PSEUDODIFFERENTIAL RESOLVENT FOR A GERTAIN NON-LOGALLY-SOLVABLE OPERATOR

C. HOEL

Introduction. In this note we construct a pseudo-differential resolvent for $P=D_{x}{ }^{2}+x^{2} D_{y}{ }^{2}-\lambda D_{y}$ by the method of [3] and study the dependence on the parameter λ as $\lambda \rightarrow 1$. Grushin [2] first pointed out that P is solvable and hypoelliptic if λ is not an odd integer, whereas P is neither locally solvable at the origin nor hypoelliptic if λ is an odd integer. Gilioli and Treves [1] showed that this discrete nature of the condition for solvability persists to a more general class of operators. But when λ is an odd integer, adding a nonreal constant term to P recovers solvability; thus a description of how the resolvent depends on λ would be of interest. In particular, this paper comprises a proof of the Proposition: $(z I-P)^{-1}$ has a pseudodifferential symbol which is expressible in closed form if z is not a nonnegative real. This symbol can be used to compute the λ dependence of the symbol of the spectral resolution of P, which reveals the non-local-solvability of P as $\lambda \rightarrow 1$.

1. $P=D_{x}{ }^{2}+x^{2} D_{y}{ }^{2}-\lambda D_{y}$ is a symmetric operator on $S\left(R^{2}\right)$ when λ is real, and thus it extends to a self-adjoint operator on $L^{2}\left(R^{2}\right)$ [4]. This guarantees the existence of a resolution of the identity, E, and a method of computation:

$$
E((b, c))=\lim _{\delta \downarrow 0} \lim _{\epsilon \downarrow 0} \frac{1}{2 \pi i} \int_{b+\delta}^{c-\delta} R(r-i \epsilon)-R(r+i \epsilon) d r .
$$

Here $R(z)=(z I-P)^{-1}$ for z a complex number, b and c are real numbers, possibly infinite, and the limits are in the strong operator topology.

Construction of resolvent for $\operatorname{Re} z<0$. First we presume that $(z-P)^{-1}$ is a pseudodifferential operator with symbol $k(x, \xi, \eta ; \lambda ; z)$, and thus we try to solve

$$
\begin{equation*}
1=\sum_{\alpha} \frac{1}{\alpha!}\left(z-\left(\xi^{2}+x^{2} \eta^{2}-\lambda \eta\right)\right)^{(\alpha)} D_{x, y}{ }^{\alpha} k \tag{1}
\end{equation*}
$$

As in [3] we look for a solution of the form

$$
k=-\int_{0}^{\infty} \exp (-f) d t
$$

with $f(x, \xi, \eta, \lambda, z, t)$ satisfying the t-boundary conditions: $f(0)=0$ and $\operatorname{Ref} \rightarrow \infty$ as $t \rightarrow \infty$. This leads to an equation for f

$$
\frac{\partial f}{\partial t}=\xi^{2}+x^{2} \eta^{2}-\lambda \eta-z+2 i \xi \frac{\partial f}{\partial x}+\frac{\partial^{2} f}{\partial x^{2}}-\left(\frac{\partial f}{\partial x}\right)^{2}
$$

Received March 14, 1973 and in revised form, August 31, 1973.
which is easily solved when $\operatorname{Re} z<0$ and yields

$$
f=\left(\xi^{2}+x^{2} \eta^{2}\right) \frac{\tanh 2 \eta t}{2}+i x \xi(1-\operatorname{sech} 2 \eta t)+\frac{1}{2} \log \cosh 2 \eta t-\lambda \eta t-z t .
$$

Notice that f is invariant under the change $\eta \rightarrow-\eta, \lambda \rightarrow-\lambda$ so we will only consider $\eta>0$ and $-1 \leqq \lambda \leqq 1$; also $\eta=0$ gives $f=\left(\xi^{2}-z\right) t$. Of course $\operatorname{Re} z<0$ guarantees $\operatorname{Re} f \rightarrow \infty$ as $t \rightarrow \infty$. Lastly we note that allowing Im λ to be nonzero does not affect the validity of this representation for the symbol of the resolvent.

This existence of $(z-P)^{-1}$ for $\operatorname{Re} z<0$ indicates the spectrum of P is contained in $\overline{R_{+}}$. Now $|k| \leqq 2^{\frac{1}{2}}|\operatorname{Re} z|^{-1}$ and clearly k is smooth since f is real analytic. In fact by differentiating and estimating as in [3] we find that k is in $S_{\frac{2}{2}, \frac{1}{2}}^{-1}\left(R^{2}\right)$ when $|\lambda|<1$, but only that k is in $S_{\frac{1}{2}, \frac{1}{2}}^{0}\left(R^{2}\right)$ if $\lambda= \pm 1$. Incidentally this implies $z-P$ is locally solvable and hypoelliptic for $\lambda= \pm 1$ since k is also the symbol of a left inverse.
2. We analytically extend k into $\operatorname{Re} z \geqq 0, \operatorname{Im} z \neq 0$ by deforming the integration contour, and since everything is analytic the equation (1) will still be satisfied. Since $\operatorname{Im} z<0$ and $\operatorname{Im} z>0$ are handled symmetrically we will just consider the latter.

