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Abstract

This paper first describes the construction and use of the hyperre-
als in the theorem-prover Isabelle within the framework of higher-
order logic (HOL). The theory, which includes infinitesimals and
infinite numbers, is based on the hyperreal number system devel-
oped by Abraham Robinson in his nonstandard analysis (NSA). The
construction of the hyperreal number system has been carried out
strictly through the use of definitions to ensure that the foundations
of NSA in Isabelle are sound. Mechanizing the construction has re-
quired that various number systems including the rationals and the
reals be built up first. Moreover, to construct the hyperreals from the
reals has required developing a theory of filters and ultrafilters and
proving Zorn's lemma, an equivalent form of the axiom of choice.

This paper also describes the use of the new types of numbers and
new relations on them to formalize familiar concepts from analysis.
The current work provides both standard and nonstandard defini-
tions for the various notions, and proves their equivalence in each
case. To achieve this aim, systematic methods, through which sets
and functions are extended to the hyperreals, are developed in the
framework. The merits of the nonstandard approach with respect to
the practice of analysis and mechanical theorem-proving are high-
lighted throughout the exposition.

1. Introduction

In the early 1960’s, Abraham Robinson finally provided a rigorous foundation for the us
of infinitesimals in analysis by developing the new conceptarfstandard analysidNSA)

[29]. The idea was to introduce a new number system known abytperreals, which
contains not only the real numbers but also infinitesimals and infinite numbers. The notio
of infinitesimals and other nonstandard numbers introduce many subtleties into the thec
that need to be dealt with.

In this paper, we first describe the constructions of Robinson’s hyperreals in Isabelle. O
approach is purely definitional, to ensure that infinitesimals and other nonstandard numb
have a sound foundation in the system. To reach our goal has required constructing
various number systems leading to the reals, and then going one step further to define
hyperreals by working on sequences of reals. The hyperreals have considerable intrin
interest since they exhibit many new properties. Moreover, as a tool, they are of great val
to the formalization of analysis — an aspect that will be described as we report on tt
mechanization of nonstandard real analysis.
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Mechanizing NSA in Isabelle

This paper consists of two main parts: Sectiga8are concerned with the construction
of the hyperreals, while Sectio¥s-16describe their application to mechanized analysis.
We start by giving a description of Isabelle, and of the HOL object logic in which this work
was carried out.

2. Isabelle/HOL

Isabelle [25] is a generic theorem-prover, written in ML, into which users can encod
their own object-level logics. Examples of such object logics are higher-order logic (HOL)
Zermelo—Fraenkel set theory (ZF), and first-order logic (FOL). Terms from the object logic
are represented and manipulated in Isabelle’s intuitionistic higher-order meta-logic, whi
supports polymorphic typing.

2.1. Theories in Isabelle

Isabelle’s theories provide a hierarchical organization for the syntax, declarations al
axioms of a mathematical development, and are developed using theory definition files [2
A typical theory file will organize the definitions of types and functions. It may also contair
the primitive axioms that are asserted (without proofs) by the user. A particular theory wi
usually collect (in a separate file) the proven named theorems, and make them available
all its children theories.

The meta-level connectives are implication (3=the universal quantifier and equal-
ity. In Figure 1, we give the description of some of the notations used in Isabelle/HOL
Throughout the presentation, we will mostly be using conventional mathematical notatiol
when describing our development. However, there are cases where we might use the AS
notations actually used to express terms and rules in Isabelle as explicit examples.

An inference rule witlh premises or antecedents has the following form in Isabelle:

[p1:...; dull = V.

This abbreviates the nested implicatioh— (...¢, = v ...). Such a rule can also
be viewed as the proof state with subgagds. . ., ¢, and maingoaly [25]. Alternatively,
this can be viewed as meaningdf A - -- A ¢, theny'.

2.2. Proof construction

Rules can be combined in various ways to derive new ones using higher-order resolutic
this process is known as ‘proof construction’, and can proceed in both backward and forwe
directions.

* In backward fashion, the user supplies a goal and reduces it to simpler subgoals
applying existing rules until they are solved. A goal is solved when it becomes th
instance of some previously proved theorem.

« In forward proofs, the antecedents or assumptions of a rule can be resolved wi
other rules to derive new assumptions. This process can be carried on until either t
conclusion is the instance of some assumption, or the goal is an instance of a theore

2.3. Higher-order logic in Isabelle

One of Isabelle’s logics is HOL, a higher-order logic that supports polymorphism an
type constructors. Isabelle/HOL is based on Gordon’s HOL90 theorem-pri®jemfhich
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syntax description

& A, and

- =, not

==> —, implication (meta level)
> —, implication (object level)
= =, ifand onlyif

I or ALL v, forall

? or EX 3, exists

@ g, Hilbert choice

% A, lambda abstraction

- A A, setcomplement

Union ¢ (Je, union over sets of sets

Figure 1:ASCII notation for HOL.

itself originates from Church’s paper][ Isabelle/HOL is well developed and widely used.
It has a wide library of theories defined in it, including the natural numbers, set theon
well-founded recursion, inductive definitions and equivalence relations. Isabelle/HOL h¢
been applied to reasoning in many fields, including the verification of security protocol
[26] and verifying the type system of the Java programming language [24].

Though Isabelle is mainly used interactively as a proof assistant, it also provides su
stantial support for automation. It has a generic simplification package, which is set
for many of the logics, including HOL. Isabelle’s simplifier performs conditional and un-
conditional rewritings and makes use of context informati@®].[ The user is free to add
new rules to the simplification set (tkampse}, either permanently or temporarily. Isabelle
also provides a number of generic automatic tactics that can execute proof procedures
the various logics. The automatic tactics provided by Isabedlassical reasoneinclude
a fast tableau prover calldglast_tac, coded directly in ML, and Auto_tac, which
attempts to prove all subgoals by a combination of simplification and classical reasonin
Other powerful theorem-proving tactics include those which, uriikest_tac, con-
struct proofs directly in Isabelle: for examplegst tac implements a depth-first search
automatic tactic.

2.3.1. The HOL methodology

Isabelle/HOL has been chosen as the logic in which to carry out our proofs. One of the me
reasons is that it provides strong typing, and therefore ensures that only type correct ter
are accepted. Moreover, the HOL methodology, an approach that originated in Gordor
early work using HOL88, admits only conservative extensions to a theory. This meat
defining and deriving the required mathematical notions rather than postulating them. T
definitional approach of HOL requires that assertions be proved about some model inste
of being postulated. Such a rigorous definitional extension guarantees consistency, wh
cannot be ensured when axioms are introduced. As pointed out by Hartépslich an
approach provides a simple logical basis that can be seen to be correct once and for all. \/
regard to the foundations of infinitesimals, the definitional approach is certainly advisab
when one considers the numerous inconsistent axiomatizations that have been propose
the past [9]. Of course, care still needs to be exercised, as a wrong definition will almo
certainly yield the wrong properties.
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3. Properties of an infinitesimal calculus

We first look at some of the requirements for a set of infinitesimals that could be usef
for the development of an infinitesimal calculus. Keis@f][and Vesley33], for example,
discuss the various properties that need to hold for developing a calculus for the infinite:
mals. Let the sdnfinitesimal denote the set of infinitesimals, where an infinitesimal
can, for the time being, be viewed intuitively as a number smaller in magnitude than a
positive reals.

We would like the following properties.

1) Zero is arinfinitesimal.
2) There is a nonzero infinitesimal.
3) Infinitesimal is aring.
It might seem reasonable to want the following properties as well.

4) Infinitesimal is a subring of the real numbeRs.

5) Infinitesimal is anideal inR :
Vr € RVx e Infinitesimal rx € Infinitesimal.
6) Also, we expecinfinitesimal to be non-Archimedean:
Ax e Infinitesimal. Vn.nx < 1.

The above properties, (1)—(6), look sufficient for a simple theory of infinitesimals, but un
fortunately such atheory would be inconsistent. Furthermore, as V&8pydtes, ifR is the
set of classical reals, thamy nontrivial ideal inR is equal taR. Thus, ifinfinitesimal
satisfies propertie®], (4) and b) thenlInfinitesimal = R. This problem is tackled
in NSA by dispensing with property]. Instead, using the axioms of classical set theory,
a setR* of hyperreals is obtained with properties that incluiénitesimal C R*,
R <€ R* and properties (1)—(3) and (6), budt Infinitesimal C R, and therefore not
property (4). As a result, property (5) now requitafinitesimal to be an ideal in
the set of finite members @*. This set includes the reals and the infinitesimals, amongst
other numbers.

Though an axiomatic approach seems the easiest way to get quickly to the infinitesima
there is always the possibility that the set of axioms might lead to an inconsistency, as \
saw above. We would rather have a development of infinitesimals that is guaranteed to
sound — especially, given the stormy history of infinitesimals.

4. Constructions leading to the reals

There are various classical methods in existence in the literature on the construction
the various number systems. The usual approach is to arrange them in a lattice respec
the inclusions between the sets. [&tQ, R be the sets of integers, rationals, and reals
respectively, an@.™, QT, R™ be their positive elements. Note ti#it is the set of elements
of typepnat.
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/\
\/\
\/

As can be seen in the figure, there are several ways to Rdobm Z*. These vari-
ous paths, however, differ greatly in the technical details of the constructions along the!
Conway [8] suggests that there is a best way through the lattice to the reals that avoi
as much as possible, case splits. These are tedious and unnecessary complications the
often treated superficially in textbooks. Conway proposes the following general methot
that we implement in Isabelle.

To add negative numbers, that is to proceed, for example, &dnto R, the signed
number,x € R*, is represented as an ordered pair of unsigned nuntbetg, meaning
a — b, and the equivalence relation

(a,b) ~(¢c,d) = a+d=b+c Q)

is used. This is better than the obvious approach of the signed-magnitude representat
which leads to too much case-splitting.

Similarly, one can go fronZ to Q or from Z* to Q* by taking ordered pairga, b)
meaningz /b and the equivalence relation

(@.b)~ (c.d) = a-d=b-c. )

To proceed fron) to R or fromQ* toR™, the method oDedekind cutss used. There
are several other methods available, such as Cauchy sequences and positional expan:
[14]. The best path, as suggested by Conway,fis— QT — RT — R.

4.1. Equivalence relations in Isabelle/HOL

We use Isabelle’&quiv theory, which defines equivalence relations in higher-order
set theory, to define the new type of positive rationals. First, we recall the definitions «
equivalence relations, set quotients and equivalence classes:

Definition 4.1. Arelation~ is said to be aequivalence relatioif and only if it is reflexive
(x ~ x), symmetric (x~ y = y ~ x), and transitive (x~ y Ay ~ z = x ~ 2).

Definition 4.2. Given an equivalence relation on a setS, then thequotientof S with
respect to~ is the set of all equivalence classes, and is defined by = {[x]|x € S}
where[x] ={y € S|x ~ y}.

The set of all equivalence classg€s~ is called thequotient set of S by, and a member
of an equivalence class is often referred to sspesentativef the class.
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PRAT = PNAT + Equiv +

constdefs

(* equivalence relation *)

pratrel :: "((pnat * pnat) * (pnat * pnat)) set"

"pratrel ={p. 3 abcd p=(ab)(cd) A a*d = b*c}"

typedef
prat =
"{x::(pnat*pnat). True}/pratrel" (Equiv.quotient_def)

instance
prat :: {ord, plus, times}

constdefs

prat_of pnat :: pnat = prat

"prat_of_pnat m = Abs_prat(pratrel™{(m,Abs_pnat 1)})"

ginv o prat = prat

"ginv Q = Abs_prat( |J(x,y)eRep_prat(Q). pratrel™{(y.x)})"

defs

prat_add_def

"P + Q = Abs_prat( (J(a,b)eRep_prat(P). U(c,d)eRep_prat(Q).

pratrel”{(a*d + b*c, b*d)})"

prat_less_def
"P < (Q:prat) =dT. P+ T = Q"

end

Figure 2:lsabelle/HOL theory for rationals using equivalence classes.

4.2. Example: constructin@™* fromZ*

In this section, we illustrate, by means of an example, how a new type can be introduc
in Isabelle as the quotient set of some equivalence relation. We also show how primiti
functions are defined on the new type usalgtractionandrepresentatioriunctions. Other
operations derived from the primitive functions are also introduced.

The theoryPRAT, shown in Figur2and developed on our way to the reals (and beyond),
defines the typprat of positive rational numbers and its associated operations. The ne\
type is defined on pairs of elementspfat, which denotes the positive natural numbers,
introduced as an explicit type in Isabelle.

Under theconstdefs  keyword, we declare and define the equivalence rela®dn (
specified at the beginning of Sectidmbove, that enables us to proceed fiimto Q* in
the lattice:

pratrel ={p.dabcd. p=((a,b),(c,d)) ANa-d=0b-c}.
Usingtypedef, we declare the new type prat:
prat = {x.True}/pratrel (Equiv.quotient_def).

The representing set of elements is defined as the set of equivalence classes of fracti
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thatis, the set of equivalence classes consisting of ordered pairs of positive natural numb
The theorenguotient_def  (from the theoryEquiv) acts as a witness to prove the non-
emptiness of the new type, and is given in brackets next to the new type. Non-emptine
needs to be proved to ensure that the quantifier rules of HOL are s@dhafherwise the
new type is rejected.

Once a new type has been successfully introduced, Isabelle provides coercion functic
— the abstraction and representation functions — that enable us to define basic operati
on the new type. Thus, in this particular example, the functions

Abs_prat : (pnat *pnat) set = prat
Rep_prat :: prat = (pnat xpnat) set

are added to the theory such tipaat is isomorphic to
{x.True}/pratrel

by Rep_hyprat and its inversé\bs_prat. Using these functions and other operations
from Isabelle’sSet and Equiv theories, we are now ready to define operations on the
positive rationals. For example, the inverse functigmv, which swaps the elements of
the ordered pairér, y) representing:/y around to givey/x, is constructed in Isabelle by:

ginv Q= Abs_prat (J(x,y) € Rep_prat (Q).pratrel "““{(y,x)})
where
Ux € A.B[x]={y.3x € A.y € B} (union of family of sets);
rs={y.dx €s.(x,y) €r} (image of set under relatiorn).

Once the primitive operations such as addition and multiplication have been defined, \
can use them to derive other operations such as the ordering relation:

P<Q=3T.P+T=0.

We then show that the operations on the new type respect the various field properties,
that we have indeed defined the densely ordered (but not Dedekind-complete) field of t
positive rationals.

