetic operations on the new type, that is on the equivalence classes, are usually
defined in terms of the pointwise operations on the sequences. Let[〈Xn〉] denote the equiv-
alence class containing〈Xn〉. Addition, for example, is defined by

[〈Xn〉] + [〈Yn〉] ≡ [〈Xn + Yn〉]. (3)

In Isabelle, however, using the abstraction and representation functions, we define addition
on hyperrealsP andQ as follows:

P + Q ≡ Abs_hypreal (
⋃
X ∈ Rep_hypreal(P ).⋃

Y ∈ Rep_hypreal(Q). hyprel ˆ ˆ {λn.X n + Y n}).
Then we prove equation (3) above as a theorem. It can then be supplied to the simplifier for
use in many of the proofs. In Isabelle, equation (3) takes the following form:

Abs_hypreal (hyprel ˆ ˆ {λn. Xn})+ Abs_hypreal (hyprel ˆ ˆ {λn. Yn})
= Abs_hypreal (hyprel ˆ ˆ {λn. Xn+ Yn}).

(4)

Properties such as commutativity and associativity follow straightforwardly from the corre-
sponding properties of the reals. We can similarly prove0hr +P = P when0hr is defined
as shown in Figure3. Multiplication is defined in a similar way to addition. Associativity,
commutativity, and distributivity of multiplication are all directly inherited from the reals,
and are easily proved.
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6.4. Ordering

The ordering relation on the hyperreals is defined as follows:

P < Q ≡ ∃X ∈ Rep_hypreal P.

∃Y ∈ Rep_hypreal Q. {n.X n < Y n} ∈ UN.
We prove the following simplification theorem expressing the order relation in terms of
equivalence classes of sequences of real numbers. A hyperreal[〈Xn〉] is less than a hyperreal
[〈Yn〉] if and only ifXn is less thanYn almost everywhere:

Abs_hypreal (hyprel ˆ ˆ {X n}) < Abs_hypreal (hyprel ˆ ˆ {Y n})
⇐⇒ {n.X n < Y n} ∈ UN.

Also, the system of hyperreal numbers generated by the free ultrafilter is a totally ordered
field. To show this, we first prove that the ordering relation is total. This proof is relatively
simple and follows from the fact that, given any two hyperreals[〈xn〉] and [〈yn〉], either
they are equal, leading to

{n ∈ N | xn = yn} ∈ UN
or else, by the complement property of the ultrafilter as given in Section6.1, we find that

{n ∈ N | xn 6= yn} ∈ UN.
In the second case, since the reals are totally ordered, we have to consider the sets{n ∈
N | xn < yn} and{n ∈ N | yn < xn}. We know that only one of these can belong to the free
ultrafilterUN (since otherwise, closure ofUN under intersection would entail that∅ ∈ UN,
which contradicts property (F1) of the filter).

6.5. Multiplicative inverse

To show thatR∗ is a field, we need only prove that each non-zero element[〈Xn〉] ∈ R∗
has a multiplicative inverse. For any non-zero element, we have

{n ∈ N |Xn = 0} 6∈ UN
and therefore, once more by the complement property ofUN,

{n ∈ N |Xn 6= 0} ∈ UN.
Therefore, defineYn = 1/Xn for each value ofn for which Xn 6= 0, and setYn = 0
otherwise. Then the set{n ∈ N. Xn · Yn = 1} ∈ UN, so that[〈Xn〉] · [〈Yn〉] = [〈1〉]. This
motivates the following definition, in Isabelle, for the inverse functionhrinv:

hrinv P ≡ Abs_hypreal (
⋃
X ∈ Rep_hypreal(P ).

hyprel ˆ ˆ {λn. if X n = 0r then 0r else rinv (X n)}).
It is easily proved that for all non-zerox, hrinv x · x = 1hr as required. A few points
worth mentioning are thathrinv x stands for the more conventional notationx−1 whenx
is a hyperreal; the inverse function for the reals is itself denoted byrinv, while 0r and1r
are defined as the zero and one respectively of the real field. Once again, for simplification
purposes, we prove the useful theorem about inverse involving the equivalence classes of
real sequences:

hrinv (Abs_hypreal (hyprel ˆ ˆ {X n})) ⇐⇒
Abs_hypreal (hyprel ˆ ˆ {if X n = 0r then 0r else rinv (X n)}).
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We have shown in the discussion above thatR∗ is a totally ordered field. The next important
step is to show thatR∗ contains a proper subfield that is isomorphic to the realsR.

7. Structure of the hyperreal number line

In this section, we continue our investigation by introducing and defining the various
elements that make up the new totally ordered field, which we show to be a proper extension
of the reals. We also define a number of concepts that follow from this classification of the
elements ofR∗.

7.1. Embedding the reals

Since our free ultrafilter has been fixed, we have effectively restricted our attention to one
particular totally ordered fieldR∗, though as we mentioned previously, there are infinitely
many distinct but isomorphic number systems. We now embed the reals in our hyperreals by
defining a maphypreal_of_real :: real ⇒ hypreal in Isabelle. This embedding
is defined by

hypreal_of_real r = [〈r, r, r, . . . 〉]
and is expressed in Isabelle as

hypreal_of_real r ≡ Abs_hypreal (hyprel ˆ ˆ {λn::nat. r }).
In what follows, any embedded realr will be denoted bỹr unless the embedding func-
tion hypreal_of_real is used explicitly. Thus, the additive identity element0hr and
the multiplicative identity element1hr of the hyperreals are the explicit images of the
real numbers zero (0r) and one (1r) respectively under the embedding. To show that
hypreal_of_real mapsR to a proper subfield ofR∗, we first define the following
hyperreal number:

ω ≡ Abs_hypreal (hyprel ˆ ˆ {λn::nat. real_of_nat n})
wherereal_of_nat :: nat ⇒ real maps its natural argumentn to the realn + 1.
For clarity, we omit the details of the various intermediate embeddings (nat ⇒ pnat,
pnat ⇒ prat, prat ⇒ preal, and so on) required for definingreal_of_nat,
though we do need to prove their various properties (for example, that they are injective
and order-preserving) explicitly in Isabelle. This sort of detail is not usually mentioned in
textbooks, where it is assumed that one can define a map in one step.

We can now exhibit a member ofR∗ that is not equal to any real number, since there
is no r such that̃r = ω. This is because the set on which〈r, r, r, . . .〉 and 〈1,2, 3, . . .〉
coincide can consist of at most one element. Hence, by the definition of ultrafilterUN, the
two sequences cannot be equivalent since no finite set can belong toUN. In fact, as we shall
see shortly,̃r < ω for any real numberr; that is,ω is a so-calledinfinitenumber. Similarly,
ε = ω−1 = [〈1, 1

2,
1
3, . . .〉] is aninfinitesimal.

We will call all members ofR∗ that are images of the reals, thestandardelements of
R∗. We then define the set of standard realsSReal in the theoryNSAas follows,

SReal ≡ range (hypreal_of_real)

where

range f = {y. ∃x. y = f x}.
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We can now viewSReal as the real numbers embedded inR∗; that is, as a sub-ordered
field, if we agree to identify each real numberr with the corresponding standard elementr̃

of R∗. We then have thatR∗ is an extension or enlargement ofR. We shall come across the
general concept of set extensions later in the paper (see Section10).

7.2. Properties of nonstandard numbers

We have exhibited in the previous section a hyperreal,ω, that does not belong toSReal.
There are infinitely many of these so-callednonstandardhyperreal numbers. They can be
classified into various sets that include, for example, infinitesimals and the infinite numbers.
We start this section with a preamble, where the absolute value function for the hyperreals
is introduced. This function is needed in order to define the various types of numbers found
in our theory.

The definitions of infinitesimal, finite, and infinite numbers use the absolute value func-
tion. This function, which we also defined on the reals, needs to be extended to the hyperreal
numbers. The definition that we use is analogous to that used for the reals. Using the if-
then-else construct of Isabelle/HOL, we have

hrabs x ≡ if 0hr 6 x then x else − x.

In fact, an alternative definition exists in which the (real) absolute value function is simply
applied pointwise to an equivalence class representative inR∗. In Isabelle, withrabs
denoting the absolute value function for the reals, this takes the form of the following
theorem:

hrabs (Abs_hypreal (hyprel ˆ ˆ {X})) =
Abs_hypreal (hyprel ˆ ˆ {λn. rabs (X n)}).

This result, taken in conjunction with the definitions of the operations such as addition,
multiplication and reciprocal, hints at a general technique in which functions can be defined
on the hyperreals throughextensionsof the analogous ones defined on the reals using our
free ultrafilterUN. We examine this notion of extension later in this work.

The intuitive notion of an infinitesimal number can now be formally defined. Sets of
finite and infinite numbers are also formally introduced.

Definition 7.1. An elementx of R∗ is said to be aninfinitesimalif and only if for every
positive standard real numberr we have|x| < r. It is finite if and only if for some standard
real numberr we have|x| < r, andinfinite if and only if for every standard real numberr
we haver < |x|.

In the literature, the definition will often just say that an infinitesimal is less in magnitude
than any positive (standard)real number. Here, since we have different types, it becomes
explicit that such a definition is actually referring to the standard copy inR∗. This leads to
the following definition in Isabelle for the set ofInfinitesimal:

Infinitesimal :: hypreal set
Infinitesimal ≡ {x. ∀r ∈ SReal. 0hr < r −→ hrabs x < r}.

This definition can be considered as a high-level one. Indeed, it is possible to define the
set of infinitesimals by going down to the level of our free ultrafilterUN itself. We thus
prove the next theorem, which turns out to be useful when supplied to Isabelle’s simplifier
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in cases where one wants to deal with real sequences rather than infinitesimals:

(x ∈ Infinitesimal) ⇐⇒ (∃X ∈ Rep_hypreal x. ∀u. 0r < u

−→ {n. rabs (X n) < u} ∈ UN).
We give below the definitions for the setsFinite andInfinite of finite and infinite
numbers respectively, as declared in Isabelle, and the equivalent theorems derived in terms
of the free ultrafilter:

Finite :: hypreal set
Finite ≡ {x. ∃r ∈ SReal. hrabs x < r};

(x ∈ Finite) ⇐⇒ (∃X ∈ Rep_hypreal x.

∃u. {n. rabs (X n) < u} ∈ UN);

Infinite :: hypreal set
Infinite ≡ {x. ∀r ∈ SReal. r < hrabs x};

(x ∈ Infinite) ⇐⇒ (∃X ∈ Rep_hypreal x.

∀u. {n. u < rabs (X n)} ∈ UN).
We can view the low-level theorems as lemmas that enable us to translate properties involv-
ing the hyperreals into those depending on the ultrafilter. This is useful in our mechanization
when we deal with real functions and their extensions.

An important point, highlighted through the definition of infinite and infinitesimal num-
bers, and already mentioned in Section3, is that the set of hyperreal numbers is non-
Archimedean. This is because not every bounded subset ofR∗ has a least upper bound or
greatest lower bound. For example, the set of infinite numbers is bounded below by any
finite number, but has no greatest lower bound.

7.3. On infinitesimal, finite and infinite numbers

We have proved various properties of infinitesimal, finite and infinite numbers. A few of
the theorems are listed below.

