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Characteristic-free bounds for the

Castelnuovo–Mumford regularity

Giulio Caviglia and Enrico Sbarra

Abstract

We study bounds for the Castelnuovo–Mumford regularity of homogeneous ideals in a
polynomial ring in terms of the number of variables and the degree of the generators.
In particular, our aim is to give a positive answer to a question posed by Bayer and
Mumford in What can be computed in algebraic geometry? (Computational algebraic
geometry and commutative algebra, Symposia Mathematica, vol. XXXIV (1993), 1–48)
by showing that the known upper bound in characteristic zero holds true also in positive
characteristic. We first analyse Giusti’s proof, which provides the result in characteristic
zero, giving some insight into the combinatorial properties needed in that context. For the
general case, we provide a new argument which employs the Bayer–Stillman criterion for
detecting regularity.

Introduction

The Castelnuovo–Mumford regularity is an important invariant in commutative algebra and alge-
braic geometry, which gives an estimate of the complexity of computing a minimal free resolution.
It is common in the literature to attempt to find bounds for this invariant and, in general, the ex-
pected results range quite widely, from the well-behaved examples coming from algebraic geometry,
as suggested by the Eisenbud–Goto conjecture [EG84], to the worst case provided by the example of
Mayr and Meyer [MM82]. Clearly, when the assumptions are quite unrestrictive, the regularity can
be very large. If one works with a homogeneous ideal I in a polynomial ring R = K[X1, . . . ,Xn] over
a field K, a very natural question is to ask whether the regularity can be limited just by knowing
that the ideal is generated in degree less than or equal to some positive integer d. What was known
to this point were bounds depending on the characteristic of the base field K. If char K = 0, as
observed in [BM93, Proposition 3.8], from the work of Giusti [Giu84] and Galligo [Gal79, Gal73],
one can derive the bound

reg(I) � (2d)2
n−2

, (A)

which seems to be sharp (see again [MM82]).
On the other hand, in any characteristic, it has been proved in [BM93] using ‘straightforward

cohomological methods’ that

reg(I) � (2d)(n−1)!, (B)

but in the same paper it is asked whether (A) holds in general independently of the characteristic.
The main purpose of this paper is to give a positive answer to this question. The main effort in
extending the result to positive characteristic is that this proof utilises the combinatorial structure
of the generic initial ideal in characteristic zero.
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The generic initial ideal was introduced in [Gal73], where it was defined with the assumption that
the base field has characteristic zero. The definition was then generalised a few years later for base
fields of any characteristic in [BS87], and grew in importance, as many recent results demonstrate.
One of the points of major interest in considering the generic initial ideal Ginrlex(I) with respect
to the (degree) reverse lexicographic order of a homogeneous ideal I is that this is a monomial
ideal with the same Hilbert function, projective dimension and Castelnuovo–Mumford regularity
as I. Furthermore, a generic initial ideal is Borel-fixed, i.e. it is invariant under the action of the
Borel group, which is the subgroup of GLn(K) consisting of all non-singular upper-triangular n×n
matrices with coefficients in K. According to the characteristic of the underlying field, whether it is
zero or positive, Borel-fixed ideals have a more or less manageable combinatorial structure. It may
be convenient to recall some of the most interesting notions used in this context and to fix some
terminology since this is not unique in the literature. We refer the interested reader to the detailed
treatise in [Par94] and [Par96] for further information.

Let K be an infinite field (which is not a restrictive hypothesis for our purposes). Given a
monomial u we denote max{i : Xi | u} by m(u). Now let p be a prime number and k a non-negative
integer. The p-adic expansion of k is the expression of k as

∑
i kip

i, with 0 � ki � p−1. If k =
∑

i kip
i

and l =
∑

i lip
i are the p-adic expansions of the two integers k and l respectively, one sets k �p l if

and only if ki � li for all i.