As a final remark, it is worth noting that the use of equivalence classes leads to simpl
machine proofs than using notions of greatest common divisors (gcd) to choose uniq
representatives.

4.3. Afew important theorems

In this section, some of the more important theorems that we proved during our co
structions leading up to the reals are given. We are especially concerned with those that \
be needed to establish properties of hyperreals and nonstandard real analysis later on.

Theorem 4.1 (Completeness of the reals)rhesupremum propertstates that every non-
empty set of realX that has an upper bound has a least upper bound:

VX. @x.xeX)A@U.Vxe X.x <U)
= . VxeX.x<u)AVu. VxeX. x <u)=u<u.

This simple result has far-reaching implications since it rules out the existence of ir
finitely small quantities or infinitesimals iR.

https://doi.org/10.1112/51461157000000267 Published online by CAdHBdge University Press


https://doi.org/10.1112/S1461157000000267

Mechanizing NSA in Isabelle

Theorem 4.2 (The Archimedean property for the reals). Any such infinitesimal iR would
mean that its reciprocal is an upper bound®in R, thereby contradicting the Archimedean
property:

Vx.dn.x < n.

Various mechanizations of standard analysis (see, for example, Harrison’s work usil
the HOL-Light system[1314]) have developed theories of limits, derivatives, continuity
of functions and so on, taking as their foundations the real numbers. Our work, howeve
will now go one step further, and show how the reals can be used to build a richer numk
system.

5. Filters and ultrafilters

In this section, the preliminaries necessary to our construction are presented. The def
tions and theorems that we need, and their formalization in the set theory of Isabelle/HO
are reviewed. Our aim is to establish an equivalence relation on the set of all infinite s
quences of reals, and use the system of equivalence classes as a matieiferstart with
the concept of a filter.

Definition 5.1. Let S be any non-empty set. flter & over S is a collection of subsets of
S such that

F1) Se F A& F;
F2) Xe FAYeF = XNY € ¥F;
F3) Xe FAXCYCS=Ye¥F.

Every filter is anonemptycollection of subsets sincee F, and filters are closed under
finite intersection and supersets. There are numerous examples of filters includimgahe
filter {S} and, if S is infinite, theFréchetor cofinitefilter { X. finite (S—X)}.Inlsabelle,
we develop a theorfilter, and formalize the notions described above as follows:

Filters S={X. FCPowSASeFA
VX e FVYYeF.XNYeF)A
VXY.XeFAYCS—YeF)).

We note in the above definition the occurrencEitters S, which is defined to be the set
of all filters over$. We adopt this general approach of defining sets of the various structure
that are dealt with for clarity; this is possible since in Isabelle/HOL's set theory the typ
«a set is isomorphic to the type = bool [25].

Let us mention some of the terminology often encountered when filters and relate
concepts are used. A s&t C S is sometimes said to Harge [30] or quasi-big[15] if
X € ¥. Other terms used includesidual or genericwhen dealing with directed sets or
Baire category theory. Moreover, and of relevance to our development, a conditbon
pointsx € S is said to be satisfiedlmost everywheré.e.) oralmost always, or is #rue
or almost true, if the sefx € S. P is satisfied at} is a member of~.

A refinement of the concept of a filter is now introduced by defining the notion of ar
ultrafilter over the nonempty sét

Definition 5.2. An ultrafilter U overS is a filter overS such that
Ul) U C F A F e Filters S—U=F.
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An ultrafilter is thus anaximalffilter; that is, a filter that cannot be enlarged. An ultrafilter
(and hence afilter) is said to lreeif and only if it does not contain any finite sets. A filter
which is not free is said to béxed. We are mainly interested in free ultrafilters. The
definitions used in IsabelleBilter  theory follow:

Ultrafilters S={X. X eFilters S A
VG € Filters S XCG— X=0G}

FreeUltrafilters S ={X. X e Ultrafilters S A
Vx € X. —finite  x}.

We proceed to prove various properties of filters, ultrafilters and so on from these definitior
These include a theorem about ultrafilters that reads as follows.

Theorem 5.1. U is an ultrafilter onS if and only if for any subset of S, either A belongs
to U or else its complemerst — A belongs toU, but not both:

U e Ultrafilters S < (U € Filters (S)AVA e PoWS. A € UVS—A € U).

The content of this theorem is critically important to our development, and an outline c
its proof in Isabelle is given below.

Proof. Suppose thall is a filter such that for everyt C S eitherA € U orS — A € U.
Let G be asuperfilterof U; that is, a filter such thatl € G, and suppose thd € G and

B ¢ U. But then, from our initial assumption, it follows th&t— B € U < G, and so
# = BN (S — B) € G which contradicts property (F for a filter. Hence there is no proper
filter including G, and soU is an ultrafilter.

Conversely, suppose thatis an ultrafilter andd ¢ U. DefineaseG = {X € S.3J €
U.ANJ C X}. ThenU € G andU # G sinceA € G, and soG cannot be a filter
since by assumptio®l is maximal. ButG is not empty, and iB, C € G andB C D then
BNC e GandD e G (verifying conditions (R) and (B) for G to be a filter). Since
S € G, G canfail to be afilter only i## € G. That is, we havet N J = () for someJ € U
for which we must then havé C (S — A). It follows thatS — A € U. O

From this result, it can be seen, using the axiom of choice, that the Fréchet filter on
infinite sets is not an ultrafilter, though it follows that it is free. What is needed to progress
any further in the development is to show the existence of a free ultrafilter on any infinit
set — this result is a corollary of the importartrafilter theorem16, 30]. Using the result
above, we can see that for an ultrafiliérto be free, every cofinite subset #f and hence
the Fréchet filter, has to be containedin This result will be useful to us in Secti@n2but
first, we give an overview of our proof @orn’s lemmaand how we appeal to it to guarantee
the existence of an ultrafilter. We then extend this result, and show that the ultrafilter c:
be free as well.

5.1. Zorn'slemma

The existence of free ultrafilters is not obvious at first sight. To show that the ultrafilte
theorem holds and to carry out our construction, we need Zorn’s lemma. This is an equivale
form of the axiom of choice (AC), and first needs to be proved in Isabelle/HOL.

Lemma 5.1 (Zorn’s lemma). Let S be a nonempty set of sets such that each chans
has anupper boundn S. ThenS has amaximalelementy; that is, a sety € S such that
no member of properly containsy.
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The statement of Zorn's lemma involves the idea of a partially ordered set and relat
concepts. We present briefly various mathematical concepts, and theorems about thi
needed in Isabelle/HOL to express Zorn’s lemma.

Paulson has already proved Zorn’s lemma in Isabelle’s Zermelo—Fraenkel set thec
(Isabelle/ZF) [28] by mechanizing a paper by Abrial and Laffitt¢ Reporting on the
mechanization, Paulson remarks that the formal language used by Abrial and Laffitte
close to higher-order logic, and thus should be useful to Isabelle/HOL amongst other prc
assistants. In our current work, we have adapted the mechanization of Zorn’s lemma deyv
oped in Isabelle/ZF to Isabelle/HOL. Below, we briefly mention how our formalization in
Isabelle/HOL compares with the one in Isabelle/ZF.

The definitions used by Abrial and Laffitte require ttl@iceoperator since, starting
from AC, they prove Hausdorff’s maximal principle and then derive Zorn’s lemma. Unlike
its ZF counterpart, Isabelle/HOL provides such an operator, the so-¢dilleett epsilon
operator,s. Thus, the formulation of the various theorems in Isabelle/HOL is somewha
simpler than that given by Paulson for ZF. The latter requires that the existence of the choi
function be stated explicitly as a temporary additional assumption [28].

We also use Isabelle’s inductive package to define a set that is totally ordered by ¢
inclusion. In general, the construction of the inductive set relies on defining a suitab
successor function which, in our case, is defined using the choice operator:

succ Sc= if (c gchain §Vvc¢emaxchain )
then celse (ec’.c’ € super Sc).

Our other definitions of set of chains, super chains and maximal chains are similar to thc
in Isabelle/ZF. Note that the definitions suppose that thes $&ts somepartial ordering
defined on it, which is denoted by:

chain S={F. FCSA(MxeF.VyeF.x<yVvy<x)}
super Sc={d.d echain SAccCd}
maxchain S = {c. ¢ € chain S A super §c=0}.

We tried to simplify these definitions at first by removing references to the inductiv set
since itis actually used by Abrial and Laffitte to provide typing in their version of ZF. Thus,
S as a parameter seems redundant when working in Isabelle’s typed higher-order log
However, relying on the type made some of our proofs about ultrafilters unnecessar
complicated, and prompted us to refer explicitly to the underlying set in definitions, an
hence in our proof of Zorn’s lemma. In outline, with these definitions, we prove the theorel
of Hausdorff: every partially-ordered set contains a maximal chain. So, with the subs
relation as the partial ordering ¢h we have

Jc. c € maxchain S.

We then consider an upper boundf such a maximal chain — this is guaranteed to
exist according to the premise of Zorn’s lemma. The last step in the proof simply involve
showing that is in fact a maximal element that we are looking for. Expressed formally in
Isabelle, the following theorem is established:

Veechain §. JueS.Vxec.xCu
— JyeS.VxeS.yCx — y=ux.
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5.2. The ultrafilter theorem

The ultrafilter theorem (UFT) is a complicated but important principle that lies midway
between AC and the axiom of choice for finite s&i8][ Moreover, the ultrafilter theorem,
like the axiom of choice, has many important equivalent forms. Schechter presents a
discusses twenty-five of these, occurring in many areas of mathenticend points to
the many more equivalents occurring in the literature. The version that we are interested
is as follows.

Theorem 5.2 (Ultrafilter theorem (Cartan): UFT). If  is a filter on a setS then there
is an ultrafilter U on § with & C U.

This result can be proved using Zorn's lemma. In fact, we are really interested in provin
a corollary of the ultrafilter theorem about the existence of free ultrafilters. (Some autho
like Hoskins [L6] and Keisler 20] state the corollary — or even one of its special cases —
as the actual ultrafilter theorem.)

Corollary 5.1. On every infinite set there exists a free ultrafilter. Expressed in Isabelle, wi
want to prove that

—finite S = Ju. u € FreeUltrafilters S.

To do so, we define in the theoRjlter, the set, SuperFrechet S, of all filters on
S that contain the Fréchet filter (that is, the set of superfilters of the Fréchet filter):

Frechet S ={A. finite S— A},
SuperFrechet S ={G. G < Filters S A Frechet S C G}.

Our proof consists first in showing th8uperFrechet S contains a maximal element,
that is, an ultrafilter on the (infinite) s&t and then in showing that this maximal element
does not contain any finite sets. Stated formally in Isabelle, the following goal needs to |
established:

—finite S = 3U e SuperFrechet .
VG € SuperFrechet SUCG—U=G A
Vx € U. —finite X.

5.2.1. Existence of the ultrafilter
We split the main goal above into two parts, and outline in this section how the existen
of the ultrafilter is proved. Formally, we need to prove that

—finite S — 3U € SuperFrechet .
VG € SuperFrechet S.UC G — U =0G.

Applying Zorn’s lemma (as an introduction rule in Isabelle) and with some simplification
this reduces the above to the following new subgoal:

[|=finite S; ¢ e chain (SuperFrechet §)|]
— Ju € SuperFrechet S.Vxec.x Cu.

Thus, we now have to show that each chairSaperFrechet § has an upper bound
in SuperFrechet S. Since the empty set is also a chain, we need to consider the tw
possibilities for the chain, as follows.
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1) ¢ = ?. We simply use the fact thatrechet S e Filters S and hence that
Frechet S € SuperFrechet S to prove the theorem for this case. (We have
noticed that many proofs given in the literature neglect to consider the case avhere
is the empty chain.)

2) ¢ # ¢. This case is trickier. The proof consists in choosing the union of the nonempt
chainc, | ¢, as the upper bound we are looking for. It is trivially true thatc
Jc for all x € ¢. To bring the proof to conclusion, it just remains to show that
SuperFrechet S is closed under the union of nonempty chains:

[lc # @; —finite S; c € chain  (SuperFrechet  S)[]
= |J ¢ € SuperFrechet S.

The proofrequires showing thigf ¢ is a filter. Property (E) for afilter is proved easily
using Isabelle’s classical reasoner. In outline, to pro&,(We chooseg € | Jc, and

x1 € Je. Thenxg € Go andxy € G1 for some filtersG1 andG in the chairc. Since
cisachainwe have th&t; C G2orGs C G1. If G1 € Gathenxg, x1 € Gz and so,

by (F1),xo N x1 € G2 € | J¢; the cas&rz C G1 is proved in a similar way. Finally,
we prove that Property @ also holds from the properties of chains and unions. We
shall omit the details for this last step, since they are easily deduced.

5.2.2. Freeness property

The second part of the main goal consists in proving that the ultrafilter does not contain a
finite set. Making use of the statement proved in the previous part, this reduces to solvi
the following subgoal (that is, deriving a contradiction) in Isabelle:

[|lU € SuperFrechet S; x € U; finite x|] = False.

To prove this, we first deduce th&s — x) € U sincefinite (S - (S —x) and
Frechet S C U. Hence, sincd/ is closed under set intersection, it follows tiat=
x N (S —x) € U, which is a contradiction of Property (F1) of the filter. THuss free.

This concludes our proof of the existence of a free ultrafilter on any infinite set. Thi
important theorem will be used in the next section to define the hyperreals by consideri
a special case known as thveak ultrafilter theorem.

We have described so far the mathematical foundations set up in Isabelle to enable
definition of the new types of numbers going beyond the traditional number systems. Aft
carrying out constructions up to the reals, proving Zorn's lemma in Isabelle and developir
a theory of filters, we are now ready to apply the so-calipower construction to get
thehyperreals.

6. Ultrapower construction of the hyperreals

Our aim is to construct a linearly ordered fidikt that contains an isomorphic copy
of the realsR extended with other elements. This new, strictly larger field is known as &
nonstandarcor hyperreal number system and obeys the same field laws as the reals.