Theorem 7.1. The setFinite of finite elements is asubringof R∗; that is, sums, differ-
ences, and products of finite elements are finite.

Theorem 7.2. The setInfinitesimal of infinitesimals is also a subring ofR∗.

Theorem 7.3. The setInfinitesimal is an ideal inFinite; that is, the product of
an infinitesimal and a finite number is infinitesimal.

Theorem 7.4. Elementx is infinite if and only ifhrinv x is infinitesimal for all non-zero
x.

The hyperreal numberω defined in Section7.1 is a member ofInfinite: for any
given real numberx, for all sufficiently large values ofn, we havex < n. The infinitesimal
numberε defined by the equivalence class containing the sequence〈1/n〉 is a member of
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Infinitesimal since for any givenx, for all sufficiently large value ofn, we have
0< 1/n < x. We have also proved thatω is the multiplicative inverse ofε, since

ω · ε = [〈1,2, 3, . . .〉] · [〈1,1/2, 1/3, . . .〉]
= [〈1 · 1,2 · 1/2, 3 · 1/3, . . .〉]
= [〈1,1,1, . . .〉]
= 1hr.

We next introduce an important equivalence relation that will be extremely useful to our
mechanization.

Definition 7.2. Two hyperreal numbersx andy are said to beinfinitely close,x ≈ y, if and
only if their differencex − y is infinitesimal.

It is easily proved thatx is an infinitesimal if and only ifx ≈ 0. To show that≈ is
an equivalence relation is trivial. In addition, we prove the following theorems (amongst
others).

Theorem 7.5. a ≈ b ∧ c ≈ d H⇒ a + c ≈ b + d.

Theorem 7.6. (a + b ≈ a + c) ⇐⇒ b ≈ c.

Theorem 7.7. a ≈ b ∧ c ∈ Finite H⇒ a · c ≈ b · c.

Theorem 7.8. a ≈ b ∧ c ≈ d ∧ b ∈ Finite ∧ c ∈ Finite H⇒ a · c ≈ b · d.

Theorem 7.9. a ∈ Finite ∧ a ≈ b H⇒ b ∈ Finite.

Theorem 7.10. a ∈ SReal ∧ a 6= 0hr H⇒ (a · x ≈ a · y) = (x ≈ y).

Theorem 7.11. x ∈ SReal ∧ y ∈ SReal H⇒ (x ≈ y) = (x = y).

Theorem 7.12. x ≈ y ∧ y ∈ Finite − Infinitesimal H⇒ hrinv x ≈ hrinv y.

Theorem 7.13. x ≈ y H⇒ hrabs x ≈ hrabs y.

We continue in the next section with another basic fact about the structure ofR∗, which
defines a function from the set of finite numbers onto the reals.

7.4. The standard part theorem

Thestandard partof a finite nonstandard number is defined to be the unique real infinitely
close to it. We use Hilbert’s choice operator,ε, to express this in Isabelle:

st x ≡ (εr. r ∈ SReal ∧ r ≈ x).

We now prove the existence and uniqueness of the standard part. Existence needs to be
demonstrated in any case whenever Hilbert’s operator is used.

Proposition 7.1. Let x be a finite hyperreal number. Then, there exists a unique standard
real numberr such thatr ≈ x.

159https://doi.org/10.1112/S1461157000000267 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000267


Mechanizing NSA in Isabelle

Proof. Let A = {y ∈ R | y 6 x}. Sincex is finite,A is nonempty and is bounded above.
Let r be the least upper bound ofA. For any realε > 0, r − ε ∈ A andr + ε 6∈ A, and
thusr − ε 6 x < r + ε. So |r− x| 6 ε, from which it follows thatr ≈ x.

To show uniqueness, suppose that there exists a real numbers such thats ≈ x. Then,
since≈ is transitive,s ≈ r and sor − s ≈ 0. Butr − s is real, sor − s = 0 andr = s.

The proof just given glosses over many of the details that need to be satisfied for mech-
anization. The completeness of the reals, and hence of the embedded reals, is needed in
the form of thesupremum property, which ensures that any nonempty set of reals that is
bounded above has a least upper bound. We first proved the property for the positive real
numbers (preal) and then extended it to the reals (real). Now, since we are dealing with
the hyperreals and identifying the reals with the proper subfield ofR∗ which is isomorphic to
R, we have to transfer this theorem explicitly to the isomorphic copy ofR, namelySReal.

Once the existence of the standard part has been proved, we prove various of their
properties: for anyx, y ∈ Finite, we have

x ≈ y ⇐⇒ st x = st y;
x ≈ st x;
st (x + y) = st x + st y;
st (x · y) = st x · st y;
if st y 6= 0hr thenst (x · hrinv (y)) = st x · hrinv (st y);
st (st x) = st x;
st (hrabs x) = hrabs (st x).

From some of these theorems, we can see that the map preserves algebraic structure. The
standard part function can be defined in other ways. For example, it corresponds to the order
homomorphism ofFinite with kernelInfinitesimal ontoR [32]. The standard part
is an important concept that can be used when formulating the nonstandard definition for
the limit of a sequence of reals, and also when defining theslopeof a real function at a real
point.

8. The hypernatural numbers

We can construct a set of numbersN∗ that contains both finite elements, identifiable
with the ordinary natural numbers, and infinite numbers greater than all natural numbers.
This discrete set is known as thehypernaturals. They will be needed in the nonstandard
formalization of real sequences and series in the next part of this mechanization.

The construction of the hypernaturals in Isabelle is analogous to that of the hyperreals:
we use the same free ultrafilterUN but replace sequences of reals by sequences of natural
numbers. Thus,N∗ is now characterized explicitly as the set of equivalence classes[〈mn〉]
determined by sequencesmn of natural numbers. The new equivalence relation on sequences
is denoted byhypnatrel in Isabelle. In what follows, we make some observations on the
construction and properties that apply to members ofN∗. These are interesting in their own
right, but also in view of the applications to mechanization of analysis using nonstandard
methods.

We define an embedding function that identifies each natural numberm with the hyper-
natural number determined by the constant sequence〈m,m, ..., m〉. In Isabelle, we define
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the functionhypnat_of_nat :: nat ⇒ hypnat:

hypnat_of_nat m ≡ Abs_hypnat (hypnatrel ˆ ˆ {λn::nat. m }).
Using the maphypnat_of_nat, we easily define the set SHNat of standardnatural
numbers embedded inN∗:

SHNat ≡ range (hypnat_of_nat).

In what follows, a natural numbern embedded in the hypernaturals will also be denoted by
n in some cases.

8.1. Infinite hypernaturals

We define a hypernatural� denoting[〈n〉] = [〈0, 1,2, ...〉] by

� ≡ Abs_hypnat (hypnatrel ˆ ˆ {λn::nat. n }).
We prove that for any embedded natural numbern ∈ SHNat, � 6= n meaning thatN∗
properly includesN. This motivates the following definition for the set of non-standard
hypernaturals:

HNatInfinite ≡ − SHNat

where ‘−’ denotes set complement in Isabelle. To establish that the only nonstandard hy-
pernaturals are the infinite ones, we prove the following equivalence theorem:

HNatInfinite ⇐⇒ {N. ∀n ∈ SHNat. n < N }.
Thus,N∗ consists of the finite standard copies of the ordinary natural numbers and of the
infinite hypernatural numbers only.

8.2. Properties of the hypernaturals

Some of the properties proved for the hypernatural numbers are as follows.

1) N∗ is a discrete subset ofR∗.

2) N∗ is closed under addition and multiplication.

3) Every infinite number has an immediate predecessor, which is also infinite.

The first property can be proved either by defining directly an embedding function from the
hypernaturals to the hyperreals, or by taking the nonstandard extension of the set of natural
numbers (embedded in the reals).

An important observation, following from the third property above, is that the non-empty
set of infinite hypernatural numbers,HNatInfinite, does not have a least element. Thus,
the well-ordering property of the natural numbers does not extend to the hypernaturals. This
observation shows that, though most properties of the natural numbers are transferred to the
hypernaturals, there are important exceptions. It will be seen in our subsequent exposition
that properties such as the one above and the Archimedean property extend only tospecial
subsets of the hypernaturals and hyperreals respectively. In what follows, we review the
development of concepts from real analysis in Isabelle.

9. Mechanized infinitesimal calculus

Classical or standard analysis is mostly concerned with the study of the real numbers,
and with the properties of functions defined on them. We shall now describe the use of
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the hyperreals as tools for mathematical analysis. Through the existence of infinitesimals,
finite, and infinite numbers, NSA provides us with a rich structure which we use to formalize
alternative treatments of topics in classical analysis. Such treatments are valuable, not only
for the additional light that they cast on analysis, but also for the simplification they bring.
As will be seen, the mechanization of analysis can benefit directly from this simplification,
since difficult instantiation steps in proofs are eliminated in many cases. We start by showing
how functions defined over the reals and naturals can be systematically extended to the
hyperreals and hypernaturals, respectively. These notions are crucial to nonstandard real
analysis. We then proceed to develop some elementary analysis that will make use of the
new classes of numbers, the infinitely close relation, and other notions induced on them.

10. Extending a relation to the hyperreals

There are systematic methods through which functions defined on the reals are extended
to the hyperreals. This process of extending a relation fromR to R∗ is known as the∗-
transform[17].

10.1. Internal sets and nonstandard extensions

Many properties of the reals, suitably reinterpreted, can be transferred to the hyperreal
number system. For example, we have seen thatR∗, like R, is a totally ordered field. Also,
just asR contains the natural numbersN as a discrete subset with its own characteristic
properties,R∗ contains the hypernaturalsN∗ as a corresponding discrete subset with anal-
ogous properties. Moreover, subsetsZ∗ (the hyperintegers) andQ∗ of R∗ exhibit relations
to N∗ similar to those thatZ andQ bear toN in R.

However, there are properties ofR that do not transfer toR∗. This is the case for the
fundamental supremum property of the reals. It is easy to see that this upper bound property
does not necessarily hold by considering, for example, the setR itself, which we regard as
embedded into the hyperreals (that is, the setSReal from Section7.1). This is a non-empty
set which is bounded above (by any of the infinite numbers inR∗) but does not have a least
upper bound inR∗.

Theorem 10.1. The setR ⊆ R∗ does not have a least upper bound inR∗.

Proof. Suppose thatr is the least upper bound ofR. Then it follows thatr is infinite, since
it is an upper bound. But asr ∈ Infinite, it follows that r − 1 ∈ Infinite, so r − 1
is a smaller upper bound, which is a contradiction.

We now introduce an important refinement that classifies subsets ofR∗ into two types:
internalandexternalsubsets [17,16]. With this done, we shall be able to prove the following
statement, for example, about the supremum property for the hyperreals.

Every non-emptyinternal subset ofR∗ which has an upper bound inR∗ has a
least upper bound inR∗.

Definition 10.1. LetAn, for n ∈ N, be any sequence of sets of real numbers. This sequence
determines a certain setA of hyperreals according to the following rule. The hyperreal
numberx = [〈Xn〉] is a member of setA ⊆ R∗ if and only if the set{n ∈ N. Xn ∈ An}
belongs to the ultrafilterUN.
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This definition is analogous to the one we used to define hyperreals in terms of sequences
of reals. The sequences of sets of real numbers can then be used to define the so-called
internal setsof hyperreals. In Isabelle, we have the following declaration and definition for
an internal set:

∗sn∗ :: (nat ⇒ real set) ⇒ hypreal set
∗sn∗ A ≡ {x. ∀X ∈ Rep_hypreal(x). {n.X(n) ∈ A(n)} ∈ UN}.

