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UNIFORM APPROXIMATION ON THE GRAPH OF A 
SMOOTH MAP IN O 

BARNET M. WE INSTOCK 

1. Introduction. Let X be a compact set in Cw, and let / i , . . . ,fm, 
m ^ n, be continuous, complex-valued functions on X which have C1 

extensions to some neighborhood of X. We wish to describe the algebra A 
of continuous complex-valued functions on X which can be approximated 
uniformly by polynomials in the functions zu . . ., zn, fh . . . ,/m . For this 
purpose we introduce the sets 

E = {z £ Z : rank ( d / 7 ds ;) < n) 

and 

X = { ( z , / i ( z ) , . . . , / w ( s ) ) e Cn+m:ztX}. 

Our description of the algebra A is given by the following theorem: 

THEOREM. Assume X is a polynomially convex subset of Cn+m. Then A 
consists of those continuous functions on X which agree with some element 
of A on E. 

The first result of this type was proved by Wermer [6] for the case 
n = m = 1. He obtained the substantially stronger conclusion that A 
consists of those continuous functions which can be approximated 
uniformly on E by rational functions with no poles on E. 

Proofs of this theorem in the more general setting of functions defined 
on a manifold were obtained by Freeman [2] in the real-analytic case and 
by Fornaess [1] for the case wThen the functions and the manifold are 
differentiable of sufficiently high order. The case n = 1, m arbitrary, E 
empty is presented in [7]. When E is empty the theorem is a special case 
of the theorem that every continuous function on a compact subset of a 
totally real C1 submanifold of Cn is the uniform limit of holomorphic 
functions. This result was proved by Harvey and Wells [3]. The methods 
used in the present paper are more elementary than those of Harvey and 
Wells, since no use is made of uniform estimates for the Cauchy-Riemann 
operator. 

The results contained in this paper were the subject of the author's 
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lecture at the International Conference on Complex Analysis, Laval 
University, July 1978. After the present manuscript was completed the 
author received a preprint "Integral kernels and approximation on 
totally real submanifolds of Cn" by Bo Berndtsson, Chalmers University 
of Technology and the University of Goteborg, which contains an 
interesting new proof of the Harvey-Wells Theorem cited above by 
methods related to those employed here. 

The proof presented here is a generalization of Wermer's original proof 
in [6]. The essential idea is to replace Wermer's use of the Cauchy integral 
formula by a suitable Cauchy-Fantappiè kernel, in somewhat the same 
manner as in the author's earlier proof in [5] of a local version of the 
theorem in the case E is empty. 

2. Construction of the Cauchy-Fantappiè kernel. It suffices to 
show that if /z is a complex Borel measure on X such that jfdn = 0 for all 
/ G A then /x = 0 on X — E, or equivalently, that each point of X — E 
has a neighborhood U in Cn such that 

J 4>(z)d»(z) = 0 

for all 0 G C0
œ(U). 

Let Gi, . . . , Gn £ Cl(U X M) where M is an open neighborhood of X 
containing U. Define G on U X M by 

G(r,s) = £(r,-*,)G,(r,z) . 
Suppose that 

(1) G(f, z) vanishes only when f = z 
and 

(2) for each j , Gj(-, z)G{-, z)~n belongs to Lioc1, uniformly for z in 
compact subsets of M. 

If we define fi(f, z) by 

Û(r,s) = (n - l)!(2xi)-sG(f,2)-» E ( - l ) ^ ( f , s ) A w i 5fG4 A a 

where a — dfi A . . . A d£n then it is well-known (cf. [5]) that every 
<t> G Coœ(U) admits the representation 

<t>(z) =jm,z) A 50(f) 

with equality for all z £ AT (that is, the right side vanishes also for 
2 É ¥ - [/). If we rewrite 12 (f, z) in the form 

GO",*) = E#i(f ,s) A*^df* A a 
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then we conclude from Fubini's theorem that 

00(f) f\k^jdzk A a J *(s)d/z(z) = J ! T,JKÀ?> *W(*) 

where the z-integration is over U. 
Thus we will have proved the theorem if we can construct Gi, 

satisfying (1) and (2) and such that for almost all z g U, 

JKjtt, (3) jK,(ï,z)dvi(z)=0. 

Fix p Ç X — E. Without loss of generality we may assume that the 
principal nXn submatrix of (àft/ àZj(p)) is non-singular. Let T(p) 
denote this submatrix, and let S(p) denote the corresponding submatrix 
of (àfi/àzj(p)). If w e Cm we let w' = (wu . . . , wn). Similarly / ' = 

( / l , . - . , / n ) . 

Define g(f, z, w) by 

g(Ç,z,w) = T(p)-i(f'(t) - W - S(p)({ - z)). 