As several authors have pointed oli7[31], the construction of the hyperreals is remi-
niscent of the construction of the reals from the rationals using equivalence classes indu
by Cauchy sequences. In this case, however, we use a free ultrafilter to partition the se
all sequences of real numbers into equivalence classes. The set of these equivalence cla
that is the quotient set, is used to define the new tyygmeal, denoting the hyperreal
numbers.
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HYPREAL = REAL + FILTER +

constdefs

Uy : "nat set set"

"Un = (e U. u e FreeUltrafilters (UNIV::nat set))"

(* equivalence relation *)

hyprel "“((nat = real) * (nat = real)) set"

"hyprel = {p. I rs. p = (s) Afn.rn=sn} eUy}
typedef

hypreal = "{x:(nat = real). True}/hyprel" (Equiv.quotient_def)
instance

hypreal :: {ord, plus, times}

defs

hypreal_zero_def "Ohr = Abs_hypreal(hyprel™{ An:nat. Or}h)"
hypreal_one_def  "1lhr = Abs_hypreal(hyprel™{ Anznat. 1r})"
constdefs

hypreal_minus :: hypreal = hypreal

"- P = Abs_hypreal( |JXeRep_hypreal(P). hyprel™{ An:nat. - (X n)})"
(* embedding for the reals *)

hypreal_of_real :: real = hypreal

"hypreal_of_real r = Abs_hypreal(hyprel™{ Anznat. r})"

hrinv :: hypreal = hypreal

"hrinv P = Abs_hypreal( (JXe Rep_hypreal(P).

hyprel”{An. if X n = Or then Or else rinv (X n)})"

defs

hypreal_add_def

"P + Q = Abs_hypreal( |(JXeRep_hypreal(P). (JYeRep_hypreal(Q).
hyprel”{An:nat. X n + Y n})"

hypreal_less_def
"P < (Q::hypreal) = 3X Y. XeRep_hypreal(P) A YeRep_hypreal(Q) A
{ninat. X n <Y n} €U N

Figure 3:lsabelle/HOL theory for hyperreals.
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6.1. Choosing a free ultrafilter

To start the construction, a free ultrafiliég is chosen on the set of natural numbirs
Such an ultrafilter exists, according to the weak ultrafilter theorem.

Theorem 6.1 (Weak ultrafilter theorem: WUF). There exists a free ultrafilter oN.

As can be seen, this is a special case of the ultrafilter theorem’s corollary given in Secti
5.2. In fact, we have the implications A& UFT = WUF, which are not reversible. Thus,
the ultrafilter theorem is strictly weaker than the axiom of choice, and the weak ultrafilte
theorem is weaker still. To prove the weak ultrafilter theorem, we show that the set ¢
naturals is not finite by an inductive proof, and then discharge the premise of the ultrafilt
theorem'’s corollary.

This ultrafilter need not be explicitly defined; it does not matter which ultrafiltéX @
used. The set of all free ultrafilters dhdetermines a set of isomorphic fields from which
we can choose any member to be the set of hyperreal numbers. Thus, in our formalizati
we use Hilbert'ss-operator to definé/y:

Un = (eU. U € FreeUltrafilters (UNIV :: nat set)).

In this definition, (UNIV:: nat set) denotes {n:: nat. True}, the set N. Higher-order
logic provides a typed set theory in which the universal set exists.

Once we have definetly, its properties that will be used in the proofs involving the
hyperreals are established. We give here a list of the theorems that we have proved, m
of which follow from the definitions given in the previous sections.

Theorem 6.2. (UNIV :: nat set) € Uy.
Theorem 6.3. ¥ € Uy.
Theorem6.4. X e UNAY e Uy =— X NY € Uy.
Theorem 6.5. X e UyAX C Y — Y € Uy.
Theorem 6.6. X € Uy — —finite X.
Theorem 6.7. X € Uy < —X ¢ Un.

Theorem 6.8. {n. P(n)} € Uy = 3n. P(n).

Theorem6.9. XUY e Uy = X e Uy VY € Uy.

6.2. Equality

Using Uy, the hyperreals are constructed by considering the set of all sequences of re
numbers indexed b) and defining the following equivalence relation on this set.

Definition 6.1. Given two sequences of real numbérg) and(s;,),

(ra) ~Un (sn) <= {n e N|r, = s5,} € Un.
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The sequence§;,) and(s,) are sometimes said to be eqa#thost everywheréa.e.).
This terminology is used to mean that the entries of a sequence determine some set in
ultrafilter Uy.

Figure3 shows Isabelle’s theot YPREAL, in which the new tygg/preal is intro-
duced using the definition above. The relatigiprel  denotes~y,, in the theory:

hyprel = {p.3rs.p=(r,s) Af{n.r(n) =smn)} € Uy}

The first property that we prove is thHayprel is an equivalence relation.
Proposition 6.1. The relation~,, is an equivalence relation.

Proof. Let (a,),(b,), {c,) be sequences of real numbers.

* Reflexivity sinceN € Uy, we have (g) ~yy (a,) and thus~y, is reflexive.

» Symmetryif (a,) ~uy (bs) then, by symmetry of equalityb,) ~yy (@), implying
that~y, is symmetric.

* Transitivity. now, given () ~uy (b)) @and(b,) ~uy (cn), letA = {n € N|a, = by}
andB = {n € N|b, = ¢,},andC = {n € N|a, = ¢,}; thenA N B C C. Since
A, B € Uy, it follows thatA N B € Uy sincelUy is N-closed, and henc€ € Uy
sinceUy is alsoc-closed. Thereforea,) ~yy (ca).

O

6.3. Defining operations on the hyperreals

Arithmetic operations on the new type, that is on the equivalence classes, are usuz
defined in terms of the pointwise operations on the sequencegX,gf denote the equiv-
alence class containing,, ). Addition, for example, is defined by

[(Xn)] 4+ [(Yn)] = [(Xn + Vo). ©)

In Isabelle, however, using the abstraction and representation functions, we define addit
on hyperreal® and Q as follows:

P + Q= Abs_hypreal (|JX € Rep_hypreal(P).
\UY € Rep_hypreal(Q). hyprel “"“{Ain.Xn + Yn}).

Then we prove equation (3) above as a theorem. It can then be supplied to the simplifier
use in many of the proofs. In Isabelle, equation (3) takes the following form:

~

Abs_hypreal (hyprel ~"{in. Xn})+ Abs_hypreal (hyprel ~"“{in. Yn})
= Abs_hypreal (hyprel ““{in. Xn + Yn}).

(4)

Properties such as commutativity and associativity follow straightforwardly from the corre
sponding properties of the reals. We can similarly pf@ive + P = P whenOhr is defined

as shown in Figur8. Multiplication is defined in a similar way to addition. Associativity,
commutativity, and distributivity of multiplication are all directly inherited from the reals,
and are easily proved.
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6.4. Ordering
The ordering relation on the hyperreals is defined as follows:

P < Q= 3X € Rep_hypreal P.
3Y € Rep_hypreal Q.{n.Xn < Yn} € Uy.

We prove the following simplification theorem expressing the order relation in terms o
equivalence classes of sequences of real numbers. A hypéigglis less than a hyperreal
[(Y,)]if and only if X,, is less thar¥,, almost everywhere:

Abs_hypreal (hyprel {X n}) < Abs_hypreal (hyprel ~"{Yn})
<= {n.Xn <Yn}eUy.

A A

Also, the system of hyperreal numbers generated by the free ultrafilter is a totally order
field. To show this, we first prove that the ordering relation is total. This proof is relatively
simple and follows from the fact that, given any two hyperrdéats)] and[(y,)], either
they are equal, leading to

{n eN|x, =y} € Un
or else, by the complement property of the ultrafilter as given in Se6étibnwe find that

{n e N|x, # ya} € Un.

In the second case, since the reals are totally ordered, we have to consider fhessets
N|x, < y,}and{n € N|y, < x,}. We know that only one of these can belong to the free
ultrafilter Uy (since otherwise, closure ofy under intersection would entail thate Uy,
which contradicts property (F1) of the filter).

6.5. Multiplicative inverse

To show thafR* is a field, we need only prove that each non-zero elerfiéht)] € R*
has a multiplicative inverse. For any non-zero element, we have

{neN|X, =0} ¢ Uy
and therefore, once more by the complement propertynof
{n e N| X, #0} € Uy.

Therefore, defing, = 1/X,, for each value of: for which X, # 0, and sett, = 0
otherwise. Thenthe sét € N. X,, - Y¥,, = 1} € Uy, so that[(X,,)] - [{(Y,)] = [(1)]. This
motivates the following definition, in Isabelle, for the inverse functioimv:

hrinv. P = Abs_hypreal (| J X € Rep_hypreal(P).
hyprel ““{in.if Xn = Orthen Or else rinv (Xm}).

It is easily proved that for all non-zerg hrinv  x - x = 1hr as required. A few points
worth mentioning are thdtrinv  x stands for the more conventional notationt whenx

is a hyperreal; the inverse function for the reals is itself denoteathlrywhile Or andlr

are defined as the zero and one respectively of the real field. Once again, for simplificati
purposes, we prove the useful theorem about inverse involving the equivalence classe:
real sequences:

AA

hrinv  (Abs_hypreal (hyprel {Xn}) =
Abs_hypreal (hyprel ““{if Xn = Orthen Or else rinv (Xn)}.
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We have shown in the discussion above fRats a totally ordered field. The next important
step is to show thdk* contains a proper subfield that is isomorphic to the rRals

7. Structure of the hyperreal number line

In this section, we continue our investigation by introducing and defining the variou
elements that make up the new totally ordered field, which we show to be a proper extens;
of the reals. We also define a number of concepts that follow from this classification of tf
elements ofR*.

7.1. Embedding the reals

Since our free ultrafilter has been fixed, we have effectively restricted our attention to or
particular totally ordered fiel&*, though as we mentioned previously, there are infinitely
many distinct but isomorphic number systems. We now embed the reals in our hyperreals
defining a maghypreal_of_real ::real = hypreal inlIsabelle. This embedding
is defined by

hypreal_of_real r=[rrr...)]
and is expressed in Isabelle as
hypreal_of_real r = Abs_hypreal (hyprel ~“{An::nat.r }).

In what follows, any embedded realwill be denoted by~ unless the embedding func-
tion hypreal_of_real is used explicitly. Thus, the additive identity elem&hr and
the multiplicative identity elementhr of the hyperreals are the explicit images of the
real numbers zero0f) and one (Lr) respectively under the embedding. To show that
hypreal_of real mapsR to a proper subfield oR*, we first define the following
hyperreal number:

o = Abs_hypreal (hyprel ~“{in:nat. real_of nat n})

wherereal_of_nat : nat = real maps its natural argumentto the realn + 1.

For clarity, we omit the details of the various intermediate embeddings (= pnat,

pnat = prat, prat = preal, and so on) required for definingreal_of nat,

though we do need to prove their various properties (for example, that they are injecti
and order-preserving) explicitly in Isabelle. This sort of detail is not usually mentioned i
textbooks, where it is assumed that one can define a map in one step.

We can now exhibit a member &* that is not equal to any real number, since there
is nor such thatr = w. This is because the set on whiéhr,r,...) and(1,2,3,...)
coincide can consist of at most one element. Hence, by the definition of ultrafiitehe
two sequences cannot be equivalent since no finite set can belbrg bofact, as we shall
see shortlys” < w for any real number; that is,w is a so-callednfinite number. Similarly,
e=0"1=[(1,31 1, .. )]is aninfinitesimal.

We will call all members ofR* that are images of the reals, telndardelements of
R*. We then define the set of standard rezifeeal in the theoryNSAas follows,

SReal =range (hypreal_of real)
where
range f ={y.dx.y = fx}.
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We can now viewSReal as the real numbers embeddedRify that is, as a sub-ordered
field, if we agree to identify each real numbewith the corresponding standard element
of R*. We then have th&* is an extension or enlargement®fWe shall come across the
general concept of set extensions later in the paper (see S&6jion

7.2. Properties of nonstandard numbers

We have exhibited in the previous section a hyperieghat does not belong ®Real.
There are infinitely many of these so-calleonstandarchyperreal numbers. They can be
classified into various sets that include, for example, infinitesimals and the infinite numbel
We start this section with a preamble, where the absolute value function for the hyperre:
is introduced. This function is needed in order to define the various types of numbers fou
in our theory.

The definitions of infinitesimal, finite, and infinite numbers use the absolute value func
tion. This function, which we also defined on the reals, needs to be extended to the hyperr
numbers. The definition that we use is analogous to that used for the reals. Using the
then-else construct of Isabelle/HOL, we have

hrabs x =ifOhr < xthen xelse —x.

In fact, an alternative definition exists in which the (real) absolute value function is simpl
applied pointwise to an equivalence class representatii&*inin Isabelle, withrabs
denoting the absolute value function for the reals, this takes the form of the followin
theorem:

hrabs (Abs_hypreal (hyprel ~"{X})) =
Abs_hypreal (hyprel ~"“{in.rabs (Xn)}).

This result, taken in conjunction with the definitions of the operations such as additiol
multiplication and reciprocal, hints at a general technique in which functions can be define
on the hyperreals througéxtension®f the analogous ones defined on the reals using our
free ultrafilterUy. We examine this notion of extension later in this work.

The intuitive notion of an infinitesimal number can now be formally defined. Sets of
finite and infinite numbers are also formally introduced.

Definition 7.1. An elementx of R* is said to be annfinitesimalif and only if for every
positive standard real numbewe havelx| < r. Itis finiteif and only if for some standard
real number we havelx| < r, andinfinite if and only if for every standard real number
we haver < |x|.

In the literature, the definition will often just say that an infinitesimal is less in magnitude
than any positive (standardal number. Here, since we have different types, it becomes
explicit that such a definition is actually referring to the standard cof®/inThis leads to
the following definition in Isabelle for the set bffinitesimal:

Infinitesimal :: hypreal set
Infinitesimal = {x.Vr € SReal. Ohr <r — hrabs x < r}.

This definition can be considered as a high-level one. Indeed, it is possible to define t
set of infinitesimals by going down to the level of our free ultrafiltgy itself. We thus
prove the next theorem, which turns out to be useful when supplied to Isabelle’s simplifi

https://doi.org/10.1112/51461157000000267 Published online by CAdrfbfidge University Press


https://doi.org/10.1112/S1461157000000267

Mechanizing NSA in Isabelle

in cases where one wants to deal with real sequences rather than infinitesimals:

(x € Infinitesimal) <= (3X € Rep_hypreal x.Vu.Or <u
—> {n.rabs (X n) < u} € Uy).

We give below the definitions for the sdtmite  andInfinite of finite and infinite
numbers respectively, as declared in Isabelle, and the equivalent theorems derived in te
of the free ultrafilter:

Finite  :: hypreal set
Finite = {x.3r € SReal. hrabs x < r};

(x € Finite) <= (3X € Rep_hypreal x.
Au. {n.rabs (X n) < u} € Uy);

Infinite :: hypreal set
Infinite = {x.Vr € SReal.r < hrabs x};

(x € Infinite) <= (3X € Rep_hypreal x.
Yu.{n.u <rabs (Xn)} e Uy).