First of all notice that an ideal I which is fixed under the action of the Borel group (i.e. a
Borel(-fixed) ideal) is monomial. A standard Borel(-fixed) (or strongly stable) ideal I is an ideal
endowed with the following property: for each u ∈ I, if Xi | u then Xju/Xi ∈ I, for each j < i. The
class of stable ideals is defined by a weaker exchange condition on the variables of the monomials:
an ideal I is stable if and only if for each u ∈ I, Xju/Xm(u) ∈ I, for each j < m(u). Finally, an ideal
I is said to be p-Borel if and only if for each monomial u ∈ I, if l is the maximum integer such that
X l

i |u, then Xk
j u/Xk

i ∈ I, for all j < i and k �p l. Standard Borel ideals are Borel. If char K = 0
every Borel ideal is standard. If char K = p a monomial ideal is Borel if and only if it is p-Borel.

The crucial difference between characteristic zero and positive characteristic can be noticed at
a first glance: the combinatorial structure of standard Borel ideals is easier than that of the non-
standard ones, which relies on the p-adic expansion of non-negative integers. This difference in
behaviour also results in the fact that there is a complete description of the minimal free graded
resolution of a standard Borel ideal I in terms of the monomials of its minimal system of generators
G(I) (cf. [EK90], [AH96]), while the task of finding an analogue for non-standard Borel ideals still
seems to be too difficult. In particular, the graded Betti numbers of a standard Borel ideal I can
be computed explicitly in terms of G(I) and it is easily deduced that its Castelnuovo–Mumford
regularity equals the highest degree of an element in G(I), i.e. the so-called generating degree of I.
Thus, it is quite clear that the assumption of characteristic zero has made the task of investigating
the generic initial ideal easier.

This paper is divided in two sections. The first section is dedicated to a better understanding of
the arguments that lead to the inequality (A), which are due to Galligo [Gal79] and Giusti [Giu84].
For this purpose, we introduce and study certain ideals, which we call weakly stable. As a result
we obtain a bound for the regularity which improves (A). In the second section we use these ideas
and we prove a formula that relates the regularity of the original ideal with its generating degree
and the regularity of its sum with an almost-regular sequence of linear forms (Theorem 2.4). As a
consequence, we obtain the desired result (Corollary 2.6).

1. Weakly stable ideals

The purpose of this section is to study a certain class of monomial ideals which we call weakly stable.
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We recall the definition of the Castelnuovo–Mumford regularity, whereas we refer the reader to
[EG84], [Eis95] and [BS98] for further details on the subject.

Definition 1.1. Let M be a finitely generated graded R-module and let βij(M) denote the graded
Betti numbers of M (i.e. the numbers dimK Tori(M,K)j). The Castelnuovo–Mumford regularity
reg(M) of M is

max
i,j

{j − i : βij(M) �= 0}.

Recall also another useful characterisation of regularity in terms of local cohomology modules
of M , which we shall use in the following. Since the graded local cohomology modules H i

m(M)
with support in the graded maximal ideal m of R are Artinian, one defines end(H i

m(M)) to be the
maximum integer k such that H i

m(M)k �= 0. Then

reg(M) = max
i

{end(H i
m(M)) + i}.

Finally, a finitely generated R-module M is said to be m-regular for some integer m if and only if
reg(M) � m.

Let us outline the main steps of the proof of (A). For any field K and any homogeneous ideal
I it is well-known that reg(I) equals reg(Ginrlex(I)), and if char K = 0 then Gin≺(I) is a standard
Borel ideal for any term order ≺ for which X1 � X2 � · · · � Xn, so that its regularity equals its
generating degree D. Furthermore, if char K = 0, the following principle holds.

Crystallisation Principle (CP). Let I be a homogeneous ideal generated in degrees � d.
Assume that Ginrlex(I) has no generator in degree d+1. Then D � d (cf. [Gre98, Proposition 2.28]).

Hence, due to the good properties of Ginrlex and an induction argument on the numbers of
variables, one obtains bounds for D in terms of the generating degree d of I (cf. [Giu84], in particular
the ‘Proof of Theorem B’), and this completes the argument.