We are particularly interested in the special case when the sequence is constant; that is,
An = A for all (or almost all)n. The internal set determined by such a sequence is called
thenonstandard extensionof A and, since this is the actual property that will be used more
often in the course of our mechanization, it is defined explicitly:

∗s∗ :: real set ⇒ hypreal set
∗s∗ A ≡ {x. ∀X ∈ Rep_hypreal(x). {n.X(n) ∈ A} ∈ UN}.

Thus, it follows that∗s∗ A = ∗sn∗ (λn. A). In the literature, the nonstandard extension
of a setA is usually denoted byA∗. We shall make use of this conventional mathematical
notation as well. However, the actual Isabelle/HOL notation (∗s∗ A) will also be used in
many cases, especially to show how a particular concept is expressed in the theorem-prover.

It can be shown that any non-empty, internal subset ofR∗ has the supremum property
though the proof will not be given here [16]. In fact, for any subset ofS of R∗ that fails to
have a least upper bound, one can infer that it is not internal. Any subset of hyperreals that
is not internal is calledexternal.

The process of extending a set of real numbers to a set of hyperreals has shown an example
of the∗-transform at work. In general, this transformation procedure can be applied to any
n-ary relation on the reals, extending it to ann-ary relation on the hyperreals. This is done
using the rule thatP holds on ann-tuple in (R∗)n if the index set whereP holds on
the representative realn-tuple sequence is in the chosen free ultrafilter. More instances of
∗-transforms will be met when nonstandard extensions of functions are introduced.

10.2. Properties of extended sets

Various properties of nonstandard extensions of sets of real numbers can now be derived.
The first result to be proved (in one step, using Isabelle’s automatic tactic) is thatR∗ is the
nonstandard extension ofR. The nonstandard extensions of sets of reals will, in general, be
different from the original set. The exception occurs for finite sets, since then the extension
function simply degenerates to the embedding function. This is confirmed by the following
theorem, where the symbol “ denotes the image operator for relations:

finite A H⇒ ∗s∗ A = hypreal_of_real “A.

If the setA is infinite, however, then we prove thatA∗ contains elements that are not
standard copies of the members ofA. This leads to the following theorem relating the
embedding of a set of real numbersA to its nonstandard extensionA∗:

hypreal_of_real “A ⊆ ∗s∗ A.
The nonstandard extension provides us with a new set that is an enlargement ofA. Thus, the
enlargement ofR yields a new set that contains infinitesimals and infinite elements that have
no counterparts in the real number system. A number of useful results involving boolean
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operations on nonstandard extensions of sets are proved:

(∗s∗ ∅) = ∅ ; (5)

∗s∗ (−A) = −(∗s∗ A); (6)

A ⊆ B H⇒ (∗s∗ A) ⊆ (∗s∗ B); (7)

∗s∗ (A ∪ B) = (∗s∗ A) ∪ (∗s∗ B); (8)

∗s∗ (A ∩ B) = (∗s∗ A) ∩ (∗s∗ B); (9)

∀n. X(n) 6∈ M H⇒ Abs_hypreal (hyprel ˆ ˆ {X}) 6∈ (∗s∗ M). (10)

The proofs of these theorems all follow from the properties of the free ultrafilter (see
Section6). For example, property (5) holds because no filter contains the empty set. Property
(9) holds because filters are closed under the∩ and⊆ operations. Proving properties (8)
and (6) needs the fact that for any subsetA of N, eitherA or

_
A belongs to the ultrafilter. The

proofs are all straightforwardly carried through with the help of Isabelle’s automatic tactic.

10.3. Internal functions and nonstandard extensions

Given astandardfunction that takes real arguments, we want to be able to define an
analogous one that will also takenonstandardarguments. This leads to the notions of internal
functions, and to nonstandard extensions. These concepts are crucial, as they will enable
the formulation of familiar constructs in analysis using nonstandard definitions. Also, they
give a systematic way of extending any function over the reals to one over the hyperreals.
We give the definition for the case dealing with internal functions of one real variable [16].

Definition 10.2. Let〈Fn〉 be any sequence of standard functions fromR toR. This sequence
determines aninternal functionf ≡ [〈Fn〉] from R∗ to R∗ according to the rulex =
[〈Xn〉] ∈ R∗ maps intoy = [〈Yn〉] = f (x) ∈ R∗ if and only if {n ∈ N. Yn = Fn(Xn)} ∈
UN.

Expressed in Isabelle, we have this rather more concise definition for the internal func-
tion:

∗fn∗ :: (nat ⇒ (real ⇒ real)) ⇒ hypreal ⇒ hypreal
∗fn∗ F x ≡ Abs_hypreal (

⋃
X ∈ Rep_hypreal(x). hyprel ˆ ˆ {λn. (Fn)(Xn)}).

Thus, according to this definition, withF andx defined as above, the value of the internal
function (∗fn∗ F ) at x is given by

(∗fn∗ F) x = [〈F1(X1), F2(X2), . . . , Fn(Xn), . . .〉].
Of interest here, as well, is the special type of internal function known as thenonstandard

extension of a standard functionF . The nonstandard extension is obtained by having a
constant sequence of functions; that is, one for whichFn = F for (almost) alln. We define
the special case in Isabelle as follows:

∗f∗ :: (real ⇒ real) ⇒ hypreal ⇒ hypreal
∗f∗ F x ≡ Abs_hypreal (

⋃
X ∈ Rep_hypreal(x). hyprel ˆ ˆ {λn. F (Xn)}).

We will denote the nonstandard extension of a given function either byf ∗ or by the equiv-
alent Isabelle notation (∗f∗f ). Referring back to the construction of the hyperreals in
Isabelle as described in Section6.3, the definitions given for the field operations on them
can all be viewed as nonstandard extensions of the analogous operations on the reals (for
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example, addition on the hyperreals is actually+∗). We also note that our definition of
nonstandard extension corresponds to Keisler’sfunction axiom, which states that ‘for each
real functionf of n variables there is a corresponding functionf ∗ of n variables, called
the natural extension off ’ [ 20].

10.4. Properties of extended functions

We prove, as we did for set extensions, a number of useful properties about nonstandard
extensions of functions. One of the first and most useful simplification theorems shows that
the nonstandard extension of a functionf ∗ is equivalent to applyingf elementwise to an
equivalence class representative inR∗:

(∗f∗ f ) (Abs_hypreal (hyprel ˆ ˆ {λn. Xn})) =
(Abs_hypreal (hyprel ˆ ˆ {λn. f (Xn)})).

This enables us to prove theorems about nonstandard functions by using the properties of
the corresponding standard real function, the reals, and the free ultrafilter. We then prove
theorems about the preservation of rules across the∗-transformation and other properties.
Some of these Isabelle theorems are listed next. Most of the proofs are mechanized in two
steps or fewer with the help of Isabelle’s automatic tacticauto_tac; the tactic is supplied with
simplification rules such as the theorem above, and others about addition, multiplication
and other operations. (We recall thatr̃ stands for the image of real numberr in R∗, as
described in Section7.1.)

(∗f∗ (λy. f y + g y)) x = (∗f∗ f ) x + (∗f∗ g) x (11)

(∗f∗ (λy. f y · g y)) x = (∗f∗ f ) x · (∗f∗ g) x (12)

(∗f∗ (f ◦ g)) = (∗f∗ f ) ◦ (∗f∗ g) (13)

(∗f∗ λy. k) x = k̃ (14)

(∗f∗ (λy. − f y)) x = − (∗f∗ f ) x (15)

(∗f∗ (λy. y)) x = x (16)

(∗f∗ f ) (̃a) = f̃ (a) (17)

(∗f∗ (λh. f (y + h))) x = (∗f∗ f ) (ỹ + x) (18)

(∗f∗ (λh. f (g(y + h)))) x = (∗f∗ (f ◦ g)) (ỹ + x) (19)

∗f∗ rabs = hrabs (20)

x 6= 0hr H⇒ (∗f∗ rinv) x = hrinv x (21)

(∗f∗ f ) x ∈ ∗s∗ A H⇒ x ∈ ∗s∗ {y. f y ∈ A} (22)

Theorem (17) is important, as it tells us that the extended function has the same solutions
as its standard counterpart for all (embedded) real arguments. Theorems (18) and (19) are
proved because of their importance in the nonstandard definition of derivatives. Theorems
(20) and (21) confirm that the hyperreal absolute and inverse functions are nonstandard
extensions of their real counterparts. Theorem (22) is a general lemma, needed for proofs
in elementary real topology. One might try to picture these various theorems mentally, to
get a better, more intuitive feel for the properties. If we combine∗-transforms of both sets
and functions, we can derive further theorems, such as

∗s∗ (f “A) = (∗f∗ f )“(∗s∗ A);
∗s∗ {x. rabs (f x − y) < r} = {x. hrabs ((∗f∗ f ) x − ỹ) < r̃}.
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We note that any real constant is mapped to its embedded counterpart in the transform, as
expected, while the functions are replaced by their nonstandard extensions.

The importance of internal sets and functions cannot be overstated. Lindstrøm calls
them the ‘nice’ subsets and functions of nonstandard analysis [23], and draws an analogy to
topology where, for example, the nice sets and functions are the open sets and continuous
functions. Nice concepts are those that we are interested in whenever a new mathematical
structure is introduced. In NSA, they are important because they enable hyperreal sets and
functions to inherit properties from their standard counterparts in a natural way. They also
enable us to express familiar concepts for our new mathematical structure that may be only
partially inherited (such as the supremum property, which applies only to internal subsets
of R∗). The strict typing of Isabelle/HOL makes the new concepts clearer, and definitions
ensure that their use is rigorous. We will later introduce some further extensions that enable
us to deal with functions fromN to R, for example.

11. Towards an intuitive calculus

Consider the real functionf (x) = x2. This extends naturally to a functionf ∗ overR∗.
Now, if a is finite andε is infinitesimal, thenf ∗(a + ε) = (a + ε)2 = a2 + ε(2a + ε) ≈
a2 = f ∗(a) since the setInfinitesimal is an ideal inFinite. Thus, an infinitesimal
change in the argumentx produces only an infinitesimal change inf . This is, intuitively,
the behaviour expected from a continuous function such asf (x) above; broadly speaking,
one does not expect any sudden gap or jumps in the graph that represents the behaviour
of the function. As pointed out by Keisler [20] and others [31], students who are just
beginning to study calculus often find it difficult to cope with formulas involving quantifiers.
The traditional epsilon and delta approach is a sudden leap from the intuitive calculus of
school to the rigour of real analysis. One of the advantages of introducing the hyperreals
is the simplification that this brings to the statement of many properties such as limits and
continuity. For example, theε andδ condition for a functionf to be continuous ata,

∀ε. (0< ε −→ ∃δ. (0< δ ∧ ∀x. (0< |x − a| < δ −→ |f (x)− f (a)| < ε)))

can be simplified to

∀x. x ≈ ã −→ f ∗(x) ≈ f̃ (a).