We can view the low-level theorems as lemmas that enable us to translate properties invc
ing the hyperreals into those depending on the ultrafilter. This is useful in our mechanizati
when we deal with real functions and their extensions.

An important point, highlighted through the definition of infinite and infinitesimal num-
bers, and already mentioned in Sect®nis that the set of hyperreal numbers is non-
Archimedean. This is because not every bounded subd®t bas a least upper bound or
greatest lower bound. For example, the set of infinite numbers is bounded below by a
finite number, but has no greatest lower bound.

7.3. Oninfinitesimal, finite and infinite numbers

We have proved various properties of infinitesimal, finite and infinite numbers. A few o
the theorems are listed below.

Theorem 7.1. The seFinite  of finite elements is aubringof R*; that is, sums, differ-
ences, and products of finite elements are finite.

Theorem 7.2. The setnfinitesimal of infinitesimals is also a subring &*.

Theorem 7.3. The setnfinitesimal is an ideal inFinite; that is, the product of
an infinitesimal and a finite number is infinitesimal.

Theorem 7.4. Elementx is infinite if and only ithrinv  x is infinitesimal for all non-zero
X.

The hyperreal numbep defined in Sectiory.1is a member ofnfinite: for any
given real numbet, for all sufficiently large values of, we haver < n. The infinitesimal
numbere defined by the equivalence class containing the sequ@neg is a member of
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Infinitesimal since for any giverx, for all sufficiently large value of;, we have
0 < 1/n < x. We have also proved thatis the multiplicative inverse of, since

w-e =[(1,2,3,..)]-1(1,1/2,1/3, .. )]
=[{1-1,2-1/2,3-1/3,..)]
=[(1,1,1,..)]
= 1hr.

We next introduce an important equivalence relation that will be extremely useful to oL
mechanization.

Definition 7.2. Two hyperreal numbersandy are said to banfinitely closex ~ y, ifand
only if their differencex — y is infinitesimal.

It is easily proved thak is an infinitesimal if and only ifc ~ 0. To show thate is
an equivalence relation is trivial. In addition, we prove the following theorems (amongs
others).

Theorem75.a~bArc~d = a+c~b+d.

Theorem7.6.(a+b~a+c) < b~c.

Theorem 7.7.a ~ b Ac € Finite = a-cxb-c.
Theorem7.8.a~bAc~dAbeFinte AceFinte —a-c~b-d.
Theorem 7.9.a € Finite Aa =~ b = b € Finite.

Theorem 7.10.a € SReal Aa #0hr = (a-x~a-y)=(x = y).

Theorem 7.11.x ¢ SReal Ay e SReal — (x = y) = (x = y).

Theorem 7.12.x ~ y Ay € Finite  — Infinitesimal = hrinv x ~ hrinv y.

Theorem 7.13.x ~ y =— hrabs x ~ hrabs y.

We continue in the next section with another basic fact about the structiite which
defines a function from the set of finite numbers onto the reals.
7.4. The standard part theorem

Thestandard parof a finite nonstandard number is defined to be the unique real infinitely
close to it. We use Hilbert's choice operatorto express this in Isabelle:

st x = (er.r € SReal Ar &~ x).

We now prove the existence and uniqueness of the standard part. Existence needs t
demonstrated in any case whenever Hilbert's operator is used.

Proposition 7.1. Letx be a finite hyperreal number. Then, there exists a unique standarc
real number such that- ~ x.
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Proof. Let A = {y € R|y < x}. Sincex is finite, A is nonempty and is bounded above.
Let r be the least upper bound df Forany reak > 0, r —¢ € Aandr +¢ ¢ A, and
thusr —e < x <r +¢€.S0 |r— x| < ¢, from which it follows thatr ~ x.

To show uniqueness, suppose that there exists a real nunsioeh thatr ~ x. Then,
since~ is transitives ~ r and sor —s ~ 0. Butr —sisreal,so- —s =0andr =s. O

The proof just given glosses over many of the details that need to be satisfied for mec
anization. The completeness of the reals, and hence of the embedded reals, is neede
the form of thesupremum property, which ensures that any nonempty set of reals that
bounded above has a least upper bound. We first proved the property for the positive r
numbers (preal) and then extended it to the realss@l). Now, since we are dealing with
the hyperreals and identifying the reals with the proper subfiéikf efhich is isomorphic to
R, we have to transfer this theorem explicitly to the isomorphic co®,afamelySReal.

Once the existence of the standard part has been proved, we prove various of th
properties: for any, y € Finite, we have

XXy St x =st y;

x ~st x;

st (x4+y)=st x+st y;

st (x-y)=st x-st y;

if st y = 0Ohr thenst (x-hrinv (y)) =st x-hrinv (st y);
st (st x) =st x;

st (hrabs x) = hrabs (st x).

From some of these theorems, we can see that the map preserves algebraic structure.
standard part function can be defined in other ways. For example, it corresponds to the or
homomorphism oFinite  with kernellnfinitesimal ontoR [32]. The standard part

is an important concept that can be used when formulating the nonstandard definition
the limit of a sequence of reals, and also when definingliygeof a real function at a real
point.

8. The hypernatural numbers

We can construct a set of numbé¥$ that contains both finite elements, identifiable
with the ordinary natural numbers, and infinite numbers greater than all natural numbe
This discrete set is known as thgpernaturals. They will be needed in the nonstandard
formalization of real sequences and series in the next part of this mechanization.

The construction of the hypernaturals in Isabelle is analogous to that of the hyperrea
we use the same free ultrafilt8ky but replace sequences of reals by sequences of nature
numbers. Thugd\* is now characterized explicitly as the set of equivalence cld$sg$]
determined by sequenceg of natural numbers. The new equivalence relation on sequence
is denoted byypnatrel  in Isabelle. In what follows, we make some observations on the
construction and properties that apply to membeiS*ofThese are interesting in their own
right, but also in view of the applications to mechanization of analysis using nonstanda
methods.

We define an embedding function that identifies each natural numkéth the hyper-
natural number determined by the constant sequénce, ..., m). In Isabelle, we define
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the functionhypnat_of_nat  :: nat = hypnat:
hypnat_of nat m = Abs_hypnat (hypnatrel ~“{An:nat.m }).

Using the maghypnat_of nat, we easily define the set SHNat of standardnatural
numbers embedded K*:

SHNat = range (hypnat_of nat).

In what follows, a natural numberembedded in the hypernaturals will also be denoted by
7 in some cases.

8.1. Infinite hypernaturals
We define a hypernatur& denoting[(n)] = [(0, 1,2, ...)] by
Q = Abs_hypnat (hypnatrel “"{An::nat.n }).

We prove that for any embedded natural numbes SHNat, Q2 # n meaning thatN*
properly includesN. This motivates the following definition for the set of non-standard
hypernaturals:

HNatlInfinite = — SHNat

where ‘—’ denotes set complement in Isabelle. To establish that the only nonstandard t
pernaturals are the infinite ones, we prove the following equivalence theorem:

HNatInfinite <= {N.Vn € SHNat.n < N}.

Thus,N* consists of the finite standard copies of the ordinary natural numbers and of tt
infinite hypernatural numbers only.

8.2. Properties of the hypernaturals

Some of the properties proved for the hypernatural numbers are as follows.
1) N*is adiscrete subset &f*.

2) N*is closed under addition and multiplication.

3) Every infinite number has an immediate predecessor, which is also infinite.

The first property can be proved either by defining directly an embedding function from th
hypernaturals to the hyperreals, or by taking the nonstandard extension of the set of natt
numbers (embedded in the reals).

Animportant observation, following from the third property above, is that the non-empt
set of infinite hypernatural numbek$Natinfinite, does not have a least element. Thus,
the well-ordering property of the natural numbers does not extend to the hypernaturals. T
observation shows that, though most properties of the natural numbers are transferred to
hypernaturals, there are important exceptions. It will be seen in our subsequent exposit
that properties such as the one above and the Archimedean property extendspayi&d
subsets of the hypernaturals and hyperreals respectively. In what follows, we review t
development of concepts from real analysis in Isabelle.

9. Mechanized infinitesimal calculus

Classical or standard analysis is mostly concerned with the study of the real numbe
and with the properties of functions defined on them. We shall now describe the use
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the hyperreals as tools for mathematical analysis. Through the existence of infinitesima
finite, and infinite numbers, NSA provides us with a rich structure which we use to formaliz
alternative treatments of topics in classical analysis. Such treatments are valuable, not
for the additional light that they cast on analysis, but also for the simplification they bring
As will be seen, the mechanization of analysis can benefit directly from this simplificatior
since difficult instantiation steps in proofs are eliminated in many cases. We start by showi
how functions defined over the reals and naturals can be systematically extended to
hyperreals and hypernaturals, respectively. These notions are crucial to nonstandard
analysis. We then proceed to develop some elementary analysis that will make use of
new classes of numbers, the infinitely close relation, and other notions induced on them

10. Extending a relation to the hyperreals

There are systematic methods through which functions defined on the reals are extent
to the hyperreals. This process of extending a relation fRoto R* is known as thex-
transform[17].

10.1. Internal sets and nonstandard extensions

Many properties of the reals, suitably reinterpreted, can be transferred to the hyperr
number system. For example, we have seenRfialike R, is a totally ordered field. Also,
just asR contains the natural numbeksas a discrete subset with its own characteristic
propertiesR* contains the hypernaturals® as a corresponding discrete subset with anal-
ogous properties. Moreover, subsgts(the hyperintegers) an@* of R* exhibit relations
to N* similar to those thaZ andQ bear toN in R.

However, there are properties Bfthat do not transfer t&*. This is the case for the
fundamental supremum property of the reals. It is easy to see that this upper bound prope
does not necessarily hold by considering, for example, th& gself, which we regard as
embedded into the hyperreals (that is, thes$e¢al from Section.1). Thisis a non-empty
set which is bounded above (by any of the infinite numbe® inbut does not have a least
upper bound ifR*.

Theorem 10.1. The selR C R* does not have a least upper boundri.

Proof. Suppose thatis the least upper bound & Then it follows that- is infinite, since
it is an upper bound. But ase Infinite, it follows that r — 1 € Infinite, so r—1
is a smaller upper bound, which is a contradiction. O

We now introduce an important refinement that classifies subs& iofto two types:
internalandexternalsubsets [1716]. With this done, we shall be able to prove the following
statement, for example, about the supremum property for the hyperreals.

Every non-emptynternal subset ofR* which has an upper bound & has a
least upper bound iR*.

Definition 10.1. Let A,, forn € N, be any sequence of sets of real numbers. This sequenc
determines a certain sdt of hyperreals according to the following rule. The hyperreal
numberx = [(X,,)] is a member of seft C R* if and only if the setfn ¢ N. X,, € A,,}
belongs to the ultrafiltet/.

https://doi.org/10.1112/51461157000000267 Published online by CAdrdge University Press


https://doi.org/10.1112/S1461157000000267

Mechanizing NSA in Isabelle

This definition is analogous to the one we used to define hyperreals in terms of sequen
of reals. The sequences of sets of real numbers can then be used to define the so-ce
internal setof hyperreals. In Isabelle, we have the following declaration and definition for
an internal set:

*SNx 1 (nat = realset) = hypreal set
xShx A = {x.VX € Rep_hypreal(x). {n.X#n) € A(n)} € Un}.

We are particularly interested in the special case when the sequence is constant; tha
A, = A for all (or almost all)z. The internal set determined by such a sequence is callec
thenonstandard extensiaf A and, since this is the actual property that will be used more
often in the course of our mechanization, it is defined explicitly:

xSk 1 realset = hyprealset
xSx A = {x.VX € Rep_hypreal(x). {n.X{) € A} € Un}.

Thus, it follows thatksx A = xsnx (An. A). In the literature, the nonstandard extension
of a setA is usually denoted byt *. We shall make use of this conventional mathematical
notation as well. However, the actual Isabelle/HOL notatiesx(A) will also be used in
many cases, especially to show how a particular concept is expressed in the theorem-pro

It can be shown that any non-empty, internal subsé&’ohas the supremum property
though the proof will not be given her&g]. In fact, for any subset &f of R* that fails to
have a least upper bound, one can infer that it is not internal. Any subset of hyperreals tl
is not internal is calle@xternal.

The process of extending a set of real numbers to a set of hyperreals has shown an exar
of thex-transform at work. In general, this transformation procedure can be applied to ar
n-ary relation on the reals, extending it toaary relation on the hyperreals. This is done
using the rule that? holds on am-tuple in (R*)" if the index set whereP holds on
the representative reattuple sequence is in the chosen free ultrafilter. More instances o
x-transforms will be met when nonstandard extensions of functions are introduced.

10.2. Properties of extended sets

Various properties of nonstandard extensions of sets of real numbers can now be deriv
The first result to be proved (in one step, using Isabelle’s automatic tactic) iR*thsthe
nonstandard extension Bf The nonstandard extensions of sets of reals will, in general, be
different from the original set. The exception occurs for finite sets, since then the extensi
function simply degenerates to the embedding function. This is confirmed by the followin
theorem, where the symbol “ denotes the image operator for relations:

finite A = xsx A = hypreal_of_real “A.

If the setA is infinite, however, then we prove that contains elements that are not
standard copies of the members 4f This leads to the following theorem relating the
embedding of a set of real numbetdo its nonstandard extensioti:

hypreal_of_real “A C xSx A.

The nonstandard extension provides us with a new set that is an enlargememhors, the
enlargement dR yields a new set that contains infinitesimals and infinite elements that hav
no counterparts in the real number system. A number of useful results involving boole:
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operations on nonstandard extensions of sets are proved:

(xsx @) =0; (5)

*Sk (—A) = —(xS* A); (6)

A C B— (%S*x A) C (xSx B); )

*#Sx (AU B) = (xSx A) U (xSx B); (8)
*Sk (AN B) = (xSx A) N (xS*x B); 9)
Vn. X(n) ¢ M = Abs_hypreal (hyprel ~"{X}) & (xsx M). (20)

The proofs of these theorems all follow from the properties of the free ultrafilter (se
Sectiorg). For example, propert] holds because no filter contains the empty set. Property
(9) holds because filters are closed underrthend C operations. Proving properties (8)
and (6) needs the fact that for any subseif N, eitherA or A belongs to the ultrafilter. The
proofs are all straightforwardly carried through with the help of Isabelle’s automatic tactic

10.3. Internal functions and nonstandard extensions

Given astandardfunction that takes real arguments, we want to be able to define al
analogous one that will also takenstandardarguments. This leads to the notions of internal
functions, and to nonstandard extensions. These concepts are crucial, as they will ene
the formulation of familiar constructs in analysis using nonstandard definitions. Also, the
give a systematic way of extending any function over the reals to one over the hyperrea
We give the definition for the case dealing with internal functions of one real varié®]e [

Definition 10.2. Let(F,,) be any sequence of standard functions fidta R. This sequence
determines arnternal function f = [(F,)] from R* to R* according to the rulec =
[(X,)] € R* maps intoy = [(Y,)] = f(x) e R*ifand only if {n € N.Y,, = F,,(X,)} €
Un.