One notices that in the proof the hypothesis char K = 0 is used solely to exploit the combinatorial
structure of Ginrlex. Furthermore, CP only holds true in characteristic zero. Consider, for instance
the ideal (X2p, Y 2p) in K[X,Y ] with char K = p �= 2. Then Ginrlex(I) = (X2p,XpY p, Y 3p). Here it
is sufficient to observe that the ideal (X2p, Y 2p) is the ideal generated by the images of X2 and Y 2

under the Frobenius map R → R, X → Xp. In fact the following more general result is well-known.

Proposition 1.2. Let I be a homogeneous ideal of R = K[X1, . . . ,Xn] with char K = p and let F
be the Frobenius map. Then for any term order τ one has

Ginτ (F (I)) = F (Ginτ (I)).

Proof. Note that the computation of the initial ideal of F (I) can be performed in K[Xp
1 , . . . ,Xp

n],
i.e. the S-pairs of F (I) are just the pth power of the S-pairs of I, so that F (inτ (I)) = inτ (F (I)).
This suffices, since by definition Ginτ (F (I)) = inτ (g(F (I))) = inτ (F (g(I))), where g is a generic
change of coordinates.

Since CP fails in positive characteristic, one might wonder if the proof of (A) could be performed
by making use of lexicographic (also called lex-segment) ideals instead of generic initial ideals. In
fact, there is a natural counterpart of CP, the so-called Gotzmann’s persistence theorem (see [Got78]
or [Gre98, Theorem 3.8]): Given an ideal I with generating degree D the lexicographic ideal L
associated with I cannot have generators in degree k > h for any k if it has none in degree h > D.

This property is not strong enough to furnish our bounds since there is something missing:
modulo the last variable the resulting lexicographic ideal does not fulfil Gotzmann’s persistence
theorem for the same D. So, proceeding recursively, one would obtain much higher bounds.
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This makes it necessary to have a deeper understanding of Giusti’s argument, and motivates the
following definition. As before we let m(u) denote max{i : Xi | u} for any monomial u.

Definition 1.3. A monomial ideal I is said to be weakly stable if for all u ∈ I and for all j < m(u)
there exists a positive integer k such that Xk

j u/X l
m(u) ∈ I, where l is the maximum integer such

that X l
m(u) | u.

It is straightforward from this definition that if I is weakly stable then so is Ī, the quotient
ideal modulo the last variable (any other variable would do after re-labelling). One easily verifies
that finite intersections, sums and products of weakly stable ideals are weakly stable. It is worth
pointing out that a monomial ideal is weakly stable if and only if its associated prime ideals are
lexicographic, i.e. of the form (X1, . . . ,Xi) for some i. This and other combinatorial properties of
weakly stable ideals have been proved in [Cav04]. We also recall that monomial ideals which have
lexicographic associated prime ideals have been used in [BG05] for algorithmic computations of
Castelnuovo–Mumford regularity.

Remark 1.4. Strongly stable, stable and p-Borel ideals are weakly stable.

Henceforth we let D(I) denote the generating degree of the ideal I, i.e. the maximum of the
degrees of a minimal set of generators of I. We next prove a bound on the cardinality of the minimal
system of generators of a weakly stable ideal in terms of the generating degrees of its reductions
modulo the last variables. In the following we shall denote by I[i] the image of the ideal I in
R/(Xi+1, . . . ,Xn), for i = 1, . . . , n − 1, and we let I[n] = I. Given a monomial u in K[X1, . . . ,Xn],
we set Mdi(u) .= max{j : Xj

i | u}, for i = 1, . . . , n. Accordingly, if J is a monomial ideal we define
Mdi(J) .= maxu∈G(J){j : Xj

i | u} = maxu∈G(J){Mdi(u)}, for i = 1, . . . , n − 1. We first prove the
following lemma.

Lemma 1.5. Let I be a weakly stable ideal. Then Mdi(I[i]) = Mdi(I) for all i = 1, . . . , n − 1.