The approach, through the formal use of infinitesimals and relations such as≈, retains much
of the intuition that was present in school mathematics. The nonstandard treatment has been
expounded in textbooks by Keisler [20], by Henle and Kleinberg [15] and more recently by
Hoskins [16], for example. Keisler’s text has even been used successfully as an introductory
textbook in calculus courses. There is much to be gained from carrying out proofs using a
nonstandard formulation, and as this work shows next, even the mechanization of analysis
becomes simpler and shorter due to the more algebraic nature of nonstandard analysis.

In applying nonstandard analysis to the formalization, we first introduce the standard and
nonstandard formulations for the basic definitions in the theory. In the next step we prove that
the standard and nonstandard definitions are equivalent. The nonstandard equivalents are
then applied, whenever appropriate, to produce often shorter mechanical proofs of standard
results. Thus, the use of NSA can effectively ease the task of mechanization. In the next
sections, we will illustrate these points by mechanizing basic notions from the theories of
limits for real sequences and series, elementary topology on the reals, limits and continuity
of functions, and differentiability. We introduce and prove in Isabelle propositions stating
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that the standard and nonstandard definitions for the various concepts are equivalent.

12. Real sequences and series

A real sequence〈an〉 is viewed as a standard function,a, mapping the natural numbers
into the reals; that is,a : N → R. The notationa(n) is also used to denote a typical term
an of the sequence.

The functiona has a nonstandard extensiona∗ which maps the hypernaturals into the
hyperreals. The∗-transform ofa is thus the functiona∗ : N∗ → R∗ wherea∗([〈Xn〉]) =
[〈a(Xn)〉] for any[〈Xn〉] ∈ N∗. We therefore define this in a similar fashion to the extension
∗f∗ for real functions. In Isabelle, the nonstandard extension ofa is given by (∗fNat∗ a)
and defined as

∗fNat∗ :: (nat ⇒ real) ⇒ hypnat ⇒ hypreal
∗fNat∗ a N ≡ Abs_hypreal (

⋃
X ∈ Rep_hypnat(N). hyprel ˆ ˆ {λn. a(Xn)}).

As can be seen, the nonstandard extension results in a sequence of hyperreals indexed not
by the natural numbers, but by the hypernaturals. For this reason, the extended sequence is
also known as ahypersequence.

Similar theorems to those presented in Section10.4about∗f∗ are proved, together with
some new ones such as

(∗fNat∗ (λn. a(Suc n)))N = (∗fNat∗ a) (N + 1).

Of particular importance is the theorem(∗fNat∗ a)(n) = ã(n), which shows that the
hypersequence agrees with the original sequence onN; that is, for anyn ∈ N, a∗

n is simply
the image ofan in the hyperreals. (From now on, we shall assume, for clarity, that 0 and 1
are overloaded over all the various types of numbers, and will refrain from using0r, 0hr,
1hr, and so on, which were defined in Section6.)

12.1. On limits

The hyperreals are now used to define the concept oflimit. A few observations about
the notation need to be made first. The symbol∞ is usually used in the real number
system to denote that which is potentially arbitrarily large. The expression limn→∞ an thus
denotes the limiting value ofa asn becomes an arbitrarily large natural number. InR∗,
the symbol∞ can be viewed as having a similar meaning, but this time ‘arbitrarily large’
means a number larger than anyfinitenumber inR∗. So the expression limn→∞ a∗

n denotes
the value infinitely close toa∗

n for any infinite hypernatural numbern. This motivates the
nonstandard definition for sequential limit that is given below.

With regard to the formalization in Isabelle, we decided to follow an approach similar
to that used by Harrison in the HOL-Light system [14] and formulate both a relational
and functional form for sequential limits. We declare and define an infix ‘tends to’ relation
‘−−−−→’ and use it to express statements such asan tends tol by an−−−−→ l. The standard
definition used in Isabelle is

X−−−−→ l ≡ ∀r. (0< r −→ (∃N. ∀n. N 6 n −→ rabs (Xn− L) < r)).

Our formalization, however, also has a second version of the predicate, denoted by−−−−→
NS

;

this second notion of convergence is defined using nonstandard concepts and expressed by
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the following simpler statement, not involving any existential quantifiers:

X−−−−→
NS

l ≡ (∀N ∈ HNatInfinite. ( ∗fNat∗ X)N ≈ l̃).

The first task is to prove the equivalence of the two definitions. Before coming to this, we
briefly make some remarks about the functional form of a sequential limit. We declare a
constantlim and use it to denote the statement limn→∞ an by lim a (equivalent byη-
expansion tolim (λn. an)). A nonstandard version of the function is also introduced, and
that is denoted bynslim. The following definitions are made, using Hilbert’sε-operator
to denote the unique limit (if it exists):

lim a ≡ εl. a−−−−→ l

nslim a ≡ εl. a−−−−→
NS

l.

The relational form is preferred to prove properties about limits since the functional form
is less powerful [14]. We do not havea−−−−→ lim a because all functions in HOL and, of
course, Isabelle/HOL are total. The interested reader should consult Harrison’s PhD thesis
for an extended discussion on binders, relational versus functional forms of mathematical
statements, and other related issues arising from HOL’s lack of partial functions [14]. These
points are equally relevant to the aspects of analysis that we have formalized in Isabelle. One
last point is that, for a convergent sequence, the following theorem suggests an alternative
definition fornslim (and hencelim ):

nslim a = st ((∗fNat∗ a) �)

where� denotes the infinite hypernatural[〈n〉]. This is an interesting characterization of
limit that arises due to the nonstandard framework.

We will now outline the steps needed to prove the equivalence of the standard and
nonstandard definitions for limits.

12.2. Equivalence of standard and nonstandard definitions

Proving the equivalence of the standard and nonstandard formulations of a property is
important, as it justifies using nonstandard methods to prove standard theorems. The proof
that the nonstandard definition implies the standard definition is usually the trickier part.
We need to go down to the level of the ultrafilter and use the theorems that recast properties
such as those belonging to the setInfinitesimal in terms of membership ofUN.

Theorem 12.1. A sequencea : N → R converges to the real numberl as its limit if and
only if for each infinitely large hypernatural numberη = [〈mn〉] ∈ N∗ − N we have that
a∗
η is infinitely close tol. In symbols,a−−−−→ l ⇐⇒ a−−−−→

NS
l.

Proof. We mechanize the proof given by Hurd [17] as follows.

1) a−−−−→ l H⇒ a−−−−→
NS

l.

Assume that the sequence〈an〉 converges tol. Let 0< r be given and letη = [〈mn〉]be
any given infinite hypernatural number. Sincea−−−−→ l, there exists a natural number
N such that|an − l| < r for all N 6 n. Now, sinceη is an infinite hypernatural with
representative sequence〈mn〉, we know, from the properties of infinite hypernaturals
(see Section8), thatN 6 mn for almost all themn; that is,{n. N 6 mn} ∈ UN. But
we can also prove that

{n. N 6 mn} ⊆ {n. |amn − l| < r}
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from which it immediately follows that{n. |amn − l| < r} ∈ UN. Thus, given any
positive real numberr, we have that|amn − l| < r for almost all theamn . From this
it follows thata∗

η − l̃ is infinitesimal; that is,a∗
η ≈ l̃.

2) a−−−−→
NS

l H⇒ a−−−−→ l.

Suppose that〈an〉 does not converge tol. Then, there is some standard realr > 0
and a functionf : N → N satisfyingn 6 f (n) andr 6 |af (n) − l| for all n ∈ N.
Now, writing f (n) ≡ fn, the sequence〈fn〉 defines a hypernatural numberη, which
we prove to be infinite. We have{n. r 6 |afn − l|} ∈ UN since it coincides withN.
Thus, it follows thata∗

η − l̃ is not infinitesimal.

12.3. Remarks on the proof

There are several points that need to be made about the mechanical proof of the theorem
above. As we mentioned already, the first part of the proof was relatively easy to mechanize,
given that we had already proved various theorems expressing each class of hyperreal
numbers in terms of the free ultrafilter. The second part needed several lemmas since it is
more complicated. It involves, for example, the use of the axiom of choice (AC), which
textbooks often fail to mention explicitly. In our mechanization, we use Hilbert’s description
operator to prove the next theorem, which enables the existential quantifier to be pulled
across the universal quantifier:

∀x. ∃y. Qx y H⇒ ∃f. ∀x. Qx (f x). (23)

This theorem allows us to introduce a function fromN to N — effectively a sequence of
natural numbers — that can be used to define an infinite hypernatural number. A brief
remark is needed about theorem (23) above: in this particular proof where we only want to
obtain a functionf : N → N, the use of AC is not strictly needed. Indeed, we can prove
a special case of theorem (23) simply by lettingf (x) be the leasty such thatQx y. This
translates as a direct proof in Isabelle: we use the definedLEAST operator and letf be
λx.LEASTy. Qx y. (We thank the anonymous referee for pointing this out, and motivating
the alternative mechanization in Isabelle.)

The following lemma is then proved on the way to the main result:

∀n. n 6 f n H⇒ Abs_hypnat (hypnatrel ˆ ˆ {f }) ∈ HNatInfinite.

Another important observation is that the structure of the proof follows a general pattern
that will occur again when we mechanize the equivalence proofs for other properties. We
typically need to use AC when proving that a particular nonstandard definition implies the
standard one. Mechanical theorem-proving benefits from the re-use of code and lemmas.

The general pattern in the proofs is not a coincidence, and can be related to one of the
central features of nonstandard analysis, known as thetransfer principle. This provides a
context in which true statements aboutR are transformed into statements aboutR∗. Within
a typed logic, this procedure would involve lifting results from the typereal to the type
hypreal, from nat tohypnat, or (viewed more generally) from any type to its extended
counterpart.

In the subsequent survey of the development of NSA in Isabelle, we shall state the
standard and nonstandard formulations of various concepts, but often omit explicit details
of the equivalence proof unless they differ considerably from the proof just given. We
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shall, however, mention any interesting lemmas that were needed, as well as any particular
difficulties encountered.

12.4. Properties of sequential limits

With the nonstandard formulation, the proofs of basic properties of sequences all become
trivial. Indeed, their mechanization mostly involves simple algebraic manipulations that can
be handled automatically by Isabelle’s simplifier. We prove the following theorems.

X−−−−→
NS

a Y −−−−→
NS

b

(λn. X n+ Y n)−−−−→
NS

a + b (24)

X−−−−→
NS

a Y −−−−→
NS

b

(λn. X n · Y n)−−−−→
NS

a · b (25)

X−−−−→
NS

a

λn. −X n−−−−→
NS

−a (26)

X−−−−→
NS

a a 6= 0

(λn. rinv Xn)−−−−→
NS

rinv a (27)

X−−−−→
NS

a X−−−−→
NS

b

a = b (28)

For the proof of theorem (24) above, for example, we have thatX∗
n ≈ ã andY ∗

n ≈ b̃, and
hence thatX∗

n+Y ∗
n ≈ ã+ b̃ for any infinite hypernaturaln, since the infinitely close relation

is closed under addition (see Section7.3). The proof is done in one step using Isabelle’s
automatic tactic. The other theorems are all proved as simply, the only exception being
theorem (27). This requires a bit more work, and the following lemma:

X∗N 6= 0 H⇒ (λm. rinv (Xm))∗N = hrinv (X∗N).