Expressed in Isabelle, we have this rather more concise definition for the internal fun
tion:

«fnx :: (nat = (real =real)) = hypreal = hypreal
«fnx Fx = Abs_hypreal (|JX € Rep_hypreal(x). hyprel ~"{in.(Fn)(Xn)}).

Thus, according to this definition, with andx defined as above, the value of the internal
function («fnx F) at x is given by

(xfnx F)x = [(F1(X1), F2(X2), ..., Fy(Xy), .. )]

Ofinterest here, as well, is the special type of internal function known asthe&tandard
extension of a standard functidn. The nonstandard extension is obtained by having a
constant sequence of functions; that is, one for wifich= F for (almost) alln. We define
the special case in Isabelle as follows:

«#fx :© (real = real) = hypreal = hypreal
«fx Fx = Abs_hypreal (|JX € Rep_hypreal(x). hyprel ""{in.F(Xn)}).

We will denote the nonstandard extension of a given function eithgi*oyr by the equiv-

alent Isabelle notation (xfxf). Referring back to the construction of the hyperreals in
Isabelle as described in Secti6érB, the definitions given for the field operations on them
can all be viewed as nonstandard extensions of the analogous operations on the reals
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example, addition on the hyperreals is actuaify). We also note that our definition of
nonstandard extension corresponds to Keisferigtion axiom, which states that ‘for each
real function f of n variables there is a corresponding functigh of n variables, called
the natural extension of’ [ 20].

10.4. Properties of extended functions

We prove, as we did for set extensions, a number of useful properties about nonstand
extensions of functions. One of the first and most useful simplification theorems shows th
the nonstandard extension of a functiphis equivalent to applying’ elementwise to an
equivalence class representativerifi

(xfx f) (Abs_hypreal (hyprel ~“{in. Xn})) =
(Abs_hypreal (hyprel ~“{in. f(Xn)})).

This enables us to prove theorems about nonstandard functions by using the propertie:
the corresponding standard real function, the reals, and the free ultrafilter. We then prc
theorems about the preservation of rules across-inansformation and other properties.
Some of these Isabelle theorems are listed next. Most of the proofs are mechanized in
steps or fewer with the help of Isabelle’s automatic teatito _tac the tactic is supplied with
simplification rules such as the theorem above, and others about addition, multiplicati
and other operations. (We recall thastands for the image of real numbein R*, as
described in Section.1.)

(fx Ay, fy+gy)x=Gfx fla+ (xfx g)x (11)
Ghx Qy. fy-gy)x =G fHx- (+fx g)x (12)
Gfx (fog) = (fx f)o(:fx g) (13)

(xfx Ay. k)x =k (14)

Gfx Ly, — fy)x=—(Gfx fHx (15)
(fx (Ay.y)x=x (16)

(5 f) @ = f(a) (17)

(xfx (Ah. fOy+h)x = xfx )T +x) (18)
Gfx (Wh. f(g(y+ M) x = (fx (fog) (V+x) (19)
«fx rabs = hrabs (20)

x #0hr = («f% rinv)x =hrinv «x (22)

(xfx flx exsxk A=— x €xSx{y. fye€ A} (22)

Theorem (17) is important, as it tells us that the extended function has the same solutic
as its standard counterpart for all (embedded) real arguments. Theorems (18) and (19)
proved because of their importance in the nonstandard definition of derivatives. Theorel
(20) and (21) confirm that the hyperreal absolute and inverse functions are nonstand:
extensions of their real counterparts. Theor@?) (s a general lemma, needed for proofs
in elementary real topology. One might try to picture these various theorems mentally,
get a better, more intuitive feel for the properties. If we combifieansforms of both sets
and functions, we can derive further theorems, such as

#5x (f*A) = («fx f)“(xsx A);
*Sx {x. rabs (fx —y) < r} = {x. hrabs ((*f* f)x _ y‘) < 7}
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We note that any real constant is mapped to its embedded counterpart in the transform
expected, while the functions are replaced by their nonstandard extensions.

The importance of internal sets and functions cannot be overstated. Lindstrgm ca
them the ‘nice’ subsets and functions of nonstandard analysis [23], and draws an analog)
topology where, for example, the nice sets and functions are the open sets and continu
functions. Nice concepts are those that we are interested in whenever a new mathemat
structure is introduced. In NSA, they are important because they enable hyperreal sets
functions to inherit properties from their standard counterparts in a natural way. They al:
enable us to express familiar concepts for our new mathematical structure that may be o
partially inherited (such as the supremum property, which applies only to internal subse
of R*). The strict typing of Isabelle/HOL makes the new concepts clearer, and definition
ensure that their use is rigorous. We will later introduce some further extensions that enal
us to deal with functions fron¥ to R, for example.

11. Towards an intuitive calculus

Consider the real functiofi(x) = x2. This extends naturally to a functiofi overRR*.
Now, if a is finite ande is infinitesimal, thenf*(a + €) = (a + €)% = a® + €(2a + €) ~
a® = f*(a) since the senfinitesimal is an ideal inFinite. Thus, an infinitesimal
change in the argumentproduces only an infinitesimal change fn This is, intuitively,
the behaviour expected from a continuous function suchi(as above; broadly speaking,
one does not expect any sudden gap or jumps in the graph that represents the behav
of the function. As pointed out by KeisleR(] and others31], students who are just
beginning to study calculus often find it difficult to cope with formulas involving quantifiers.
The traditional epsilon and delta approach is a sudden leap from the intuitive calculus
school to the rigour of real analysis. One of the advantages of introducing the hyperre:
is the simplification that this brings to the statement of many properties such as limits al
continuity. For example, theands condition for a functionf to be continuous at,

Ve.(0O<e — 5. 0<5AVx.O<|x—al<8§ — |f(x) — f(a)| <€)

can be simplified to
Vx.x ~d — f*(x) ~ f(a).

The approach, through the formal use of infinitesimals and relations seghei®ins much
of the intuition that was present in school mathematics. The nonstandard treatment has b
expounded in textbooks by Keisler [20], by Henle and Kleinberg [15] and more recently b
Hoskins [16], for example. Keisler’s text has even been used successfully as an introduct
textbook in calculus courses. There is much to be gained from carrying out proofs using
nonstandard formulation, and as this work shows next, even the mechanization of analy
becomes simpler and shorter due to the more algebraic nature of nonstandard analysis
In applying nonstandard analysis to the formalization, we first introduce the standard a
nonstandard formulations for the basic definitions in the theory. In the next step we prove tt
the standard and nonstandard definitions are equivalent. The nonstandard equivalents
then applied, whenever appropriate, to produce often shorter mechanical proofs of stand
results. Thus, the use of NSA can effectively ease the task of mechanization. In the ne
sections, we will illustrate these points by mechanizing basic notions from the theories
limits for real sequences and series, elementary topology on the reals, limits and continu
of functions, and differentiability. We introduce and prove in Isabelle propositions statin
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that the standard and nonstandard definitions for the various concepts are equivalent.

12. Real sequences and series

A real sequencéu,,) is viewed as a standard functian,mapping the natural numbers
into the reals; that isy : N — R. The notatioru(n) is also used to denote a typical term
a, of the sequence.

The functiona has a nonstandard extensi@hwhich maps the hypernaturals into the
hyperreals. The-transform ofa is thus the functiom™ : N* — R* wherea*([(X,)]) =
[{(a(Xy))]forany[(X,)] € N*. We therefore define this in a similar fashion to the extension
«fx for real functions. In Isabelle, the nonstandard extensianisfgiven by (xfNatx «)
and defined as

«fNatx :: (nat = real) = hypnat = hypreal
«fNat« a N = Abs_hypreal (| X € Rep_hypnat(N). hyprel ~"{in.a(Xn)}).

As can be seen, the nonstandard extension results in a sequence of hyperreals indexe
by the natural numbers, but by the hypernaturals. For this reason, the extended sequen
also known as aypersequence.

Similar theorems to those presented in Sectidrlabout«fx are proved, together with
some new ones such as

(xfNatx (An.a(Suc n))) N = (xfNatx a) (N + 1).

Of particular importance is the theore@fNatx  «a)(n) = a?rf), which shows that the
hypersequence agrees with the original sequendg dmat is, for any: € N, o, is simply

the image ofz, in the hyperreals. (From now on, we shall assume, for clarity, that 0 and :
are overloaded over all the various types of numbers, and will refrain from Qsinghr,

1hr, and so on, which were defined in Secti@n)

12.1. On limits

The hyperreals are now used to define the concepimitf A few observations about
the notation need to be made first. The symbolis usually used in the real number
system to denote that which is potentially arbitrarily large. The expressign.ligu,, thus
denotes the limiting value af asn becomes an arbitrarily large natural numberRf
the symbolo can be viewed as having a similar meaning, but this time ‘arbitrarily large’
means a number larger than dimite number inR*. So the expression lim, » a;; denotes
the value infinitely close ta; for anyinfinite hypernatural number. This motivates the
nonstandard definition for sequential limit that is given below.

With regard to the formalization in Isabelle, we decided to follow an approach simila
to that used by Harrison in the HOL-Light systed¥] and formulate both a relational
and functional form for sequential limits. We declare and define an infix ‘tends to’ relatiot
‘——"and use it to express statements such,aends td by a, — [. The standard
definition used in Isabelle is

X——I1=VrrO<r — @N.Von.N <n—rabs (Xn—1L) <r)).

Our formalization, however, also has a second version of the predicate, deneteﬁgby;
this second notion of convergence is defined using nonstandard concepts and expresse
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the following simpler statement, not involving any existential quantifiers:
X——l=(Ne HNatlnfinite. (  *fNatx X)N ~1).

The first task is to prove the equivalence of the two definitions. Before coming to this, w
briefly make some remarks about the functional form of a sequential limit. We declare
constantim and use it to denote the statement,lim, a,, by lim a (equivalent byy-
expansion téim (in. a,)). A nonstandard version of the function is also introduced, and
that is denoted byslim. The following definitions are made, using Hilbert's-operator

to denote the unique limit (if it exists):

im a=¢l.a——1

nslim a=¢.a——1.
NS

The relational form is preferred to prove properties about limits since the functional forr
is less powerful14]. We do not have —— lim a because all functions in HOL and, of
course, Isabelle/HOL are total. The interested reader should consult Harrison’s PhD the
for an extended discussion on binders, relational versus functional forms of mathematic
statements, and other related issues arising from HOL's lack of partial functibhg hese
points are equally relevant to the aspects of analysis that we have formalized in Isabelle. C
last point is that, for a convergent sequence, the following theorem suggests an alterna
definition fornslim (and hencém ):

nslim a =st (xfNatx a) Q)

whereQ denotes the infinite hypernaturfd@h)]. This is an interesting characterization of
limit that arises due to the nonstandard framework.

We will now outline the steps needed to prove the equivalence of the standard al
nonstandard definitions for limits.

12.2. Equivalence of standard and nonstandard definitions

Proving the equivalence of the standard and nonstandard formulations of a property
important, as it justifies using nonstandard methods to prove standard theorems. The pr
that the nonstandard definition implies the standard definition is usually the trickier par
We need to go down to the level of the ultrafilter and use the theorems that recast propert
such as those belonging to the Bdtnitesimal in terms of membership dfy.

Theorem 12.1. A sequence : N — R converges to the real numbéas its limit if and
only if for each infinitely large hypernatural number= [(m,)] € N* — N we have that
ay is infinitely close td. In symbolsg —— [/ <= a 5 l.

Proof. We mechanize the proof given by Hurd [17] as follows.
)a——Il=a TS) l.

Assume thatthe sequengg ) convergestd. Let0 < r be givenandlet = [(m,)]be
any given infinite hypernatural number. Simce—— [, there exists a natural number
N such thata, —[| < r forall N < n. Now, sincey is an infinite hypernatural with
representative sequenge,,), we know, from the properties of infinite hypernaturals
(see Sectio®), thatN < m, for almost all then,,; thatis,{n. N < m,} € Uy. But
we can also prove that

{n. N <my} C{n. |ay, —1| <r}
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from which it immediately follows thatn. |a,,, — | < r} € Un. Thus, given any
positive real number, we have thala,,, — /| < r for aimost all thez,,,. From this
it follows thatay — [ is infinitesimal; that isqy ~ [.

2)a——l=a——1I.

NS
Suppose thata,) does not converge tb Then, there is some standard reat 0
and a functionf : N — N satisfyingn < f(n) andr < |aru) — ] foralln € N.
Now, writing f (n) = f,, the sequencéf,) defines a hypernatural numbgrwhich
we prove to be infinite. We have. r < |ay, —I|} € Uy since it coincides withN.
Thus, it follows that; — Tis not infinitesimal.

O

12.3. Remarks on the proof

There are several points that need to be made about the mechanical proof of the theol
above. As we mentioned already, the first part of the proof was relatively easy to mechani:
given that we had already proved various theorems expressing each class of hyper
numbers in terms of the free ultrafilter. The second part needed several lemmas since |
more complicated. It involves, for example, the use of the axiom of choice (AC), whicl
textbooks often fail to mention explicitly. In our mechanization, we use Hilbert’s descriptior
operator to prove the next theorem, which enables the existential quantifier to be pull
across the universal quantifier:

Vx.3y.Qxy = 3f.Vx. Ox (f x). (23)

This theorem allows us to introduce a function frofrto N — effectively a sequence of
natural numbers — that can be used to define an infinite hypernatural number. A bri
remark is needed about theore®3) above: in this particular proof where we only want to
obtain a functionf : N — N, the use of AC is not strictly needed. Indeed, we can prove
a special case of theorer®3) simply by lettingf (x) be the leasy such thatQ x y. This
translates as a direct proof in Isabelle: we use the deliig®ST operator and leff be
Ax.LEASTy. QO x y. (We thank the anonymous referee for pointing this out, and motivating
the alternative mechanization in Isabelle.)