Proof. It is immediate that Mdi(I[i]) � Mdi(I). Suppose now that Mdi(I[i]) < Mdi(I) and let us
find a contradiction. For the sake of simplicity, let s

.= Mdi(I[i]). Then there exists u ∈ G(I) such
that Xs+1

i | u and m(u) > i. Let us choose u such that m(u) becomes minimal. As I is weakly
stable there are integers k, l such that uXk

i /X l
m(u) is an element of I. Hence there exists n ∈ G(I)

such that n divides uXk
i /X l

m(u) and m(n) < m(u). Therefore, Mdi(n) � s, so that n | uXk
i and

n � u. But this implies the contradiction s � Mdi(n) � Mdi(u) + 1 � s + 2 and we are done.

Proposition 1.6. Let I ⊂ R = K[X1, . . . ,Xn], with n � 2, be a weakly stable ideal. Then

|G(I)| �
n−1∏
i=1

(D(I[i]) + 1).

Proof. Keeping in mind that we can decide whether two monomials of G(I) are distinct just by
looking at their first n − 1 variables, it is clear that |G(I)| �

∏n−1
i=1 (Mdi(I) + 1). By Lemma 1.5,

Mdi(I) = Mdi(I[i]) for all i = 1, . . . , n− 1. Obviously Mdi(I[i]) � D(I[i]) for all i = 1, . . . , n− 1.

Let d be a non-negative integer. We consider weakly stable ideals which fulfil the following
condition.

Condition 1.7. If i � d and I has no minimal generator of degree i, then it also has none of degree
i + 1.
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Proposition 1.8. Let I ⊂ R = K[X1, . . . ,Xn], with n � 2, be a weakly stable ideal for which
Condition 1.7 holds with respect to d. Then

D(I) � d − 1 +
n−1∏
i=1

(D(I[i]) + 1).

Proof. The hypothesis on the generators implies that D(I) − d + 1 � |G(I)| and since I is weakly
stable the assertion follows directly from Proposition 1.6.

Let us now look at the class of weakly stable ideals I, which satisfy the following condition.

Condition 1.9. I[i] verifies Condition 1.7 with respect to d for all 1 � i � n.

Condition 1.9 is satisfied by the generic initial ideal Ginrlex(I) of a homogeneous ideal I in
K[X1, . . . ,Xn], where the characteristic of K is zero and the generating degree of I is less than or
equal to d. As noticed earlier, Ginrlex(I) is strongly stable and a fortiori weakly stable as observed
in Remark 1.4. Condition 1.7 is verified for such an ideal by virtue of CP, whereas Condition 1.9
holds as Ginrlex(I)[i] = Ginrlex(I) + (Xi+1, . . . ,Xn) = Ginrlex(I + (Xi+1, . . . ,Xn)) = Ginrlex(I[i]),
and CP applies since the generating degree of I[i] is obviously less than or equal to d.

Corollary 1.10. Let I ⊆ K[X1, . . . ,Xn], with n � 2, be a weakly stable ideal, which satisfies
Condition 1.9 with respect to d. Then

D(I) � (2d)2
n−2

.

Proof. According to Proposition 1.8, one has that D(I[i]) � Bi, where we let B1
.= d and Bi

.=
d−1+

∏i−1
j=1(Bj +1), for all i > 1. One easily verifies that Bi = (Bi−1− (d−1))(Bi−1 +1)+d−1 =

B2
i−1 − (d − 2)Bi−1 for all i > 1. Since we may assume that d � 2, we get Bi � B2

i−1. Thus, for all
i � 2, we have Bi � (2d)2

i−2
. In particular, we obtain D(I) � Bn � (2d)2

n−2
.

The bound for the regularity expressed in (A) now follows easily under the assumption char
K = 0.

Corollary 1.11. Let I be an ideal of R = K[X1, . . . ,Xn] with n � 2 and char K = 0. Let I be
generated in degree � d. Then

reg(I) � (2d)2
n−2

.

Proof. Recall that I and Ginrlex(I) have the same regularity and that the latter is a stable ideal, so
that its regularity equals its generating degree. By the observations preceding Corollary 1.10, this
ideal satisfies the hypotheses of Corollary 1.10.