This result effectively performs the∗-transform over both the inverse function and the
sequence function, sincehrinv = rinv ∗. Once these basic properties have been proved,
we can deal with the important concept of Cauchy sequences and their associated theorems.

12.5. Sequences

In this section, we examine some of the important properties of sequences formalized in
Isabelle. We first examine the concept of a bounded sequence.

12.5.1. Boundedness and monotonicity
We define the standard and nonstandard notions of a bounded sequence as follows:

Bseq X ≡ ∃K. (0< K ∧ ∀n. rabs (X n) 6 K)

NSBseqX ≡ ∀N ∈ HNatInfinite. ( ∗fNat∗ X)N ∈ Finite.
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The equivalence of the standard and nonstandard definitions for boundedness is first proved,
thereby making two characterizations of the concept available for use in our proofs. The
nonstandard definition,NSBseq, makes it immediately obvious that boundedness is a nec-
essary condition for convergence. We have the following theorem.

Theorem 12.2. NSconvergent X H⇒ NSBseqX where

NSconvergent X ≡ (∃l. X−−−−→
NS

l).

This reduces, in Isabelle, to proving the following goal:

∃l. ∀N ∈ HNatInfinite. ( ∗fNat∗ X)N ≈ l̃

H⇒ ∀N ∈ HNatInfinite. ( ∗fNat∗ X)N ∈ Finite.

Proof. Suppose that〈Xn〉 converges to someα ∈ R. ThenX∗
n ≈ α̃ for every infinite

hypernaturaln, and must therefore be finite by the following lemma:

x ∈ Finite ∧ x ≈ y H⇒ y ∈ Finite.

The theorem is proved in one step by Isabelle’sblast_tac. We also prove that bounded-
ness is a sufficient condition for convergence, provided that a given sequence ismonotone:

Bseq X ∧ monoseq X H⇒ convergent X

where the monotonicity of a sequenceX is defined by

monoseq X ≡ ((∀(mn. m 6 n −→ Xm 6 Xn) ∨
(∀mn. m 6 n −→ Xn 6 Xm)).

The proof of the theorem above proceeds through a mixture of standard and nonstandard
arguments: for some of the lemmas, it is easier to prove a standard version rather than a
nonstandard one. This is the case for the following result, for example:

∀n. m 6 n −→ X n = Xm H⇒ ∃l. X−−−−→ l.

The standard proof is trivial since the variables are easy to instantiate by a routine exami-
nation of the goal. Isabelle’s automatic tactic then proves the theorem without difficulty. A
nonstandard proof, however, would require proving a more demanding theorem:

∀n. m 6 n −→ X n = Xm H⇒ ∃l. ∀N ∈ HNatInfinite. ( ∗fNat∗ X)N ≈ l̃.

This is one of the few cases where we have noticed that a nonstandard proof seems to be
more complicated that its standard counterpart. The difficulty here lies in finding the right
instantiation for the existential variable.

12.5.2. Cauchy sequences
The following statements are equivalent.

Theorem 12.3 (Convergence).The sequence〈an〉 converges; that is,∃l. an−−−−→ l.

Theorem 12.4 (Hyperreal Cauchy condition).For all infinite hypernatural numbersN
andM, a∗

N ≈ a∗
M .
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Theorem 12.5 (Real Cauchy condition).For all 0 < ε there is an integerM such that
for all m, n > M, |am − an| < ε.

The standard proof that a sequence is Cauchy if and only if it is convergent can be
obtained from most traditional textbooks on analysis. Harrison [14], for example, uses the
proof from Burkill and Burkill [5]. Although, the mechanization is reported as being a
direct formalization in the HOL-Light system, Harrison’s proof is rather complicated. This
is partly due to difficulties inherent in finding the right instantiations for variables inε andδ
proofs, especially since HOL-Light does not allow unknown variables whose instantiations
can be delayed. Owing to this problem, Harrison suggests that Isabelle might provide a more
natural environment forε andδ proofs. Although this in itself seems a reasonable argument,
we actually go one step further by using nonstandard arguments: our formalization avoids
the need forε andδ arguments altogether.

To prove the Cauchy criterion for convergence, Burkill and Burkill, and hence Harrison,
define the extra notion of a subsequence. They then prove that every sequence has a mono-
tonic subsequence. Although the main theorem is not difficult to reach once this result and
a few other lemmas have been set up (Harrison also needs to define a ‘reindexing’ func-
tion in his formalization, for example), one might feel that the need for various auxiliary
notions diverts attention from what is actually being proved. The need to introduce and use
the properties of subsequences is not immediately obvious to anyone trying to prove the
theorem (without the help of a textbook, for example).

Our formalization avoids the notion of a subsequence and goes for a direct and more
intuitive proof. First we prove the equivalence of the real (standard) and hyperreal (non-
standard) Cauchy conditions. This resembles that of Theorem12.1. With this equivalence
set up, the proof of the main result is simple and direct within the nonstandard framework.

Theorem 12.6. The sequence〈Xn〉 converges if and only if it is Cauchy.

Proof. If 〈Xn〉 converges tol thenX∗
n ≈ l̃ ≈ X∗

m for all infiniten andm by the nonstandard
definition of convergence; so〈Xn〉 is a Cauchy sequence by the nonstandard definition of
the Cauchy criterion.

Conversely, if〈Xn〉 is a Cauchy sequence then〈Xn〉 is bounded and soX∗
n is finite for all

infinite n. Therefore, using the standard part theorem, there exists a standard (embedded)
real numberl infinitely close toX∗

� where� is our usual infinite hypernatural number
(see Section12.1, for example). Thus, we have thatX∗

n ≈ X∗
� ≈ l for all infinite n

(nonstandard Cauchy criterion), and so〈Xn〉 converges tol (nonstandard formulation for
convergence).

One lemma, also needed by Harrison, requires proving that every Cauchy sequence is
bounded. We use the nonstandard version of this theorem involving the hyperreal formula-
tions of both the Cauchy and boundedness properties.

A historical note: though infinitesimals do not appear in the standard definition of Cauchy
convergence, Cauchy used them as a tool in hisCours d’analyse(1821) [22]. Indeed,
Cauchy explicitly states the following as an alternative version of convergence: ‘in other
words, it is necessary and sufficient that, for infinitely large values of the numbern, the
sumssn,sn+1, sn+2, . . . differ from the limit s, and consequently among themselves, by
infinitely small quantities.’ Reinterpreted, within the context of nonstandard real analysis,
this corresponds exactly to the hyperreal Cauchy condition. Laugwitz (further) mentions
that Euler was the first, much earlier, in 1735, to state thatsn − sm being infinitesimal for
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infinitely largem, n was a necessary and sufficient condition for convergence [22]. Such
use of infinitesimals, especially by the rigorous Cauchy, gives yet another indication of their
power as a tool in analysis throughout the centuries.

12.5.3. Sequences and hyperreals
There is, as expected, a close relationship between sequences and hyperreal numbers. Indeed
since the development of the hyperreals has been based on the use of sequences of real
numbers, we can prove the following theorems.

Theorem 12.7. If 〈an〉 is bounded then[〈an〉] is finite; expressed as a theorem of Isabelle,
we have

NSBseqX H⇒ Abs_hypreal (hyprel ˆ ˆ {X}) ∈ Finite.

Theorem 12.8. If 〈an〉 converges to zero then[〈an〉] is an infinitesimal.

Theorem 12.9. If 〈an〉 is an unbounded sequence then[〈an〉] is an infinite hyperreal.

12.6. Series

In standard analysis an infinite series is the limit of a sequence of finite sums. Despite
the notation

∞∑
i=0

ai

one does not try in classical analysis to interpret it literally as an infinite number of additions.
Instead, one considers the sums of finitely many of the terms of the series, and examines the
behaviour of such sums as an increasingly large, but still finite, number of terms is allowed.
Using our framework, however, it is possible to use the nonstandard criterion for sequential
convergence to defineliterally infinite sums.

12.6.1. Infinite sums and infinite series
Given a real sequence(fn), we define the standard notion of a finite sum (

∑n−1
i=m fi) using

Isabelle’sprimrecpackage, which implements primitive recursion:

consts sumr :: [nat, nat, ( nat ⇒ real)] ⇒ real
primrec
sumr m 0f = 0
sumr m(Suc n) f = if n < m then 0

else sumr mnf + f (n).

The first line declaressumr to be a constant. Theprimrec declaration provides a safe
way of defining primitive recursion on datatypes [27]. Isabelle checks whether the reduction
rules given forsumr satisfy a primitive recursive definition, thereby ensuring consistency,
and supplies the reduction rules to the simplifier.

The expected theorems about finite sum are easily proved, mostly through induction
followed by simplification. We shall not list them here, but will instead describe how the
canonical nonstandard extension ofsumr is defined.
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Consider a sequence of finite sums: this constitutes a mapping fromN to R which has a
unique nonstandard extension defined, for any infinite hypernatural numbersM = [〈Xn〉]
andN = [〈Yn〉], as

N∑
i=M

∗
ai ≡

〈
Y1∑
i=X1

ai,

Y2∑
i=X2

ai,

Y3∑
i=X3

ai, . . .

〉 . (29)

This enables one to talk of the sum being taken toN terms (Mcan be set to 0), whereN
is any hypernatural number. The value of such aninfinitesum is a hyperreal number which
depends on the number of terms taken. The formalization of the nonstandard extension in
definition (29) is given in Isabelle by

sumhr :: (hypnat ∗ hypnat ∗ (nat ⇒ real)) ⇒ hypreal
sumhr p ≡ ( λ(M,N, f ).

Abs_hypreal(
⋃
X ∈ Rep_hypnat M.⋃
Y ∈ Rep_hypnat N.

hyprel ˆ ˆ {λn. sumr ((Xn), (Yn), f )})) p.
As is usual in such cases, the corresponding simplification theorem is proved; it can be
added to Isabelle’s simplifier when needed:

sumhr (Abs_hypnat (hypnatrel ˆ ˆ {λn. X n}),
Abs_hypnat (hypnatrel ˆ ˆ {λn. Y n}), f )
= Abs_hypreal (hyprel ˆ ˆ {λn. sumr (X n, Y n, f )}).

Using this definition, theorems similar to the two reduction rules in the recursive definition
of sumr are proved:

sumhr (m, 0, f ) = 0
sumhr (m, n+ 1, f )= if n < m then 0

else sumhr (m, n, f )+ (∗fNat∗ f ) n.

The nonstandard extension, with its possibly infinite hypernatural limits, preserves the
formal behaviour of finite summation. In fact, with the help of the theorems just introduced,
the properties of the finite sum are directly transferred fromsumr to sumhr. A few of the
theorems proved in Isabelle are as shown below.

sumhr (m, n.f )+ sumhr (m, n, g) = sumhr (m, n, λi. f i + g i) (30)

sumhr (0, �, λi. 1)= ω − 1 (31)

sumhr (0, 2�, λi. (−1)Suc i ) = 0 (32)

sumhr (0, 2�− 1, λi. (−1)Suc i ) = 1 (33)

sumhr (m, n, λi. r · (f i)) = r̃ · sumhr (m, n, f ) (34)

hrabs (sumhr (m, n, f )) 6 sumhr (m, n, λi. rabs (f i)) (35)

n < p H⇒ sumhr (0, n, f )+ sumhr (n, p, f ) = sumhr (0, p, f ) (36)

(∀r. m 6 r ∧ r < n −→ f r = g r) H⇒ sumhr (m, n, f ) = sumhr (m, n, g) (37)

sumhr (0, N, f ) = (∗fNat∗ (λn. sumr (0, n, f )))N (38)

In theorem (31),� once more refers to the infinite hypernatural[〈0, 1,2, . . .〉], while ω
refers to the infinite hyperreal[〈1,2, . . .〉] (see Sections7.1and8.1). The sum involved in
this theorem can thus be literally taken as infinite. It is proved by observing that, according
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to the definitions formalized in Isabelle,
�∑
i=0

∗
1 =

[〈
0∑
i=0

1,
1∑
i=0

1,
2∑
i=0

1, . . .