The following lemma is then proved on the way to the main result:

Vn.n < fn = Abs_hypnat (hypnatrel ~"{f}) € HNatInfinite.

Another important observation is that the structure of the proof follows a general pattel
that will occur again when we mechanize the equivalence proofs for other properties. V
typically need to use AC when proving that a particular nonstandard definition implies th
standard one. Mechanical theorem-proving benefits from the re-use of code and lemma

The general pattern in the proofs is not a coincidence, and can be related to one of |
central features of nonstandard analysis, known asréimsfer principle. This provides a
context in which true statements ab@uéare transformed into statements abRiit Within
a typed logic, this procedure would involve lifting results from the tyga&  to the type
hypreal, from nat tohypnat, or (viewed more generally) from any type to its extended
counterpart.

In the subsequent survey of the development of NSA in Isabelle, we shall state tt
standard and nonstandard formulations of various concepts, but often omit explicit deta
of the equivalence proof unless they differ considerably from the proof just given. W
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shall, however, mention any interesting lemmas that were needed, as well as any partict
difficulties encountered.

12.4. Properties of sequential limits

With the nonstandard formulation, the proofs of basic properties of sequences all becol
trivial. Indeed, their mechanization mostly involves simple algebraic manipulations that ce
be handled automatically by Isabelle’s simplifier. We prove the following theorems.

X——a Y——b
NS NS

(An.Xn+Yn)T>a+b (24)

X——a Y——b
NS NS

(. Xn-Yn)——a-b (25)
NS

X——a
NS

an. —Xn———> —a (26)
NS

X 0
Ts>a (17é

(An.rinv - Xn) T rnnv a 27)
X——a X——b
NS NS
a=D>b (28)

For the proof of theorem2@) above, for example, we have théf ~ g andY,’ ~ b, and
hencethak+Y' ~ a4+ for any infinite hypernaturad, since the infinitely close relation

is closed under addition (see Sectioi3). The proof is done in one step using Isabelle’s
automatic tactic. The other theorems are all proved as simply, the only exception bei
theorem (27). This requires a bit more work, and the following lemma:

X*N #£0= (Am.rinv (Xm))*N = hrinv (X*N).

This result effectively performs the-transform over both the inverse function and the
sequence function, sintginv = rinv *. Once these basic properties have been proved,
we can deal with the important concept of Cauchy sequences and their associated theore

12.5. Sequences
In this section, we examine some of the important properties of sequences formalized
Isabelle. We first examine the concept of a bounded sequence.
12.5.1. Boundedness and monotonicity
We define the standard and nonstandard notions of a bounded sequence as follows:

Bseq X =3K.(0 < K AVn.rabs (Xn) < K)
NSBseq X = VN e HNatlInfinite. ( xfNat+ X) N e Finite.
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The equivalence of the standard and nonstandard definitions for boundedness is first proy
thereby making two characterizations of the concept available for use in our proofs. Tl
nonstandard definitiodSBseq, makes it immediately obvious that boundedness is a nec
essary condition for convergence. We have the following theorem.

Theorem 12.2. NSconvergent X — NSBseq X where

NSconvergent X = 3. X TS> D).

This reduces, in Isabelle, to proving the following goal:

3l. VN € HNatlnfinite. ( sfNatx X)N ~T
= VN e HNatlnfinite. ( *fNatx X) N € Finite.

Proof. Suppose tha{X,) converges to some € R. ThenX} ~ & for every infinite
hypernaturak, and must therefore be finite by the following lemma:

x € Finite Ax =~y — y € Finite.
O

The theorem is proved in one step by Isabeliést tac. We also prove that bounded-
ness is a sufficient condition for convergence, provided that a given sequencaasone:

Bseq X A monoseq X — convergent X
where the monotonicity of a sequenkds defined by

monoseq X = (Vmn.m <n— Xm < Xn) Vv
Vmn.m <n— Xn < Xm)).

The proof of the theorem above proceeds through a mixture of standard and nonstand
arguments: for some of the lemmas, it is easier to prove a standard version rather tha
nonstandard one. This is the case for the following result, for example:

Vn.m<n—Xn=Xm=—3A.X——1I.

The standard proof is trivial since the variables are easy to instantiate by a routine exar
nation of the goal. Isabelle’s automatic tactic then proves the theorem without difficulty. /
nonstandard proof, however, would require proving a more demanding theorem:

Vn.m <n— Xn=Xm=>3.YN € HNatlnfinite. (  «fNatx X)N ~1.

This is one of the few cases where we have noticed that a nonstandard proof seems tc
more complicated that its standard counterpart. The difficulty here lies in finding the rigt
instantiation for the existential variable.

12.5.2. Cauchy sequences
The following statements are equivalent.

Theorem 12.3 (Convergence)The sequencéy,) converges; that isjl. a, — [.

Theorem 12.4 (Hyperreal Cauchy condition). For all infinite hypernatural numbers/
andM, ay, ~ ay;.
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Theorem 12.5 (Real Cauchy condition).For all 0 < € there is an intege®M such that
forall m,n > M, |a, — a,| < €.

The standard proof that a sequence is Cauchy if and only if it is convergent can |
obtained from most traditional textbooks on analysis. Harriddi, for example, uses the
proof from Burkill and Burkill [5]. Although, the mechanization is reported as being a
direct formalization in the HOL-Light system, Harrison’s proof is rather complicated. This
is partly due to difficulties inherent in finding the right instantiations for variablesaimds
proofs, especially since HOL-Light does not allow unknown variables whose instantiatior
can be delayed. Owing to this problem, Harrison suggests that Isabelle might provide a m¢
natural environment far ands proofs. Although this in itself seems a reasonable argument
we actually go one step further by using nonstandard arguments: our formalization avoi
the need foe andé arguments altogether.

To prove the Cauchy criterion for convergence, Burkill and Burkill, and hence Harrison
define the extra notion of a subsequence. They then prove that every sequence has am
tonic subsequence. Although the main theorem is not difficult to reach once this result a
a few other lemmas have been set up (Harrison also needs to define a ‘reindexing’ fur
tion in his formalization, for example), one might feel that the need for various auxiliary
notions diverts attention from what is actually being proved. The need to introduce and u
the properties of subsequences is not immediately obvious to anyone trying to prove t
theorem (without the help of a textbook, for example).

Our formalization avoids the notion of a subsequence and goes for a direct and mc
intuitive proof. First we prove the equivalence of the real (standard) and hyperreal (no
standard) Cauchy conditions. This resembles that of The@&fn With this equivalence
set up, the proof of the main result is simple and direct within the nonstandard framewor

Theorem 12.6. The sequenceX,,) converges if and only if it is Cauchy.

Proof. If (X,) converges tdéthenX ~ T~ X for allinfinite n andm by the nonstandard
definition of convergence; s(X,) is a Cauchy sequence by the nonstandard definition of
the Cauchy criterion.

Conversely, if X,,) is a Cauchy sequence théxy,) is bounded and s& is finite for all
infinite n. Therefore, using the standard part theorem, there exists a standard (embedd
real numbet infinitely close toX¢, where is our usual infinite hypernatural number
(see Sectiorl2.1, for example). Thus, we have thdf ~ Xg ~ [ for all infinite n
(nonstandard Cauchy criterion), and ({S6,) converges t@ (nonstandard formulation for
convergence). O

One lemma, also needed by Harrison, requires proving that every Cauchy sequenc
bounded. We use the nonstandard version of this theorem involving the hyperreal formu
tions of both the Cauchy and boundedness properties.

A historical note: though infinitesimals do not appear in the standard definition of Cauch
convergence, Cauchy used them as a tool inGosirs d'analyse(1821) [22]. Indeed,
Cauchy explicitly states the following as an alternative version of convergence: ‘in othe
words, it is necessary and sufficient that, for infinitely large values of the numhtbe
SUMSs;,,Su+1, Sn+2, - - . differ from the limit s, and consequently among themselves, by
infinitely small quantities.” Reinterpreted, within the context of nonstandard real analysi
this corresponds exactly to the hyperreal Cauchy condition. Laugwitz (further) mentior
that Euler was the first, much earlier, in 1735, to state ¢hat s,, being infinitesimal for
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infinitely largem, n was a necessary and sufficient condition for converge?2g Such
use of infinitesimals, especially by the rigorous Cauchy, gives yet another indication of the
power as a tool in analysis throughout the centuries.

12.5.3. Sequences and hyperreals

There s, as expected, a close relationship between sequences and hyperreal numbers. Ir
since the development of the hyperreals has been based on the use of sequences of
numbers, we can prove the following theorems.

Theorem 12.7.If {a,,) is bounded thef{a,)] is finite; expressed as a theorem of Isabelle,
we have

NSBseq X — Abs_hypreal (hyprel ~"{X}) € Finite.
Theorem 12.8. If {(a,) converges to zero theia, )] is an infinitesimal.

Theorem 12.9.If {a,,) is an unbounded sequence ttHém, )] is an infinite hyperreal.

12.6. Series

In standard analysis an infinite series is the limit of a sequence of finite sums. Despi
the notation

00
2
i=0

one does nottry in classical analysis to interpret it literally as an infinite number of addition:
Instead, one considers the sums of finitely many of the terms of the series, and examines
behaviour of such sums as an increasingly large, but still finite, number of terms is allowe
Using our framework, however, it is possible to use the nonstandard criterion for sequent
convergence to defingerally infinite sums.

12.6.1. Infinite sums and infinite series
Given a real sequenag,,), we define the standard notion of a finite suElf’gi fi) using
Isabelle’sprimrec package, which implements primitive recursion:

consts sumr : [nat, nat, ( nat = real)] = real
primrec
sumr m0 f =0
sumr m(Suc n) f = ifn <m then O
elsesumr mn f+ f(n).

The first line declaresumr to be a constant. Therimrec declaration provides a safe
way of defining primitive recursion on datatyp@s]. Isabelle checks whether the reduction
rules given forsumr satisfy a primitive recursive definition, thereby ensuring consistency,
and supplies the reduction rules to the simplifier.

The expected theorems about finite sum are easily proved, mostly through inductic
followed by simplification. We shall not list them here, but will instead describe how the
canonical nonstandard extensiorsoimr is defined.
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Consider a sequence of finite sums: this constitutes a mappingNrmriR which has a
unigue nonstandard extension defined, for any infinite hypernatural nudberg(X,)]
andN = [(Y,)], as

N Y1 Ys Y3
Z*aiz |:<Z a;, Zai, Zai,...>:|. (29)
i=M

i=X1 i=X2 i=X3

This enables one to talk of the sum being takevtterms (Mcan be set to 0), wher¥

is any hypernatural number. The value of suclirdimite sum is a hyperreal number which
depends on the number of terms taken. The formalization of the nonstandard extensior
definition (29) is given in Isabelle by

sumhr :: (hypnat = hypnat *(nat = real)) = hypreal
sumhr p = (A(M, N, f).
Abs_hypreal( | J X € Rep_hypnat M.
JY € Rep_hypnat N.
hyprel ~"{in.sumr ((Xn), (Yn), )})) p.

As is usual in such cases, the corresponding simplification theorem is proved; it can
added to Isabelle’s simplifier when needed:

sumhr (Abs_hypnat (hypnatrel ""{in. X n}),
Abs_hypnat (hypnatrel " "{in.Y n}), f)
= Abs_hypreal (hyprel ~"“{in.sumr (Xn,Yn, f)}).

Using this definition, theorems similar to the two reduction rules in the recursive definitiol
of sumr are proved:

sumhr (m,0, f) =0
sumhr m,n+1, f)= if n<mthen 0
else sumhr (m,n, f) + (xfNatx  f)n.

The nonstandard extension, with its possibly infinite hypernatural limits, preserves tt
formal behaviour of finite summation. In fact, with the help of the theorems just introducec
the properties of the finite sum are directly transferred fsumr to sumhr. A few of the
theorems proved in Isabelle are as shown below.

sumhr (m, n.f)+sumhr (m,n, g) =sumhr (m,n, Ai. fi+gi) (30)
sumhr (0,Q2,1i.1)=w—1 (32)
sumhr (0, 2Q, Ai. (—1)SU¢ ) =0 (32)
sumhr (0,2Q — 1, Ai. (—=1)S'¢i) =1 (33)
sumhr (m,n, Ai.r-(fi)) =7-sumhr (m,n, f) (34)
hrabs (sumhr (m, n, f)) < sumhr (m,n, Ai.rabs (fi)) (35)
n < p = sumhr (O, n, f) + sumhr (n, p, f) = sumhr (O, p, f) (36)
Vrrm <rAr<n— fr=gr)=— sumhr (m,n, f) =sumhr (m,n,g) (37)
sumhr (0, N, f) = (xfNatx  (An.sumr (0, n, f)))N (38)

In theorem (31)2 once more refers to the infinite hypernatuird, 1, 2, .. .)], while »
refers to the infinite hyperre@{l1, 2, ...)] (see Sectiong.1and8.1). The sum involved in
this theorem can thus be literally taken as infinite. It is proved by observing that, accordir
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to the definitions formalized in Isabelle,

i=0 i=0 i=0 i=0
—[(0,1,2,...)]
=[(1,23,..)] -[{(1,1,1,...)]
=w-1

Of the other theorems shown, theoreB8) is perhaps the best illustration tisaimhr is
the nonstandard extension sdimr. It shows how the framework naturally extends any
standard function (of a single variable), enabling it to take a nonstandard argument. T}
theorem is important to the derivation of results about convergence of series. The®2gms (
and (33) illustrate the comment made above that the value of the infinite sum depends
the number of terms taken.

Following Harrison 4], a relationsums is defined to denote that an infinite series
converges to some limitas its sum. An infinite seri€s ;- f; ‘sums to’ some real number
a if and only if the sequence gfartial sums)__, f; converges ta: as its limit. This
provides the following definition in Isabelle:

fsumsa = (An.sumr (O, n, f)) —— a.

Hence, it also follows that the infinite series is convergent if and only if the sequenc
(An.sumr (0, n, 1)) is a Cauchy sequence.
In nonstandard terms, the definition of a convergent series is given as follows.

Definition 12.1. The infinite series defined by the sequenfg is said toconvergef there
exists some real numbersuch that for every infinite hypernatural numbér

N
k
Z fi~a.
i=0
In Isabelle, this definition becomes
S NSsumsa = (YN € HNatlnfinite. sumhr (O, N, f) = a).

From this definition, the following theorems are proved.