2. Bounds for the regularity

In this section we show that the above bound holds independently of the characteristic. This im-
proves [BM93, Theorem 3.7 and Proposition 3.8]. The techniques used here are based on general
properties of local cohomology and almost-regular sequences of linear forms.

Henceforth, by flat base change property of local cohomology, we may assume without loss of
generality that |K| = ∞.

We first notice a few easy facts which are used in the rest of the section. Given an arbitrary
homogeneous ideal I of R = K[X1, . . . ,Xn], we denote by Isat the saturation I : m∞ = ∪k�0I : mk

of I with respect to m. Let I, J be two arbitrary ideals. If I ⊆ J ⊆ Isat then J sat = Isat. Recall that,
given a finitely generated graded R-module M , a homogeneous element l ∈ Rd is said to be almost-
regular for M if and only if the multiplication map Mk

·l−−−→ Mk+d
is injective for all k 
 0.
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We say that l1, . . . , lr form an almost-regular sequence for M if l1 is almost-regular for M and li+1

is almost-regular for M/(l1, . . . , li)M for all i = 1, . . . , r − 1. One can show that a homogeneous
form is almost regular for a graded R-module M if and only if it is not contained in any associated
prime ideal of M other than the homogeneous maximal ideal m. Recall also that, since |K| = ∞,
a generic form in R is almost-regular for M .

Remark 2.1. Let I be a homogeneous ideal of R and let l ∈ Rd. Then the following statements are
well known to be equivalent:

(i) l is almost regular for R/I;

(ii) l is regular for R/Isat;

(iii) I : lk ⊂ Isat for some k > 0;

(v) I : lk ⊂ Isat for all k > 0;

(iv) I : lk = Isat for some k > 0.

Let I and l satisfy these conditions. Then, the smallest integer k with I : lk = Isat is called the
index of saturation of I with respect to l and is denoted by k(I, l). It is not difficult to see that

(k(I, l) − 1)d � max{0, end(H0
m(R/I))}.

In particular if d = 1 and I �= 0, one obtains k(I, l) � reg(I).

Before giving the main result of this section we prove a useful lemma. In the following we let
λ(·) denote the length function.

Lemma 2.2. Let l be an element of R and I an ideal of R. For any integer a � 0 one has

λ

(
I : la

I : la−1

)
= λ

(
(I : la) + (l)

(I : la−1) + (l)

)
+ λ

(
I : la+1

I : la

)
,

whenever all of the above lengths are finite.

Proof. Consider the following exact sequence,

0 −−→ I : la+1

I : la
·l−−−→ I : la

I : la−1
−−→ I : la

(I : la−1) + l(I : la+1)
−−→ 0 ,

where the third term is
I : la

(I : la−1) + (l) ∩ (I : la)
� (I : la) + (l)

(I : la−1) + (l)
.

The conclusion follows immediately from the additivity of length.

Remark 2.3. If dim R/I = 0 and I is generated in degree � d, then I contains a regular sequence
f1, . . . , fn of forms of degree at most d; therefore,

reg(I) = reg(R/I) + 1 = end(R/I) + 1 � end(R/(f1, . . . , fn)) + 1 = reg(R/(f1, . . . , fn)) + 1
= n(d − 1) + 1.

We adopt the standard agreement that a product over the empty set is 1.

Theorem 2.4. Let I be a homogeneous ideal of K[X1, . . . ,Xn] of height c < n and generated in
degree � d. Then, if ln, . . . , lc+1 is an almost-regular sequence of linear forms for R/I, one has

reg(I) � max{d, reg(I + (ln))} + dc
n∏

i=c+2

reg(I + (ln, . . . , li)).
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Proof. The proof consists essentially in proving two separate inequalities:

reg(I) � max{d, reg(I + (ln))} + λ

(
I : ln

I

)
; (2.1)

for all i � c + 2,

λ

(
(I + (ln, . . . , li+1)) : li

I + (ln, . . . , li+1)

)
� λ

(
(I + (ln, . . . , li))sat + (li−1)

I + (ln, . . . , li−1)

)
Ki−1, (2.2)

where for all i = 1, . . . , n the integer Ki = k(I + (ln, . . . , li+1), li) denotes the index of saturation of
I + (ln, . . . , li+1) with respect to li (cf. Remark 2.1).