LEMMA 1. There is a neighborhood U\ of p such that if f, z £ U\ then 

|g(r,z,/(3)) - ( f - z ) l < i i f - z | . 
Proof. Define R(?,z) by 

/'(f) = /'(z) + 5(Z)(r - Z) + r(2)(r - g) + *(r,z). 
Let C = | j r (^) _ 1 | j . Choose a neighborhood F of £ such that 

\\S(z)-S(p)\\< (4C)"1 and ||7\z) - T(£) || < (4C)"1 if z G F. 

Choose e > 0 such that \R(Ç, z)\ < (AC)-1^ - z\ if f, z <E F and 
|f - z| < «. Let 

£/1 = Vni\Ç-p\ < e/2}. 

Then 

|g(f, *,/(*)) - ( f - Z ) | = 

|r(p)-Mi?(f,z) + (5(z) - 5 ( ^ ) ) ( f - 2 ) + (r (z ) -r ( / , ) ) (r -z ) } | 
^ 3/4|f - z|. 

COROLLARY. Let r(f, z, w) = (f — z)-g(f, z, w) wftere a-/3 denotes the 
standard bilinear form on C ; 

(i) r is holomorphic in z and w for fixed f, and V is of class C1 

(ii) |r(f,z,/(z))| 1 i /4 | r -z | 2 f,3 6 f/i 
(iii)Re r ( f , z , / ( z ) ) > 0 t / r ^ z f , * € t f i 
(iv) | r ( f , z , / ( z ) ) | = £ 7 / 4 | f - z | 2 f , z e [A. 
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Since X is polynomially convex we can find a neighborhood M of X 
which is a domain of holomorphy and open subsets V, W of M with the 
following properties: 

(a) { Vj W) is an open convering of M 
(b) if z e ft then (z,/(z)) 6 V 
(c) there is an open neighborhood ft of p, ft C C/i, such that z £ ft 

and (z,/(s)) G 7 H W imply z g ft 
(d) Re r(f, z, w) > Oon ft X ( F H W). 

For fixed f G ft, log T is holomorphic on V (^ W. By [4, Proposition 2] 
there exist C1 functions P on U2 X V and Q on U2 X W which are holo­
morphic in V and W respectively for fixed f ê ft and which satisfy 

log r = Q - P on U2 X (VC\ W). 

If we now define G(f, 2, w) on U2 X M to be eQ on U2X W and T^p on 
U2 X V then (5 is (well-defined and) holomorphic in M for fixed f Ç t/2 

and G is of class Cl in ft X M. 
Furthermore, we may assume with no loss of generality that 

P(P> P>f(P)) = 0 a n d t n a t therefore 

|gP(r.2.W) - i | < i / V 2 

on some neighborhood of (p, p,f(p)) of the form ft X ft X Z where 
ft C ft. Thus, if (f, z) G ft X ft and f ^ z, 

|G(f,z,/(z)) - r(r,z,/(z))| < 2- l"|r( f lz,/(z) | . 
Since on ft X V the function G vanishes only where Y does, and since G 
is nowhere zero on U2 X W we have the following result which we record 
as Lemma 2 for easy reference. 

LEMMA 2. There exists e > 0 such that if (f, z) ( f/3 X ft then 
G(f, z,f(z)) lies in the circular sector 3/47T ^ 0 ^ 5/4, 0 ^ r ^ e ow/y i/ 
G(f,z, /(z)) = 0 . 

Let Af be a neighborhood of X such that z £ M implies (z,f(z)) £ M. 
Define G(f, z) on ft X M by G(f, z) = 6(f, z,/(z)). 

LEMMA 3. There exist Gu . . . , Gn £ Cx(ft X M) SWCÂ / t o 

(ii) for fixed Ç e ft, G,(f,-) £ 4 , 1 ^ j ^ » 

(m) |G,(r,z)| s c | r - z | i / r , z G ft. 
(iv) X > 0 swcA / t o |G(f, z)| è X|f - z|2/or (f, z) € ft X M. 

Proof. By [4, Proposition 4] we can find functions Ri,..., i?n, Si , . . . , S„ 
of class C1 on ft X (M X M), holomorphic in M X M for fixed f G ft, 
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such that 

G(t,z,w) - G(Ç,z',w') = E(«i - z^R^.z.w.z'.w') 

+ E O ; - w/)Sj(t, z, w, z', w') 

for all f G £/3 and all (2, w), (2', «/) £ J0". Let w = / (z) , 2' = f, and 
w ' = /(f)) a n d define 

G^,Z) = -^(r.z./^.r./a)). 
For fixed f, i^(f, z, w, f , / (f )) is holomorphic on M, hence is the uniform 
limit on I of a sequence of polynomials by the Oka-Weil theorem. Con­
sequently, for fixed f Ç /7s, Gy(f, z) is the uniform limit on X of a 
sequence of polynomials in z and/ (z ) . Since G(f, f , / ( f ) ) = 0 if f G f/3 
we have established (i) and (ii). 