Theorem 12.10. A necessary and sufficient condition for an infinite series to converge i
that for any two infinite hypernatural numbeb$ and N, we have

M * N *
D fim)
i=0 i=0
or, equivalently in Isabelle,
Ja. f NSsumsa <= VM e HNatlnfinite. VN € HNatlnfinite.
sumhr (0, M, f) ~ sumhr (O, N, f).
Theorem 12.11. The theorem above is also expressed in an alternative form using resu
(36) from the list of theorems given abaumhr:
Ja. f NSsumsa <= VM € HNatlInfinite. VN e HNatlnfinite.
M < N — sumhr (M, N, f) ~ 0.
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As we have seen, NSA does indeed simplify the treatment of real sequences and infir
series. As a further benefit, the nonstandard extension of sums enables us to treat finite
infinite series in a homogeneous fashion. There is no need tecusga purely notational
device in defining infinite series; it is now possible to take the sum terms, whereVv can
be a natural number or an infinite hypernatural. ®&eymbol now stands for any member
of HNatlInfinite.

13. Some elementary topology of the reals

We now survey the development of some basic topology on the reals in Isabelle. The a
of this formalization is to see the benefits that might be gained using nonstandard analy
when dealing with elementary topological notions such as open sets and neighbourhoo

13.1. Neighbourhoods

We begin by giving the standard and nonstandard definitions afdlytnbourhoodf a
point. For the standard definition, the concept &fadl is first defined. lfa is any point in
R andr is any real number, then the set of all real pointwhose distance from is less
thanr is defined as

rBall ar={x.rabs (a —x) <r}.

Definition 13.1. A setM C R is said to be gstandard) neighbourhoodf pointa € R if
and only if there exists some> 0 such that

rBall ar C M.

Expressing this in Isabelle, we have
isnbhd a M=3r.0<rArBall ar C M.

The nonstandard formulation, on the other hand, is given by the following definition.

Definition 13.2. A setM C R is said to be gnonstandard) neighbourhooaf pointa if
and only if every hyperreal infinitely close toz belongs to the nonstandard extensidi
of M.

In Isabelle, this is formalized as
iSNSnbhd a M = monad (a) C *xsx M.

As can be seen, the concept ahanad(named as a tribute to Leibniz) enables the definition
to be expressed concisely. The monad is a set of hyperreals, formally defined by

monad x = {y.x ~ y}.

The next step, as usual, is to prove the equivalence of the two definitions as a theoren
Isabelle. The proof is mechanized without much difficulty with the help of re$Qitffom
Section10.2. This lemma is necessary to prove that the nonstandard definition implies tl
standard one. The formulations are next used to deal with the notion of open sets.
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13.2. Open sets

A subsetG of R is said to beopenif and only if G is a neighbourhood of each of its
points. This leads to the following direct formalization of the standard and nonstandal
characterizations:

isOpen G =Va € G.isnbhd a G;
iSNSOpen G =Va € G.isNSnbhd « G.

The equivalence proof follows trivially from that of neighbourhood. The theorems giver
next are all proved automatically. They are direct consequences of the results obtained ak
boolean operations on nonstandard extensions of sets (see SEcidn

isOpen ¢ isOpen (UNIV :: real set)

isOpen A isOpen B isOpen A isOpen B
isOpen ANB isOpen AU B
isOpen A
isOpen (| JA)

By contrast, and as an examplestandardproof in Isabelle that open sets are closed under
finite intersections requires several steps including an explicit instantiation of variables,
case split, and the use of the following lemma:

ri<rpAxerBall arp= xerBal ar.

The gain from using nonstandard analysis seems obvious once again. In this developmr
of elementary real topology, several other concepts (such as closed sets, limit points, ¢
derived sets) are also introduced. Their various properties are formalized, and in most ca
the proofs are automatic. One of the main results to be formalized in this theory using
nonstandard approach is the Bolzano—\Weierstrass theorem. Its proof, as given bi/Hurd [

is extremely short and simple compared to the standard proof.

14. Limits and continuity

There are several notions of limits that share a number of common theorems (such
uniqueness). It is clear that an efficient mechanization of standard analysis should seel
minimize proof replication by developing a generic treatment of limits. Harrison uses th
well-known theory of convergence nets to prove a number of general theorems that can t
be specialized to fit each notion of ‘limit’ [14].

Since our development involves standard theorems about limits using a nonstand:
approach, we did not feel a need for such a generic treatment of limits. Moreover, this
only an initial investigation into the benefits to be gained from working in the hyperreals. S
there is scope for further improvement. An interesting idea would be to seek a generalizati
for the nonstandard theory of limits as well. However, since we are already working wit
much simpler and more algebraic formulations than in the standard case, the gains mi
not be worth the trouble. After all, as we noticed in our development, having independe
notions of sequential and pointwise limits does not represent a lot of extra work since tl
proofs of similar properties are all done automatically. Having said this, it is probably wis
in any mechanization to favour the approach that cuts down on work. This would preve
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us from having two similar-looking theorems like the ones below, which were used fo
sequential and pointwise limits respectively:

(«xfNatx fYN~IA «fNatx g)N ~m

— («xfNatx (Ay. fy+gy)N=Il+m
(fx HlamIAEx g x~m

= fx Ay. fy+gy)x=Il+m.

All this falls under the more general concept of preservation of properties across nonste
dard extensions. We would like to prove general properties that hold for all nonstanda
extensions of functions, rather than deal with specific cases like those above. Textboc
usually state the properties that we presented in Setfiohas general results that apply
to all extensions. In our case, since we extend each type of function explicitly, we need
prove similar properties each time.

Let us now return to the standard and nonstandard characterizations of the notions
pointwise limits. A functionf is said to have a limitasx approaches a poiatif and only
if for any givene > 0, there exists & > 0 such that for every value of satisfying the
inequality O< |x —a| < 8, we have f(x) —[| < €. This is the standare ands definition
for the limit of a function at a point. The conventional notation is i f(x) = [. We
will, however, use a relational approach in this case as well, and denote the condition
f —~2 [ for the standard case, and bfy—;—sﬂ for the nonstandard one. In Isabelle,

we have:

f—251l= Ve.0<e—> (38.0<8 A
(Vx.0<rabs (x —a)Arabs (x —a) <$§
—>rabs (fx—1) <e¢)).

The nonstandard definition, once again, is more concise and captures the intuition beh
the notion:

fNLSﬂsz.x £AANx AT — (fx Hlx~T.

The equivalence of the two definitions is not too difficult to prove and has the same structu
as the other, similar proofs. We make use of a few lemmas such as

Vn. rabs (Xn—x) <rinv (n) =
(Abs_hypreal (hyprel "“"{X}) —X) € Infinitesimal,

which enables us to define a hyperreal infinitely close to a real numbgiven a real
sequence converging towards that number.

We prove properties analogous to those presented in Setdidn In this part of the
formal investigation, however, we decided to prove some of the properties twice: first usir
only the standard approach and then using the nonstandard approach. The aim wa:
examine more closely the gains from using nonstandard analysis in terms of the numbel
steps required to complete each proof, instantiations of variables, and theorems used. If
consider, for example, the formalization of the addition property,

a a

[
st E s "

(hx. () 48—+ m

a few interesting remarks can be made.
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» The nonstandard proof expands the definitions and is completed automatically in o
step (0.08 seconds):

Goalw [NSLIM_def]
" T -a-NS>1 g - a-NS>m |
==> (%x. f(x) + g(x)) -- a --NS> (I + m)";
by (auto_tac (claset() addSls [starfun_add_inf_close],
simpset() addsimps [hypreal_real_add]));
while the standard proof, with our direct formalization, takes some 15 steps.

* We need to give instantiations of variables in several steps for the standard proof. T
level of automation is thus fairly low, and requires the user to pay attention to a lo
of details. Moreover, there is the added difficulty of deciding what the instantiatior
should be, and dealing with a three-way case split arising from the linear ordering ¢
the reals.

» The standard proof requires theorems about the transitivity of the ordering relatio
the absolute function (triangle inequality theorem), the monotonicity of the orderin
relation under addition, and so on, while the nonstandard proof needs only a theore
aboutthe monotonicity of thee relation under addition, and one about the preservation
of the addition operation by the embedding function for the reals. Both of these ar
supplied to Isabelle’s automatic tactic as shown.

Therefore, we notice that the nonstandard proof offers a clear gain in automation. The ut
is freed from some of the more tedious steps through the use of the simpler formalizatio
In addition, theorems such as

f— sl e (h. fla+h) ——>1
are simple to prove using the nonstandard formulation. This is a useful lemma that c:
be used to simplify theorems about continuity and differentiability, for example. Next, the
standard notion of continuity is examined. A standard real functias continuous at a
pointa when f (x) tends tof (a) asx tends taa. In Isabelle,

isCont fa=(f——— fa).

We give again the nonstandard definition of continuity that we mentioned in Sddtigk
standard real functiont is continuousat the pointz if and only if f*(x) is infinitely close
to f(a) for every hyperreat infinitely close toa. Expressed formally in Isabelle,

—_—~

isSNSCont fa= (Vx.x~ad — (xfx f)x = f(a)).

Once again, the formalization makes it explicit that the definition is referring to the embec
ded copies ofi and f (a) in the hyperreals. The equivalence of the two definitions follows
immediately from that of standard and nonstandard limits. A number of useful theoren
are proved immediately. Examples are:

iSNSCont  f a <= (f T’ fa
isCont  f a = (Wh. fla+h) —— fa).

We also have two distinct ways of proving the usual theorems about continuous functior

1) The theorems can be proved as results of the corresponding theorems for pointw
limits. This is a conventional approach and, although (some of) the limit theorem
themselves might have been proved using NSA, the process is wholly standard.
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2) They can be proved as simple algebraic consequences of the nonstandard formula
of continuity. This approach bypasses the limit results, and provides alternative simp
proofs. Moreover, it has an added power. It can prove at least one elementary result
the composition of continuous functions — that does not follow from limit theorems.
This is examined next.

We prove that the sum, product, and division of continuous functions are also continuot
These are results that can be proved in either of the two ways mentioned above. We a
prove the following theorem.

Theorem 14.1. The composition of continuous functions is continuous:

isCont fa~nisCont g (fa)=isCont (go f)a.

—~ P

Proof. If x ~ @ then f*(x) = f(a), and so it follows thag™ (f*(x)) ~ g(f(a)). O

This result is proved automatically by Isabellesto_tac. Contrast this with Har-
rison’s corresponding proof, which is longer, and requires the instantiatienawfd §
properties. In a sense, this also hints at another powerful aspect of nonstandard technic
in mechanical theorem-proving: their simple algebra enables them to deal uniformly wit
a wide range of theorems. The standard approach, on the other hand, required Harrisol
go back to a direct formalization in the HOL-Light system because the theorem does n
follow from any of the results about limits. An analogous difficulty occurs if the standarc
treatment is used to formalize the chain rule of differentiation.

Using the nonstandard framework, it is an interesting exercise to prove more involve
theorems such as the following topological characterization of continuity. A fungtion
is continuous omR if and only if the inverse imagéx € R. f(x) € A} of any open set
A is itself always an open set. In Isabelle, the following theorem is proved without an
difficulties:

(Vx.isCont f x) &< (VA.isOpen A — isOpen {x. f(x) € A}).

Proofs of the theorems about limits, topological notions and so on only refer to the fre
ultrafilter when we are proving the equivalence of the standard and nonstandard definitio
All the other theorems are proved at the more intuitive algebraic level. The equivalenc
theorems are essential because the standard formulations are the ones that are in widesj
use. With the success and widening acceptance of NSA, it might be that in a few decac
the so-called ‘nonstandard’ definitions will become the established ones.

Using the various continuity theorems, we have mechanized nonstandard proofs by Ht
[17] of some important results of real analysis.

Theorem 14.2 (Intermediate value theorem).If f is continuous on the closed interval
[a,p]l and f(a) < d < f(b) for somed, then there exists a termbetweeru and b with
f(c) = d. The proof considers the points = a + k(a — b)/n, 0 < k < n and the values
of f atx;. The proof then proceeds through-aransform.

Theorem 14.3 (Extreme value theorem)If f is continuous on the closed and bounded
interval [a,b], then there exists a term betweeru and b so that f(x) < f(c) for all x
betweer: andb. The proof proceeds succinctly using arguments similar to the ones abov
The pointsy, x = a + k(b —a)/n, 0 < k < n are considered this time.
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15. Differentiation

The development of the theory of differentiation builds upon the results of the previou
section. The standard formulation states that a funcfidvas a derivative at a pointx if
(fx+h)— f(x))/h — d ash — 0. In Isabelle, we formalize the relational definition
DERIV(x) f :> d meaning ‘the derivative of atx isd’ as

DERIV(x) f:>d = (Wh. (f(x +h) — f(X)-HNV  h) —>— d.

The notationDERIV(x) can be regarded as a variation of the Leibniz notation, and a:
standing ford /dx. We prove this equivalent form of the standard definition, which is useful
for some of our proofs:

DERIV(x) f:>d < (Az. (f(2) — f(x)) -1inV  (z —x)) ——d.  (39)
The nonstandard definition is stated as

NSDERIV(x) f:> d = Vh € Infinitesimal — {0}
((+F FYE+h) — f(x)-hrinv h~d.

We first prove that this nonstandard definition can also be given in terms of limits, exactl
as the standard definition. The proof does not cause much difficulty and, from it, we s
immediately that the two definitions of derivative are equivalent. In addition, using Theorelr
(39), we provide a second useful nonstandard characterization for the differentiability of
function f at a pointx:

NSDERIV(x) fi>d < Vy.yRxAy#x —
((+fx fH(y) — f(x)) -hrinv  (y = %) ~ d.

We then proceed to prove the standard results in an extremely simple fashion. For
ample, we prove that a functiofy, differentiable at a point, is continuous at that point:

NSDERIV(x) f:> d —> isNSCont  f x.

This is a simple algebraic theorem using the nonstandard formulation, giti€et+ #) —
fx)~ d-hforallh~0,and sof*(X + h) ~ f(x);thatis, f is continuous at.

A functional form is also defined for the derivative using the standard part function an
the non-zero infinitesimal defined previously:

nsderiv(x) f =st (+fx f)T+e)— f(x)-hrinv  e).
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15.1. Standard properties of derivatives

We prove the familiar rules about the differentiation of simple functions and their com
bination as follows.