Proof of (2.1). For the sake of notational simplicity we set r
.= max{d, reg(I + (ln))} and

λ
.= λ((I : ln)/I). We want to prove that I is (r + λ)-regular. We do this by (a special case of)

the regularity criterion ([BS87, Theorem 1.10] or [BM93, Theorem 3.3]), which says that an ideal
J which is generated in degree � d is m-regular, if ((J : l)/J)m = 0 and m � max{d, reg(J + (l))},
where l is an almost-regular linear form for R/J . Thus, we only have to prove that ((I : ln)/I)r+i = 0
for some i � λ. Consider the chain

((I : ln)/I)�r ⊃ ((I : ln)/I)�r+1 ⊃ · · · ⊃ ((I : ln)/I)�r+λ ⊃ ((I : ln)/I)�r+λ+1

and observe that, if one of the inclusion is not strict, then one has ((I : ln)/I)r+i = 0 for some
integer 0 � i � λ, so that I is (r + λ)-regular. If all of the above inclusions were strict, one would
obtain the contradiction λ � λ + 1.

Proof of (2.2). We first prove that, for all i � c + 1, one has

λ

(
(I + (ln, . . . , li+1)) : li

I + (ln, . . . , li+1)

)
= λ

(
(I + (ln, . . . , li+1))sat + (li)

I + (ln, . . . , li)

)
. (2.3)

To do so fix an integer i with c + 1 � i � n and let J
.= I + (ln, . . . , li+1). A repeated application of

Lemma 2.2 yields

λ

(
J : li

J

)
= λ

(
(J : li) + (li)

J + (li)

)
+ λ

(
J : l2i
J : li

)

= λ

(
(J : li) + (li)

J + (li)

)
+ λ

(
(J : l2i ) + (li)
(J : li) + (li)

)
+ λ

(
J : l3i
J : l2i

)

= λ

(
(J : li) + (li)

J + (li)

)
+ λ

(
(J : l2i ) + (li)
(J : li) + (li)

)
+ · · · + λ

(
(J : lKi

i ) + (li)

(J : lKi−1
i ) + (li)

)

= λ

(
J sat + (li)
J + (li)

)
,

as required.

For all i � c + 2 we now prove that

λ

(
(I + (ln, . . . , li+1))sat + (li)

I + (ln, . . . , li)

)
� λ

(
(I + (ln, . . . , li))sat + (li−1)

I + (ln, . . . , li−1)

)
Ki−1. (2.4)

Since (I + (ln, . . . , li+1))sat + (li) ⊂ (I + (ln, . . . , li))sat = (I + (ln, . . . , li)) : l
Ki−1

i−1 and in view of the
Ki−1 inclusions

I + (ln, . . . , li) ⊂ (I + (ln, . . . , li)) : li−1 ⊂ · · · ⊂ (I + (ln, . . . , li)) : l
Ki−1

i−1

1371
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we may restrict ourselves to showing that, for all positive integers a and i � c + 2, one has

λ

(
(I + (ln, . . . , li)) : lai−1

(I + (ln, . . . , li)) : la−1
i−1

)
� λ

(
(I + (ln, . . . , li))sat + (li−1)

I + (ln, . . . , li−1)

)
. (2.5)

But this follows by repeated use of Lemma 2.2 applied to the ideal I + (ln, . . . , li). By (2.3) and
(2.4) we get (2.2).

We now complete the proof of the theorem. By repeated application of (2.3) and (2.2) we obtain

λ

(
I : ln

I

)
� λ

(
(I + (ln, . . . , lc+2))sat + (lc+1)

I + (ln, . . . , lc+1)

)
Kc+1 · Kc+2 · · ·Kn−1

� dc
n−1∏

i=c+1

Ki.

The last inequality is due to the fact that

(I + (ln, . . . , lc+2))sat + (lc+1)
I + (ln, . . . , lc+1)

⊂ R/(I + (ln, . . . , lc+1)).