To prove (iii), observe that in £/3 X Uz we have 

|G(r,2)| g c j f - z ! 2 

by the Corollary to Lemma 1. It follows from Taylor's theorem that 

|G,(r,z)| g C | f - z | 

for some constant c > 0. 
Finally, if F is a small neighborhood of Z73 then G(f, z)|f — z|~~2 is 

bounded below on f/3 X (iW - F), while on £/3 X t/3, 

G(r,z) = *p-r(f, *,/(*)) 

which is bounded below by a multiple of |f — z\2 by the Corollary to 
Lemma 1. 

3. Proof of the theorem. The function G (f, z) = £(fy — %)G;-(f, z) 
defined on t/3 X M vanishes only when f = z and, by the Corollary to 
Lemma 1, 

|G,(r,z)G(r,2)-| ^ q r - z l 1 - 2 » 
hence, if 12 (f, 2) denotes the Cauchy-Fantappiè form constructed above 
using the functions Gh and if Kj is defined as above then, if E C ^3 and 
F (Z M are compact, 

sup I |2£,(r,2)|dm(r) <oo 

where dw denotes Lebesgue measure on Cn. Hence 

f f |tf,(f,*)|d«G-)dM(*) 
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is finite, so by Fubini's theorem, 

(*) JV,(r,*)|dH(*)<oo 
for almost all f in Uz. 

LEMMA 4. Fix f Ç t/3 swcft ^a^ (*) /w/ds. 77&ere exist junctions Hj(\), 
holomorphic on a neighborhood of {G(Ç, z):z £ X} swcfe /feâ  

(i) \H,(\)\ rg 3/|X| 
(ii) #„(X) ->1/X X ^ 0. 

Proof. This follows as in [6, Lemma 3] in view of Lemma 2 above. 

Each of the functions Kj is the product of Gj-G~n with some f-deriv­
atives of the functions Gk. Since the f-derivatives of the functions 
Rj(Ç, z, w, f , / (f)) of the previous section are also holomorphic in z and 
w, it follows from the Oka-Weil theorem once again that the f-derivatives 
of each function Gk belong to A. Moreover, on some neighborhood of X 
the functions HV(G(Ç, •, • )) are holomorphic, hence HV{G(Ç, •, • )) is the 
uniform limit on X of polynomials in z and w, so that HV(G(Ç, z,f(z)) 
is in A. By (i) and (ii) and the remarks preceding Lemma 4, 

Hr(G(t,zJ(z)) e Li(d\n,\(z)) 

and consequently, for each j , 

KjGnHn Ç LK^IMI). 

Since KjGnHv
n -> i£„ and since \KjGnHv

n\ g 3|i^-|, 

J î -(f, s)^0) = lim„ J K^HU^z). 

But KjGnHv
n G -4. Thus each integral on the right is zero. This completes 

the proof of the theorem. 

4. Further remarks. The algebra A is naturally isomorphic to the 
algebra P(X) of those continuous functions on X which can be uniformly 
approximated by polynomials in z and w. Let Ë be the set 
{(z,f(z)) :z 6 E). In this setting we can rephrase our theorem as follows: 

P(X) = \ge c(x):g\Ëe P(Ë)\. 

Thus the problem of approximation on X by polynomials is reduced to 
the problem of approximation on Ë by polynomials. 

LEMMA 5. The set Ë is polynomially convex. 

Proof. This is probably well-known, but for lack of a convenient 
reference we give the short argument here. Let h be a complex homo-
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morphism of P(E). Then h extends to a complex homomorphism of P(X) 
so there exists x £ X with h(P) = P(x) for all polynomials P. U x Q Ë 
there exists a continuous function g on X which vanishes on Ë but not 
at x. Then 0 = fe(g) = g{x) ^ 0. Thus x £ £ , so £ is polynomially 
convex. 

COROLLARY. Suppose Ë has the property that every continuous function 
on Ë is the uniform limit of a sequence of functions holom orphie in a neigh­
borhood of Ë. Then P{X) = C{X), i.e., A = C(X). 

Proof. This follows by Lemma 5 and the Oka-Weil theorem. 

A natural question to ask now is: Are there reasonable conditions on 
fiy ... j fn which imply that Ë satisfies the hypotheses of the Corollary? 
The author hopes to treat this question in future work. 

Finally, we observe that the hypothesis of polynomial convexity for 
X is certainly necessary when E is empty, but this is not the case other­
wise. The author is indebted to the referee for the following example: 

Let X = \{z, w) G G2: |s| = 1, Im w = 0, 0 ^ Rew ^ 1). Let 
/ i = (Rew)2 and / 2 = z/i. Then E = {\z\ = 1, w = Oj and X is not 
polynomially convex. Nevertheless A = {g Ç C(X):g\E Ç ^4|£j- Indeed, 
since/i, / i Re 2, and /1 I m z G i , any pair of points of X at least one of 
which is not in E can be separated by a real-valued function in A. The 
desired conclusion now follows by a well-known argument. (Cf. A. 
Browder, Introduction to Function Algebras, remarks following Theorem 
2.7.5.) 
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