NSDERIV(x) (x. k):> 0

NSDERIV(x) f:> d
NSDERIV(x) (Ay.c: f(y)) :>c-d

NSDERIV(x) f:> d
NSDERIV(x) (Ay.— f(y)) :> —d

NSDERIV(x) f:>d NSDERIV(x) g:> e
NSDERIV(x) (Ay. f(y)+g(y) :>d +e

NSDERIV(x) f:>d NSDERIV(x) g:> ¢
NSDERIV(x) (Ay. f(y)-8(y) :>d -g(x) +e- f(x)

The absence of any explicit notions of limits makes many of the standard results abc
derivatives straightforward to derive. The properties follow from simple algebraic manip
ulations of infinitesimals. As a result, the simplifier of Isabelle plays an important part ir
these proofs, in doing the tedious term manipulation and cancellation. To achieve this, \
might need to add rules for associative-commutative rewriting, for example. However, the
are cases when we need to prove lemmas explicitly to help the simplifier to re-arrange terr
For example, to prove the theorem about the derivative of product, we need the followir
lemma:

(a-b)y—(c-dy=b-(a—c)+c-(b—4d).

15.2. Chain rule

One of the important theorems about differentiation is ¢hain rule. In his formal-
ization of differentiation, Harrison reports on the problems that arise when proving thi
theorem directly. The main difficulty is that, when using the standard definition, the thec
rem does not follow directly from any limit results. Indeed, unlike continuity, limits are not
compositional. To deal with this problem, Harrison had to formalize an alternative, rathe
different characterization of differentiability, the so-called ‘Carathéodory derivative’. In
our case, however, due to the nonstandard formulation, the chain rule admits an entiri
straightforward derivation. The Isabelle theorem is given as follows.

Theorem 15.1.
NSDERIV(a) g:>d NSDERIV((ga)) f:> e
NSDERIV(a) (fog):>d-e

Proof. This follows immediately from

FHEE0) = @) _ fHEH0) — f1g@) g —g@

x—a g*(x) — g(a) x—a
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This nonstandard proof, unlike its standard counterpart, reflects nicely and directly tt
intuition behind the Leibnizian notation for the rule:

df _df dg
dx  dg dx’

It should be noted that Ballantyne and Bledsoe’s NSA prover [2] could not prove the chal
rule automatically. In our case, we use a simple lemma to help set up the required prodi
of fractions:

The main proof is directly formalized, though we have to do some manipulations explicitl
— for example, we need to use one of Isabelle’s instantiation tactics with the lemma abo
to set the variable in it to the correct binding. The level of automation could be made
higher by building stronger routines in the simplifier to deal with division. For example
the recent addition of generic simplification procedures for subtraction have been helpf
to many algebraic proofs. This is a case where the development of new theories can call
more support from the prover. This ultimately benefits many other theories.

Coming back to our development, we prove the theorems about the inverses and quotie
of functions using the chain rule and the fact that, for non-zetbe derivative off (x) =
1/xis —1/x2. The proofs remain simple and algebraic. Stated as theorems of Isabelle, the
various extra results (shown in terms of the equivalent standard notation) are formalized
follows.

x#0
DERIV(x) (Ax.rinv  x) :> —rinv  (x?)

DERIV(x) f:>d f(x)#0
DERIV(x) (A\x.rinv  (fx)):> —d-rinv  (f(x)?)

DERIV(x) f:>d DERIV(x)g:>e gkx)#0
DERIV(x) (Az. f(z)-finv  (g2)) > (d - g(x) —e- f(x))-rinv  (g(x)?)

15.3. Rolle’s theorem

Rolle’s theorem involves notions from both continuity and differentiability.

Theorem 15.2 (Rolle’s theorem).If f is defined and continuous on the finite closed in-
terval[a,b], f(a) = f(b), and differentiable at least on the open intervaliy then there
existsxg betweer: andb such thatf’(xp) = 0.

The formalized proof is taken from Hoskinsd], and proceeds through a case analysis
on the values that can take in the interval betweenandb. The argument is once again
nonstandard, and yields a direct formalization. In Isabelle, the theorem is given by

a<bA

fla)=fb) A

Vx.a <x Ax <b—>isNSCont fx A

Vx.a < x Ax < b —> f NSdifferentiable XA
— 3x0.a < xOA x0 < b ANSDERIV(X0) f :> 0
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where the nonstandard infix predicat&differentiable stands for ‘the real function
f is differentiable ak’ and is defined by

f NSdifferentiable x = 3d. NSDERIV(x) f:>d.

In the previous sections, we have presented an initial investigation of analysis using
nonstandard treatment. There are several important aspects of elementary analysis that
need to be formalized, including Taylor and power series and the theory of Integration.
nonstandard approach promises to be useful for these as well.

16. On the transfer principle

We now expand on thieansfer principle, on which we remarked briefly in Sectildh3.
Consider the statement, trueli) stating that the set of natural numbgrss unbounded as
a subset oR: the Archimedean property holds for the reals. Formalized in Isabelle, this i
expressed by

Vx:real. Jn:nat.x < real_of nat n.

Using the definitions of hyperreals and hypernaturals, and the properties of the free ultrafilt
we can then deduce the theorem that the set of hypernaliirassunbounded as a subset
of the hyperreal®*. Stated in Isabelle/HOL, with explicit typing information shown, we
have

Vx::hypreal. 3Jn::hypnat.x < hypreal of hypnat n.

This second statement about the hyperreals thus appears to be, in some sense, a trans
of the original statement about the reals. One can go from one to the other, as this exe
ple illustrates, by making certain specific changes about the types of the terms (and |
embedding functions) appearing in each. The crux of nonstandard analysis is that the tra
formation of statements along these lines can be carried out generally. Itis this general ic
that is captured by the transfer principle [16].

Theorem 16.1 (The transfer principle for real analysis). There exists a s&* such that
1) R is a proper subset dk*;

2) to each functionf : R — R there corresponds a functiofi* : R* — R* which
agrees withf onR;

3) to eachn-place relationP onR there correspondsa-place relationP* onR* which
agrees withP onR.

Further, every well-formed statemenformulated in terms of

e particular real numberss, ro, ... , ry,
 particular functionsf, fo, ..., fu,
e particular relationsP1, Po, ... , Py,

« logical connectives and quantifiers, with variables ranging der

is true with respect t® if and only if the statemegt* obtained fromp by replacing eacly;
by f; and eachP; by P;’, and by allowing variables to range ov&, is true with respect
to R*.

Inthe currentwork, proving the equivalence of the standard and nonstandard formulatio
has involved working with sequences and checking whether certain sets belong to t
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ultrafilter or not, each time a new property is introduced. By implementing some form ©
the transfer principle, one should be able to capture much of the power that NSA deriv
from the use of such metatheorems. This has not been investigated thoroughly — we hz
formalized part {), and particular cases of part®) (and @) above, though — and so
producing an effective form of the principle provides scope for further research. Our wor
has shown, however, that a powerful theory is still possible if one is willing to transfe
properties by separate proofs. In fact, if we consider the example given at the beginning
this section, and its proof in Isabelle, we get an idea of what would be needed in most cas
to enable transfer. So, for

Jdn::hypnat. x < hypreal_of hypnat n,

the proof simply boils down to showing that the following theorem involving our free
ultrafilter Uy holds:

Vm.X(m) <real_of nat fm
= {n.X(n) <real_of nat (fn)}eUy.
This final subgoal, which is trivial to prove, is reached through three simple steps whic
involve
1) recasting the hyperrealin terms of its underlying equivalence class;

2) expressing the Archimedean property of the reals in terms of the real segXience
introduced above to give

Vm.3n. X(m) <real_of nat n
which by the axiom of choice yields:

Vm. X(m) < real_of nat (fm);

3) instantiating the existential variable in the goal to the hypernatural
Abs_hypnat (hypnatrel “"{f}

which, as can be seen, is defined using the sequgradzmve.

The proof of the theorem is four lines long, and can be routinely done. As expected, th
compares favourably with the (mechanized) proof of the Archimedean property for th
reals.

Moreover, to help our formalization, general automatic tactics to check whether supe
sets, intersections, or complements of sets belong to the free ultrafilter have been cod
These enable many of the goals to be greatly simplified, and in quite a few cases to
proved automatically. The idea behind the main tactitd tac) exploits the facts that
the ultrafilterUy is proper (that is, it does not contain the empty set), that for any subset
of the naturals eitheA € Uy or its complement-A € Uy, and thatUy is closed under
finite intersection and supersets. As an example, if the tactic is used on the following go

AeUNAN...ANABEUnAN...ANXeUyn...= Z e Uy
it tries to solve it by looking for a proof that
AN—=BN..NXN-ZC4A.

If it succeeds, this means, by the superset property, that the empty set is a membel
Uy, which immediately leads to a contradiction. The tactic is wrapped around Isabelle
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auto_tac, which is used to perform simplification. This means that extra theorems can
be added to the simplifier if they are needed to show that the intersection is empty.

17. Related work

The reals were first constructed in Automath in 1977 by Juttir®], [who translated
Landau’s famous monograph on the foundations of analysis [21]. More recently, Harrisc
has constructed the reals and formalized a substantial amount of analysis in the HC
Light system [14]. The work of Harrison has influenced some of our decisions durin
mechanization, especially when formalizing analysis, where we have benefited from t
observations made by him on notations, for example. As far as our own constructions up
the reals are concerned, we have mostly followed the presentation given by Gléakon [
since it matches the sequence of constructions that Conway advocates [8].

The automated theorem-proving community does not seem to have shown much inter
in NSA, even though its importance has grown in many fields, such as physics, analysis ¢
economics, where it has successfully been applied. Ballantyne and Bl@iisoplemented
a prover using nonstandard techniques in the late seventies. Their work basically involv
substituting any theorem in the reddy its analogue in the extended re&fsand proving
itin this new setting. Even though the prover had many limitations, and the work was just
preliminary investigation, the authors argued that through the use of nonstandard analy
they had brought some new and powerful mathematical techniques to bear on the proble

Despite this rather promising work, there does not seem to have been much done o
the last two decades. Chuaqui and Sup@és@ve proposed an axiomatic framework for
doing proofs in NSA, and Bedrax has implemented a prototype for a simplified version ¢
the Suppes—Chuaqui system called Infn3dl [nfmal is implemented in Common Lisp and
contains the various axioms (logical, algebraic and infinitesimal) required by the deductic
system and extensions to the usual arithmetic operations. Unfortunately, Infmal is a simy
experiment and, though interactive, is rather limited in the proofs it can carry out. Thet
has also been some work carried out by Beeson [4] who developed a restricted axiome
version of NSA using the logic of partial terms. The properties of the infinitely close relation
standard parts, infinitesimals and so on, are asserted as axioms leading to a theory simil
spirit to the one that could be developed starting from the axioms we give at the beginning
this paper in SectioB. Beeson uses NSA to ensure the correctness of applications of calcul
in a system calletlathpertwhich combines computer algebra with theorem-proving.

In our development we have verified the various basic axioms asserted by Beeson
his approach. Moreover, we have also verified, through our strictly definitional approac
the axioms about properties of the hyperreals that were built into Ballantyne and Bledsot
prover.

18. Concluding remarks

As far as we are aware, there has not been any previously published construction of |
hyperreals using a mechanical theorem-prover. This paper has described the construc
process resulting in a proper field extension of the reals. Various classes of numbers, incl
ing the notorious infinitesimals, have been formally defined, and their properties formalize
The~ (infinitely close) relation has been introduced, which is crucial to the formalization of
nonstandard real analysis and to our own work on the formalization of NewRoin'sipia
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[10]. The framework has been shown to be flexible by allowing the hypernaturals, and the
associated properties, to be formalized with minimal effort.

To reach the hyperreals has involved all the constructions up to the reals (which we ha
not described in much detail) and proving the various properties of each number syste
introduced; it also involved working in Isabelle/HOL set theory to formalize Zorn’s lemma
and the theory of filters and ultrafilters. As might be expected, a number of interestin
remarks emerge from this development. We outline some of these next.

The formalization of filters is an important contribution. They have numerous applica
tions in set theory, logic, algebra, and so forth. They can also be used to study the varic
notions of convergence; they yield essentially the same results as convergen@dhets [
Nets provide a natural generalization of sequences and are commonly used in analysis
fact, nets are also useful to the mechanization of analysis, as was shown by Hdrdison [
Thus, Isabelle’s theory of filters could be used for a general theory of convergence.

Since this work formalizes the ultrafilter theorem, the ultrapower construction become
available for the development of other nonstandard number systems. For instance, the hyj
integers or hypercomplex numbers could be introduced. In particular, it becomes possil
to construct thényperhyperreahumbers from the hyperreals. These numbers were intro-
duced by Henle and Kleinberd%], for example, and are shown to contain, in addition to
the fieldR*, numbers even smaller than the infinitesimals. The new hyperhyperreal field ce
be used, with benefits, for analysis over the hyperreals. On the other hand, ultrapowers ¢
have other independent uses: they are important concepts in the study of Banach spa
for instance.

The other main part of this work has dealt with the foundational development of ree
analysis in Isabelle, using nonstandard techniques. The approach used for mechaniza
of the calculus has proceeded strictly through definitions. We have introduced standard ¢
nonstandard definitions of all the concepts formalized, and have proved their equivaler
in each case.

We have also compared various aspects of our mechanization with corresponding ot
from the formalization of real analysis by Harrison using standard techniques. We ha
highlighted the advantages that the more algebraic and often more intuitive nonstand:
formulation of familiar concepts has over the standard approach. There is much scope
extending this development of real analysis in Isabelle. Some recent work, not covered
this paper, has involved developing Isabelle theories for power series and transcendel
functions such as exp, sin, and cos, using a combination of standard and nonstandard ana
techniques. This latest development points to another strength of our framework: it provid
the option of both standard and nonstandard proof development. One may choose eithe
work with purely standard concepts, or to use mainly nonstandard ones, or a combinati
of both.

In summary, this work describes a rigorous investigation of the mechanization of analys
using nonstandard techniques. Our main aim has been to show that there are advantag
be gained by using nonstandard analysis as the framework for mechanized real analysis.
simplicity of the formulations and the ease with which many different results are mechanize
justify the promises held by the approach.
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Appendix A. Isabelle theory files

This appendix contains some of the theory files for the development of nonstanda

analysis described in this paper.

The material is is to be found at

http://www.lms.ac.uk/jcm/3/Ims1999-027/appendix-a/.

The files should be used with Isabelle99, the current release of the theorem-prover. As t
work evolves, up-to-date versions of the theory files will be available in the online Isabell
distribution [18].
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