〉]

= [〈0, 1,2, . . . 〉]
= [〈1,2, 3, . . .〉] − [〈1,1,1, . . .〉]
= ω − 1.

Of the other theorems shown, theorem (38) is perhaps the best illustration thatsumhr is
the nonstandard extension ofsumr. It shows how the framework naturally extends any
standard function (of a single variable), enabling it to take a nonstandard argument. This
theorem is important to the derivation of results about convergence of series. Theorems (32)
and (33) illustrate the comment made above that the value of the infinite sum depends on
the number of terms taken.

Following Harrison [14], a relationsums is defined to denote that an infinite series
converges to some limita as its sum. An infinite series

∑∞
i=0 fi ‘sums to’ some real number

a if and only if the sequence ofpartial sums
∑n
i=0 fi converges toa as its limit. This

provides the following definition in Isabelle:

f sums a ≡ (λn. sumr (0, n, f ))−−−−→ a.

Hence, it also follows that the infinite series is convergent if and only if the sequence
(λn. sumr (0, n, f )) is a Cauchy sequence.

In nonstandard terms, the definition of a convergent series is given as follows.

Definition 12.1. The infinite series defined by the sequence〈fn〉 is said toconvergeif there
exists some real numbera such that for every infinite hypernatural numberN ,

N∑
i=0

∗
fi ≈ a.

In Isabelle, this definition becomes

f NSsumsa ≡ (∀N ∈ HNatInfinite. sumhr (0, N, f ) ≈ ã).

From this definition, the following theorems are proved.

Theorem 12.10.A necessary and sufficient condition for an infinite series to converge is
that for any two infinite hypernatural numbersM andN , we have

M∑
i=0

∗
fi ≈

N∑
i=0

∗
fi

or, equivalently in Isabelle,

∃a. f NSsumsa ⇐⇒ ∀M ∈ HNatInfinite. ∀N ∈ HNatInfinite.
sumhr (0,M, f ) ≈ sumhr (0, N, f ).

Theorem 12.11.The theorem above is also expressed in an alternative form using result
(36) from the list of theorems given aboutsumhr:

∃a. f NSsumsa ⇐⇒ ∀M ∈ HNatInfinite. ∀N ∈ HNatInfinite.
M < N −→ sumhr (M,N, f ) ≈ 0.
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As we have seen, NSA does indeed simplify the treatment of real sequences and infinite
series. As a further benefit, the nonstandard extension of sums enables us to treat finite and
infinite series in a homogeneous fashion. There is no need to use∞ as a purely notational
device in defining infinite series; it is now possible to take the sum toN terms, whereN can
be a natural number or an infinite hypernatural. The∞ symbol now stands for any member
of HNatInfinite.

13. Some elementary topology of the reals

We now survey the development of some basic topology on the reals in Isabelle. The aim
of this formalization is to see the benefits that might be gained using nonstandard analysis
when dealing with elementary topological notions such as open sets and neighbourhoods.

13.1. Neighbourhoods

We begin by giving the standard and nonstandard definitions of theneighbourhoodof a
point. For the standard definition, the concept of aball is first defined. Ifa is any point in
R andr is any real number, then the set of all real pointsx whose distance froma is less
thanr is defined as

rBall a r ≡ {x. rabs (a − x) < r}.

Definition 13.1. A setM ⊆ R is said to be a(standard) neighbourhoodof pointa ∈ R if
and only if there exists somer > 0 such that

rBall a r ⊆ M.

Expressing this in Isabelle, we have

isnbhd a M ≡ ∃r. 0< r ∧ rBall a r ⊆ M.

The nonstandard formulation, on the other hand, is given by the following definition.

Definition 13.2. A setM ⊆ R is said to be a(nonstandard) neighbourhoodof point a if
and only if every hyperrealx infinitely close toa belongs to the nonstandard extensionM∗
of M.

In Isabelle, this is formalized as

isNSnbhd a M ≡ monad (̃a) ⊆ ∗s∗ M.
As can be seen, the concept of amonad(named as a tribute to Leibniz) enables the definition
to be expressed concisely. The monad is a set of hyperreals, formally defined by

monad x ≡ {y. x ≈ y}.
The next step, as usual, is to prove the equivalence of the two definitions as a theorem in
Isabelle. The proof is mechanized without much difficulty with the help of result (10) from
Section10.2. This lemma is necessary to prove that the nonstandard definition implies the
standard one. The formulations are next used to deal with the notion of open sets.
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13.2. Open sets

A subsetG of R is said to beopenif and only if G is a neighbourhood of each of its
points. This leads to the following direct formalization of the standard and nonstandard
characterizations:

isOpen G ≡ ∀a ∈ G. isnbhd a G;
isNSOpen G ≡ ∀a ∈ G. isNSnbhd a G.

The equivalence proof follows trivially from that of neighbourhood. The theorems given
next are all proved automatically. They are direct consequences of the results obtained about
boolean operations on nonstandard extensions of sets (see Section10.2).

isOpen ∅ isOpen (UNIV :: real set)

isOpen A isOpen B

isOpen A ∩ B
isOpen A isOpen B

isOpen A ∪ B
isOpen A

isOpen (
⋃
A)

By contrast, and as an example, astandardproof in Isabelle that open sets are closed under
finite intersections requires several steps including an explicit instantiation of variables, a
case split, and the use of the following lemma:

r1 < r2 ∧ x ∈ rBall a r1 H⇒ x ∈ rBall a r2.

The gain from using nonstandard analysis seems obvious once again. In this development
of elementary real topology, several other concepts (such as closed sets, limit points, and
derived sets) are also introduced. Their various properties are formalized, and in most cases
the proofs are automatic. One of the main results to be formalized in this theory using a
nonstandard approach is the Bolzano–Weierstrass theorem. Its proof, as given by Hurd [17],
is extremely short and simple compared to the standard proof.

14. Limits and continuity

There are several notions of limits that share a number of common theorems (such as
uniqueness). It is clear that an efficient mechanization of standard analysis should seek to
minimize proof replication by developing a generic treatment of limits. Harrison uses the
well-known theory of convergence nets to prove a number of general theorems that can then
be specialized to fit each notion of ‘limit’ [14].

Since our development involves standard theorems about limits using a nonstandard
approach, we did not feel a need for such a generic treatment of limits. Moreover, this is
only an initial investigation into the benefits to be gained from working in the hyperreals. So
there is scope for further improvement. An interesting idea would be to seek a generalization
for the nonstandard theory of limits as well. However, since we are already working with
much simpler and more algebraic formulations than in the standard case, the gains might
not be worth the trouble. After all, as we noticed in our development, having independent
notions of sequential and pointwise limits does not represent a lot of extra work since the
proofs of similar properties are all done automatically. Having said this, it is probably wise
in any mechanization to favour the approach that cuts down on work. This would prevent

177https://doi.org/10.1112/S1461157000000267 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000267


Mechanizing NSA in Isabelle

us from having two similar-looking theorems like the ones below, which were used for
sequential and pointwise limits respectively:

(∗fNat∗ f )N ≈ l ∧ (∗fNat∗ g)N ≈ m

H⇒ (∗fNat∗ (λy. f y + g y))N ≈ l +m

(∗f∗ f ) x ≈ l ∧ (∗f∗ g) x ≈ m

H⇒ (∗f∗ (λy. f y + g y)) x ≈ l +m.

All this falls under the more general concept of preservation of properties across nonstan-
dard extensions. We would like to prove general properties that hold for all nonstandard
extensions of functions, rather than deal with specific cases like those above. Textbooks
usually state the properties that we presented in Section10.4as general results that apply
to all extensions. In our case, since we extend each type of function explicitly, we need to
prove similar properties each time.

Let us now return to the standard and nonstandard characterizations of the notions of
pointwise limits. A functionf is said to have a limitl asx approaches a pointa if and only
if for any givenε > 0, there exists aδ > 0 such that for every value ofx satisfying the
inequality 0< |x − a| < δ, we have|f (x)− l| < ε. This is the standardε andδ definition
for the limit of a function at a point. The conventional notation is limx→a f (x) = l. We
will, however, use a relational approach in this case as well, and denote the condition by
f

a−−−−→ l for the standard case, and byf
a−−−−→
NS

l for the nonstandard one. In Isabelle,

we have:

f
a−−−−→ l ≡ ∀ε. 0< ε −→ (∃δ. 0< δ ∧

(∀x. 0< rabs (x − a) ∧ rabs (x − a) < δ

−→ rabs (f x − l) < ε)).

The nonstandard definition, once again, is more concise and captures the intuition behind
the notion:

f
a−−−−→
NS

l ≡ ∀x. x 6= ã ∧ x ≈ ã −→ (∗f∗ f ) x ≈ l̃.

The equivalence of the two definitions is not too difficult to prove and has the same structure
as the other, similar proofs. We make use of a few lemmas such as

∀n. rabs (X n− x) < rinv (n) H⇒
(Abs_hypreal (hyprel ˆ ˆ {X})− x̃) ∈ Infinitesimal,

which enables us to define a hyperreal infinitely close to a real numberx, given a real
sequence converging towards that number.

We prove properties analogous to those presented in Section12.4. In this part of the
formal investigation, however, we decided to prove some of the properties twice: first using
only the standard approach and then using the nonstandard approach. The aim was to
examine more closely the gains from using nonstandard analysis in terms of the number of
steps required to complete each proof, instantiations of variables, and theorems used. If we
consider, for example, the formalization of the addition property,

f
a−−−−→
NS

l g
a−−−−→
NS

m

(λx. f (x)+ g(x))
a−−−−→
NS

l +m

a few interesting remarks can be made.
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• The nonstandard proof expands the definitions and is completed automatically in one
step (0.08 seconds):

Goalw [NSLIM_def]
"[| f -- a --NS> l; g -- a --NS> m |]

==> (%x. f(x) + g(x)) -- a --NS> (l + m)";
by (auto_tac (claset() addSIs [starfun_add_inf_close],

simpset() addsimps [hypreal_real_add]));

while the standard proof, with our direct formalization, takes some 15 steps.

• We need to give instantiations of variables in several steps for the standard proof. The
level of automation is thus fairly low, and requires the user to pay attention to a lot
of details. Moreover, there is the added difficulty of deciding what the instantiation
should be, and dealing with a three-way case split arising from the linear ordering of
the reals.

• The standard proof requires theorems about the transitivity of the ordering relation,
the absolute function (triangle inequality theorem), the monotonicity of the ordering
relation under addition, and so on, while the nonstandard proof needs only a theorem
about the monotonicity of the≈ relation under addition, and one about the preservation
of the addition operation by the embedding function for the reals. Both of these are
supplied to Isabelle’s automatic tactic as shown.