The latter is a subring of S = K[X1, . . . ,Xc]/(f1, . . . , fc), where f1, . . . , fc is a regular sequence of
c elements of degree � d so that S is of length at most dc.

By virtue of (2.1) we now have reg(I) � max{d, reg(I + (ln))}+ dc
∏n−1

i=c+1 Ki and it is sufficient
to prove that Ki = k(I + (ln, . . . , li+1), li) � reg(I + (ln, . . . , li+1)) for all i = c + 1, . . . , n − 1. But
this inequality has been observed in Remark 2.1.

Remark 2.5. Let I ⊂ K[X1, . . . ,Xn] be a homogeneous ideal generated in degree � d. If the height
of I is n, we have (cf. Remark 2.3) that reg(I) � n(d − 1) + 1. Furthermore, if ht I = 1 then there
exists a homogeneous polynomial f of degree 0 < a � d such that I = (f)J and J is an ideal
generated in degree � d − a. Thus, the ideal I is a shifted copy of J and reg(I) = reg(J) + a.

We are now in a position to prove the requested bounds.

Corollary 2.6. Let I ⊂ K[X1, . . . ,Xn] be a homogeneous ideal of height c < n generated in
degree � d. Then

reg(I) � (dc + (d − 1)c + 1)2
n−c−1

.

Proof. Let ln, . . . , lc+1 be an almost-regular sequence of linear forms for R/I. By virtue of Theo-
rem 2.4 we are able to compute a bound for the regularity of I + (ln, . . . , li), i � c + 1, in
the following way. First we observe that the regularity of I + (ln, . . . , li) equals that of its
image Ī in R/(ln, . . . , li) � K[X1, . . . ,Xi−1]. Moreover, the quotient algebra R/(I +(ln, . . . , lc+1)) �
K[X1, . . . ,Xc]/Ī is Artinian so that reg(I + (ln, . . . , lc+1)) = reg(Ī) � c(d − 1) + 1 .= B0 (cf.
Remark 2.3). Now we apply Theorem 2.4 to the image of I + (ln, . . . , lc+2) in K[X1, . . . ,Xc+1]
and we obtain that reg(I + (ln, . . . , lc+2)) � (d − 1)c + 1 + dc .= B1. For all i � 2 we define
Bi

.= Bi−1 + dc
∏i−1

j=1 Bj. Then Bi = (Bi−1 − Bi−2)Bi−1 + Bi−1 � (Bi−1)2. Hence Bi � (B1)2
i−1

for
all i � 1. Moreover, by Theorem 2.4, we get by induction on i that reg(I + (ln, . . . , lc+i+1)) � Bi

for all i � n − c. So reg(I) � Bn−c � ((d − 1)c + 1 + dc)2
n−c−1

, as desired.

Corollary 2.7. Let I ⊂ K[X1, . . . ,Xn] be an ideal generated in degree � d. If n = 2 then
reg(I) � 2d − 1. If n � 3, we have

reg(I) � (d2 + 2d − 1)2
n−3 � (2d)2

n−2
.

Proof. The case n = 2 is easy. So, let n � 3. Since the bound of Corollary 2.6 is decreasing as a
function of c, our statement is clear if ht(I) > 1. The case ht(I) = 1 is obvious by Remark 2.5.

1372

https://doi.org/10.1112/S0010437X05001600 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X05001600


Characteristic-free bounds for the Castelnuovo–Mumford regularity

Example 2.8. One could be interested in a slightly better estimate for the regularity and for this
purpose one could follow step-by-step the proof of Corollary 2.6.

Consider, for instance, the case n = 4. As we have seen in the proof of Corollary 2.6, the worst
possible case is provided by an ideal of height 2. Since B2 = (B1 − B0)B1 + B1, the regularity of
a homogeneous ideal in K[X1,X2,X3,X4] is bounded by ((d2 + 2d − 1) − (2d − 1))(d2 + 2d − 1) +
(d2 + 2d − 1) = d4 + 2d3 + 2d − 1.
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