Therefore, we notice that the nonstandard proof offers a clear gain in automation. The user
is freed from some of the more tedious steps through the use of the simpler formalization.

In addition, theorems such as

f
a−−−−→ l ⇐⇒ (λh. f (a + h))

0−−−−→ l

are simple to prove using the nonstandard formulation. This is a useful lemma that can
be used to simplify theorems about continuity and differentiability, for example. Next, the
standard notion of continuity is examined. A standard real functionf is continuous at a
pointa whenf (x) tends tof (a) asx tends toa. In Isabelle,

isCont f a ≡ (f
a−−−−→ f a).

We give again the nonstandard definition of continuity that we mentioned in Section11. A
standard real functionf is continuousat the pointa if and only if f ∗(x) is infinitely close
to f (a) for every hyperrealx infinitely close toa. Expressed formally in Isabelle,

isNSCont f a ≡ (∀x. x ≈ ã −→ (∗f∗ f ) x ≈ f̃ (a)).

Once again, the formalization makes it explicit that the definition is referring to the embed-
ded copies ofa andf (a) in the hyperreals. The equivalence of the two definitions follows
immediately from that of standard and nonstandard limits. A number of useful theorems
are proved immediately. Examples are:

isNSCont f a ⇐⇒ (f
a−−−−→
NS

f a)

isCont f a ⇐⇒ (λh. f (a + h)
0−−−−→ f a).

We also have two distinct ways of proving the usual theorems about continuous functions.

1) The theorems can be proved as results of the corresponding theorems for pointwise
limits. This is a conventional approach and, although (some of) the limit theorems
themselves might have been proved using NSA, the process is wholly standard.
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2) They can be proved as simple algebraic consequences of the nonstandard formulation
of continuity. This approach bypasses the limit results, and provides alternative simple
proofs. Moreover, it has an added power. It can prove at least one elementary result —
the composition of continuous functions — that does not follow from limit theorems.
This is examined next.

We prove that the sum, product, and division of continuous functions are also continuous.
These are results that can be proved in either of the two ways mentioned above. We also
prove the following theorem.

Theorem 14.1. The composition of continuous functions is continuous:

isCont f a ∧ isCont g (f a) H⇒ isCont (g o f ) a.

Proof. If x ≈ ã thenf ∗(x) ≈ f̃ (a), and so it follows thatg∗(f ∗(x)) ≈ ˜g(f (a)).

This result is proved automatically by Isabelle’sauto_tac. Contrast this with Har-
rison’s corresponding proof, which is longer, and requires the instantiation ofε and δ
properties. In a sense, this also hints at another powerful aspect of nonstandard techniques
in mechanical theorem-proving: their simple algebra enables them to deal uniformly with
a wide range of theorems. The standard approach, on the other hand, required Harrison to
go back to a direct formalization in the HOL-Light system because the theorem does not
follow from any of the results about limits. An analogous difficulty occurs if the standard
treatment is used to formalize the chain rule of differentiation.

Using the nonstandard framework, it is an interesting exercise to prove more involved
theorems such as the following topological characterization of continuity. A functionf

is continuous onR if and only if the inverse image{x ∈ R. f (x) ∈ A} of any open set
A is itself always an open set. In Isabelle, the following theorem is proved without any
difficulties:

(∀x. isCont f x) ⇐⇒ (∀A. isOpen A −→ isOpen {x. f (x) ∈ A}).
Proofs of the theorems about limits, topological notions and so on only refer to the free

ultrafilter when we are proving the equivalence of the standard and nonstandard definitions.
All the other theorems are proved at the more intuitive algebraic level. The equivalence
theorems are essential because the standard formulations are the ones that are in widespread
use. With the success and widening acceptance of NSA, it might be that in a few decades
the so-called ‘nonstandard’ definitions will become the established ones.

Using the various continuity theorems, we have mechanized nonstandard proofs by Hurd
[17] of some important results of real analysis.

Theorem 14.2 (Intermediate value theorem).If f is continuous on the closed interval
[a ,b] and f (a) < d < f (b) for somed, then there exists a termc betweena andb with
f (c) = d. The proof considers the pointsxk = a + k(a − b)/n, 0 6 k 6 n and the values
of f at xk. The proof then proceeds through a∗-transform.

Theorem 14.3 (Extreme value theorem).If f is continuous on the closed and bounded
interval [a,b], then there exists a termc betweena andb so thatf (x) 6 f (c) for all x
betweena andb. The proof proceeds succinctly using arguments similar to the ones above.
The pointsxn,k = a + k(b − a)/n, 0 6 k 6 n are considered this time.

180https://doi.org/10.1112/S1461157000000267 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000267


Mechanizing NSA in Isabelle

15. Differentiation

The development of the theory of differentiation builds upon the results of the previous
section. The standard formulation states that a functionf has a derivatived at a pointx if
(f (x + h) − f (x))/h → d ash → 0. In Isabelle, we formalize the relational definition
DERIV(x) f :> d meaning ‘the derivative off atx is d ’ as

DERIV(x) f :> d ≡ (λh. (f (x + h)− f (x)) · rinv h)
0−−−−→ d.

The notationDERIV(x) can be regarded as a variation of the Leibniz notation, and as
standing ford/dx. We prove this equivalent form of the standard definition, which is useful
for some of our proofs:

DERIV(x) f :> d ⇐⇒ (λz. (f (z)− f (x)) · rinv (z− x))
x−−−−→ d. (39)

The nonstandard definition is stated as

NSDERIV(x) f :> d ≡ ∀h ∈ Infinitesimal − {0}.
((∗f∗ f )(̃x + h)− f̃ (x)) · hrinv h ≈ d̃.

We first prove that this nonstandard definition can also be given in terms of limits, exactly
as the standard definition. The proof does not cause much difficulty and, from it, we see
immediately that the two definitions of derivative are equivalent. In addition, using Theorem
(39), we provide a second useful nonstandard characterization for the differentiability of a
functionf at a pointx:

NSDERIV(x) f :> d ⇐⇒ ∀y. y ≈ x ∧ y 6= x −→
((∗f∗ f )(y)− f̃ (x)) · hrinv (y − x̃) ≈ d̃.

We then proceed to prove the standard results in an extremely simple fashion. For ex-
ample, we prove that a functionf , differentiable at a pointx, is continuous at that point:

NSDERIV(x) f :> d H⇒ isNSCont f x.

This is a simple algebraic theorem using the nonstandard formulation, sincef ∗(̃x + h)−
f̃ (x) ≈ d̃ · h for all h ≈ 0, and sof ∗(̃x + h) ≈ f̃ (x); that is,f is continuous atx.

A functional form is also defined for the derivative using the standard part function and
the non-zero infinitesimalε defined previously:

nsderiv(x) f ≡ st (((∗f∗ f )(̃x + ε)− f̃ (x)) · hrinv ε).
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15.1. Standard properties of derivatives

We prove the familiar rules about the differentiation of simple functions and their com-
bination as follows.

NSDERIV(x) (λx. k):> 0

NSDERIV(x) f :> d

NSDERIV(x) (λy. c· f (y)) :> c · d
NSDERIV(x) f :> d

NSDERIV(x) (λy.− f (y)) :> − d

NSDERIV(x) f :> d NSDERIV(x) g:> e

NSDERIV(x) (λy. f (y)+ g(y)) :> d + e

NSDERIV(x) f :> d NSDERIV(x) g:> e

NSDERIV(x) (λy. f (y)· g(y)) :> d · g(x)+ e · f (x)
The absence of any explicit notions of limits makes many of the standard results about
derivatives straightforward to derive. The properties follow from simple algebraic manip-
ulations of infinitesimals. As a result, the simplifier of Isabelle plays an important part in
these proofs, in doing the tedious term manipulation and cancellation. To achieve this, we
might need to add rules for associative-commutative rewriting, for example. However, there
are cases when we need to prove lemmas explicitly to help the simplifier to re-arrange terms.
For example, to prove the theorem about the derivative of product, we need the following
lemma:

(a · b)− (c · d) = b · (a − c)+ c · (b − d).

15.2. Chain rule

One of the important theorems about differentiation is thechain rule. In his formal-
ization of differentiation, Harrison reports on the problems that arise when proving this
theorem directly. The main difficulty is that, when using the standard definition, the theo-
rem does not follow directly from any limit results. Indeed, unlike continuity, limits are not
compositional. To deal with this problem, Harrison had to formalize an alternative, rather
different characterization of differentiability, the so-called ‘Carathéodory derivative’. In
our case, however, due to the nonstandard formulation, the chain rule admits an entirely
straightforward derivation. The Isabelle theorem is given as follows.

Theorem 15.1.

NSDERIV(a) g:> d NSDERIV((g a)) f :> e

NSDERIV(a) (f o g):> d · e
Proof. This follows immediately from

f ∗(g∗(x))− f ∗(g̃(a))
x − ã

= f ∗(g∗(x))− f ∗(g̃(a))
g∗(x)− g̃(a)

g∗(x)− g̃(a)

x − ã
≈ d · e.
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This nonstandard proof, unlike its standard counterpart, reflects nicely and directly the
intuition behind the Leibnizian notation for the rule:

df

dx
= df

dg

dg

dx
.

It should be noted that Ballantyne and Bledsoe’s NSA prover [2] could not prove the chain
rule automatically. In our case, we use a simple lemma to help set up the required product
of fractions:

y 6= 0 H⇒ x · z = (x · hrinv y) · (y · z).
The main proof is directly formalized, though we have to do some manipulations explicitly
— for example, we need to use one of Isabelle’s instantiation tactics with the lemma above
to set the variabley in it to the correct binding. The level of automation could be made
higher by building stronger routines in the simplifier to deal with division. For example,
the recent addition of generic simplification procedures for subtraction have been helpful
to many algebraic proofs. This is a case where the development of new theories can call for
more support from the prover. This ultimately benefits many other theories.

Coming back to our development, we prove the theorems about the inverses and quotients
of functions using the chain rule and the fact that, for non-zerox, the derivative off (x) =
1/x is−1/x2. The proofs remain simple and algebraic. Stated as theorems of Isabelle, these
various extra results (shown in terms of the equivalent standard notation) are formalized as
follows.

x 6= 0

DERIV(x) (λx. rinv x) :> − rinv (x2)

DERIV(x) f :> d f (x) 6= 0

DERIV(x) (λx. rinv (f x)) :> − d · rinv (f (x)2)

DERIV(x) f :> d DERIV(x) g :> e g(x) 6= 0

DERIV(x) (λz. f (z) · rinv (g z)) :> (d · g(x)− e · f (x)) · rinv (g(x)2)

15.3. Rolle’s theorem

Rolle’s theorem involves notions from both continuity and differentiability.

Theorem 15.2 (Rolle’s theorem).If f is defined and continuous on the finite closed in-
terval [a,b], f (a) = f (b), and differentiable at least on the open interval (a,b), then there
existsx0 betweena andb such thatf ′(x0) = 0.

The formalized proof is taken from Hoskins [16], and proceeds through a case analysis
on the values thatf can take in the interval betweena andb. The argument is once again
nonstandard, and yields a direct formalization. In Isabelle, the theorem is given by

a < b ∧
f (a) = f (b) ∧
∀x. a 6 x ∧ x 6 b −→ isNSCont f x ∧
∀x. a < x ∧ x < b −→ f NSdifferentiable x ∧
H⇒ ∃x0. a < x0 ∧ x0< b ∧ NSDERIV(x0) f :> 0

183https://doi.org/10.1112/S1461157000000267 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000267


Mechanizing NSA in Isabelle

where the nonstandard infix predicateNSdifferentiable stands for ‘the real function
f is differentiable atx’ and is defined by

f NSdifferentiable x ≡ ∃d. NSDERIV(x) f :> d.

In the previous sections, we have presented an initial investigation of analysis using a
nonstandard treatment. There are several important aspects of elementary analysis that still
need to be formalized, including Taylor and power series and the theory of Integration. A
nonstandard approach promises to be useful for these as well.

16. On the transfer principle

We now expand on thetransfer principle, on which we remarked briefly in Section12.3.
Consider the statement, true inR, stating that the set of natural numbersN is unbounded as
a subset ofR: the Archimedean property holds for the reals. Formalized in Isabelle, this is
expressed by

∀x:: real. ∃n::nat. x < real_of_nat n.

Using the definitions of hyperreals and hypernaturals, and the properties of the free ultrafilter,
we can then deduce the theorem that the set of hypernaturalsN∗ is unbounded as a subset
of the hyperrealsR∗. Stated in Isabelle/HOL, with explicit typing information shown, we
have

∀x::hypreal. ∃n::hypnat. x < hypreal_of_hypnat n.

This second statement about the hyperreals thus appears to be, in some sense, a transform
of the original statement about the reals. One can go from one to the other, as this exam-
ple illustrates, by making certain specific changes about the types of the terms (and the
embedding functions) appearing in each. The crux of nonstandard analysis is that the trans-
formation of statements along these lines can be carried out generally. It is this general idea
that is captured by the transfer principle [16].

Theorem 16.1 (The transfer principle for real analysis). There exists a setR∗ such that

1) R is a proper subset ofR∗ ;

2) to each functionf : R → R there corresponds a functionf ∗ : R∗ → R∗ which
agrees withf onR ;

3) to eachn-place relationP onR there corresponds an-place relationP ∗ onR∗ which
agrees withP onR .

Further, every well-formed statementϕ formulated in terms of

• particular real numbersr1, r2, . . . , rm,

• particular functionsf1, f2, . . . , fm,

• particular relationsP1, P2, . . . , Pm,

• logical connectives and quantifiers, with variables ranging overR

is true with respect toR if and only if the statementϕ∗ obtained fromϕ by replacing eachfk
byf ∗

k and eachPk byP ∗
k , and by allowing variables to range overR∗, is true with respect

to R∗.

In the current work, proving the equivalence of the standard and nonstandard formulations
has involved working with sequences and checking whether certain sets belong to the
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ultrafilter or not, each time a new property is introduced. By implementing some form of
the transfer principle, one should be able to capture much of the power that NSA derives
from the use of such metatheorems. This has not been investigated thoroughly — we have
formalized part (1), and particular cases of parts (2) and (3) above, though — and so
producing an effective form of the principle provides scope for further research. Our work
has shown, however, that a powerful theory is still possible if one is willing to transfer
properties by separate proofs. In fact, if we consider the example given at the beginning of
this section, and its proof in Isabelle, we get an idea of what would be needed in most cases
to enable transfer. So, for

∃n::hypnat. x < hypreal_of_hypnat n,

the proof simply boils down to showing that the following theorem involving our free
ultrafilterUN holds:

∀m. X(m) < real_of_nat f m

H⇒ {n.X(n) < real_of_nat (f n)} ∈ UN.
This final subgoal, which is trivial to prove, is reached through three simple steps which

involve

1) recasting the hyperrealx in terms of its underlying equivalence class;

2) expressing the Archimedean property of the reals in terms of the real sequenceX

introduced above to give

∀m. ∃n. X(m) < real_of_nat n

which by the axiom of choice yields:

∀m. X(m) < real_of_nat (f m);

3) instantiating the existential variable in the goal to the hypernatural

Abs_hypnat (hypnatrel ˆ ˆ {f })
which, as can be seen, is defined using the sequencef above.

The proof of the theorem is four lines long, and can be routinely done. As expected, this
compares favourably with the (mechanized) proof of the Archimedean property for the
reals.

Moreover, to help our formalization, general automatic tactics to check whether super-
sets, intersections, or complements of sets belong to the free ultrafilter have been coded.
These enable many of the goals to be greatly simplified, and in quite a few cases to be
proved automatically. The idea behind the main tactic (ultra_tac) exploits the facts that
the ultrafilterUN is proper (that is, it does not contain the empty set), that for any subsetA

of the naturals eitherA ∈ UN or its complement−A ∈ UN, and thatUN is closed under
finite intersection and supersets. As an example, if the tactic is used on the following goal,

A ∈ UN ∧ . . . ∧ B 6∈ UN ∧ . . . ∧X ∈ UN . . . H⇒ Z ∈ UN
it tries to solve it by looking for a proof that

A ∩ −B ∩ . . . ∩X ∩ −Z ⊆ ∅.
If it succeeds, this means, by the superset property, that the empty set is a member of
UN, which immediately leads to a contradiction. The tactic is wrapped around Isabelle’s
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auto_tac, which is used to perform simplification. This means that extra theorems can
be added to the simplifier if they are needed to show that the intersection is empty.

17. Related work

The reals were first constructed in Automath in 1977 by Jutting [19], who translated
Landau’s famous monograph on the foundations of analysis [21]. More recently, Harrison
has constructed the reals and formalized a substantial amount of analysis in the HOL-
Light system [14]. The work of Harrison has influenced some of our decisions during
mechanization, especially when formalizing analysis, where we have benefited from the
observations made by him on notations, for example. As far as our own constructions up to
the reals are concerned, we have mostly followed the presentation given by Gleason [11],
since it matches the sequence of constructions that Conway advocates [8].

The automated theorem-proving community does not seem to have shown much interest
in NSA, even though its importance has grown in many fields, such as physics, analysis and
economics, where it has successfully been applied. Ballantyne and Bledsoe [2] implemented
a prover using nonstandard techniques in the late seventies. Their work basically involved
substituting any theorem in the realsR by its analogue in the extended realsR∗ and proving
it in this new setting. Even though the prover had many limitations, and the work was just a
preliminary investigation, the authors argued that through the use of nonstandard analysis,
they had brought some new and powerful mathematical techniques to bear on the problem.

Despite this rather promising work, there does not seem to have been much done over
the last two decades. Chuaqui and Suppes [6] have proposed an axiomatic framework for
doing proofs in NSA, and Bedrax has implemented a prototype for a simplified version of
the Suppes–Chuaqui system called Infmal [3]. Infmal is implemented in Common Lisp and
contains the various axioms (logical, algebraic and infinitesimal) required by the deduction
system and extensions to the usual arithmetic operations. Unfortunately, Infmal is a simple
experiment and, though interactive, is rather limited in the proofs it can carry out. There
has also been some work carried out by Beeson [4] who developed a restricted axiomatic
version of NSA using the logic of partial terms. The properties of the infinitely close relation,
standard parts, infinitesimals and so on, are asserted as axioms leading to a theory similar in
spirit to the one that could be developed starting from the axioms we give at the beginning of
this paper in Section3. Beeson uses NSA to ensure the correctness of applications of calculus
in a system calledMathpertwhich combines computer algebra with theorem-proving.

In our development we have verified the various basic axioms asserted by Beeson in
his approach. Moreover, we have also verified, through our strictly definitional approach,
the axioms about properties of the hyperreals that were built into Ballantyne and Bledsoe’s
prover.

18. Concluding remarks

As far as we are aware, there has not been any previously published construction of the
hyperreals using a mechanical theorem-prover. This paper has described the construction
process resulting in a proper field extension of the reals. Various classes of numbers, includ-
ing the notorious infinitesimals, have been formally defined, and their properties formalized.
The≈ (infinitely close) relation has been introduced, which is crucial to the formalization of
nonstandard real analysis and to our own work on the formalization of Newton’sPrincipia
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[10]. The framework has been shown to be flexible by allowing the hypernaturals, and their
associated properties, to be formalized with minimal effort.

To reach the hyperreals has involved all the constructions up to the reals (which we have
not described in much detail) and proving the various properties of each number system
introduced; it also involved working in Isabelle/HOL set theory to formalize Zorn’s lemma
and the theory of filters and ultrafilters. As might be expected, a number of interesting
remarks emerge from this development. We outline some of these next.

The formalization of filters is an important contribution. They have numerous applica-
tions in set theory, logic, algebra, and so forth. They can also be used to study the various
notions of convergence; they yield essentially the same results as convergence nets [30].
Nets provide a natural generalization of sequences and are commonly used in analysis. In
fact, nets are also useful to the mechanization of analysis, as was shown by Harrison [14].
Thus, Isabelle’s theory of filters could be used for a general theory of convergence.

Since this work formalizes the ultrafilter theorem, the ultrapower construction becomes
available for the development of other nonstandard number systems. For instance, the hyper-
integers or hypercomplex numbers could be introduced. In particular, it becomes possible
to construct thehyperhyperrealnumbers from the hyperreals. These numbers were intro-
duced by Henle and Kleinberg [15], for example, and are shown to contain, in addition to
the fieldR∗, numbers even smaller than the infinitesimals. The new hyperhyperreal field can
be used, with benefits, for analysis over the hyperreals. On the other hand, ultrapowers also
have other independent uses: they are important concepts in the study of Banach spaces,
for instance.

The other main part of this work has dealt with the foundational development of real
analysis in Isabelle, using nonstandard techniques. The approach used for mechanization
of the calculus has proceeded strictly through definitions. We have introduced standard and
nonstandard definitions of all the concepts formalized, and have proved their equivalence
in each case.

We have also compared various aspects of our mechanization with corresponding ones
from the formalization of real analysis by Harrison using standard techniques. We have
highlighted the advantages that the more algebraic and often more intuitive nonstandard
formulation of familiar concepts has over the standard approach. There is much scope for
extending this development of real analysis in Isabelle. Some recent work, not covered in
this paper, has involved developing Isabelle theories for power series and transcendental
functions such as exp, sin, and cos, using a combination of standard and nonstandard analysis
techniques. This latest development points to another strength of our framework: it provides
the option of both standard and nonstandard proof development. One may choose either to
work with purely standard concepts, or to use mainly nonstandard ones, or a combination
of both.

In summary, this work describes a rigorous investigation of the mechanization of analysis
using nonstandard techniques. Our main aim has been to show that there are advantages to
be gained by using nonstandard analysis as the framework for mechanized real analysis. The
simplicity of the formulations and the ease with which many different results are mechanized
justify the promises held by the approach.
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Appendix A. Isabelle theory files

This appendix contains some of the theory files for the development of nonstandard
analysis described in this paper.

The material is is to be found at

http://www.lms.ac.uk/jcm/3/lms1999-027/appendix-a/.

The files should be used with Isabelle99, the current release of the theorem-prover. As this
work evolves, up-to-date versions of the theory files will be available in the online Isabelle
distribution [18].
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