We deform the t integration contour as follows:

'This deforming in a series of steps was to avoid any questions about crossing branch cuts in the domain of the log. The horizontal part of the contours is estimated using $\operatorname{Re} z<0, \operatorname{Im} z>0$, and the periodicity of the trig functions. Lastly the contribution from the semicircles vanishes as the contour is pressed onto the imaginary axis, as we now show. For $t=\pi i / 4 \eta$ introduce polar coordinates: $2 \eta t-\frac{1}{2} i \pi=R \exp (i \theta)$ and then the semicircle integration becomes

$$
\begin{aligned}
- & \int_{-\pi / 2}^{\pi / 2} \exp \left(-\left(\xi^{2}+x^{2} \eta^{2}\right) \frac{\operatorname{coth} R \exp (i \theta)}{2 \eta}-i x \xi(1+i \operatorname{csch} R \exp (i \theta))\right. \\
& \left.-\frac{1}{2} \log i \sinh R \exp (i \theta)+\left(\frac{i \pi}{4}+\frac{R}{2} \exp (i \theta)\right)\left(\lambda+\frac{z}{\eta}\right)\right) \frac{i R}{2 \eta} \exp (i \theta) d \theta
\end{aligned}
$$

Now for $R \rightarrow 0$ we use

$$
\begin{aligned}
& \operatorname{coth} R \exp (i \theta)=\frac{1}{R} \exp (-i \theta)+\frac{R}{3} \exp (i \theta)+\ldots, \\
& \operatorname{csch} R \exp (i \theta)=\frac{1}{R} \exp (-i \theta)-\frac{R}{6} \exp (i \theta)+\ldots, \\
& \sinh R \exp (i \theta)=R \exp (i \theta)\left(1+\frac{R^{2}}{6} \exp (2 i \theta 3+\ldots),\right.
\end{aligned}
$$

and find the exponent equal to

$$
-\frac{\exp (-i \theta)}{R} \frac{(\xi-x \eta)^{2}}{2 \eta}-\frac{1}{2} \log R+i\left(\frac{\pi}{4}\left(\lambda+\frac{z}{\eta}-1\right)-x \xi-\frac{1}{2} \theta\right)+O(R)
$$

Hence the integral is $O\left(R^{\frac{1}{2}}\right)$.
Thus we have a principal value integral along the imaginary axis and changing variables to $2 \eta t=i$ s we write for $\operatorname{Re} z<0, \operatorname{Im} z>0, \eta>0$

$$
\begin{aligned}
& k(x, \xi, \eta, \lambda, z)= \\
& \frac{-i}{2 \eta} p v \int_{0}^{\infty} \exp \left(-\frac{i Q}{2 \eta} \tan s-i x \xi(1-\sec s)-\frac{1}{2} \log \cos s+\frac{i s}{2}\left(\lambda+\frac{z}{\eta}\right)\right) d s
\end{aligned}
$$

where Q denotes $\xi^{2}+x^{2} \eta^{2}$. Of course we now may allow $\operatorname{Re} z \geqq 0$. Also note $\log \cos \pi l=i \pi l$ and $p v$ is not needed since $|\cos s|^{-\frac{1}{2}}$ is locally integrable.

Similarly for $\operatorname{Im} z<0$ we deform the contour to the negative imaginary axis and then again $\operatorname{Re} z \geqq 0$ is achieved. In this case we find

$$
k=\frac{i}{2 \eta} \int_{0}^{\infty} \exp \left(\frac{i Q}{2 \eta} \tan s-i x \xi(1-\sec s)-\frac{1}{2} \log \cos s-\frac{i s}{2}\left(\lambda+\frac{z}{\eta}\right)\right) d s
$$

with $\log \cos \pi l=-i \pi l$. Of course in both cases

$$
|k| \leqslant \frac{1}{2 \eta} \int_{0}^{\pi}|\cos s|^{-1 / 2} d s|\operatorname{Im} z|^{-1}
$$

if $|\operatorname{Im} z|<\frac{1}{2}$.
3. As $\operatorname{Im} z \rightarrow 0$ in $\operatorname{Re} z \geqq 0, k$ should have singularities since this is where the spectrum of P lies. Now to use the formula of section 1 for the resolution of the identity we need

$$
\int_{b+\delta}^{c-\delta} R(r-i \epsilon)-R(r+i \epsilon) d r
$$

as a pseudo-differential operator whose symbol we can compute by using section 2. Taking the limits $\epsilon \rightarrow 0, \delta \rightarrow 0$ for the symbol will be immediate and actually simplify the calculation, as expected. The resulting symbol will of course not be a smooth function since $E((b, c))$ is a projection.

For example, the operator $D_{x}+D_{y}$ has a resolvent with symbol $(z-\xi-\eta)^{-1}$ which is real analytic if $\operatorname{Im} z$ is nonzero and $E((b, c))$ has the symbol $\theta(\xi+\eta-b) \theta(c-\xi-\eta)$.

Returning to P, we first note the symbol of $R(r-i \epsilon)-R(r+i \epsilon)$ is $k\left(x, \xi, \eta, \lambda, r-i_{\epsilon}\right)-k\left(x, \xi, \eta, \lambda, r+i_{\epsilon}\right)$ and for $r<0$ this is given by section 1 as $O(\epsilon)$. To take advantage of this we rewrite

$$
\int_{b+\delta}^{c-\delta} k(x, \xi, \eta, \lambda, r-i \epsilon)-k(x, \xi, \eta, \lambda, r+i \epsilon) d r
$$

as a contour integral

$$
\int_{C}(x, \xi, \eta, \lambda, z) d z
$$

with C the two solid lines below; b and c are tacitly taken as negative and positive, respectively.

Applying the Cauchy formula to the square with the dotted vertical sides and using the bound $O(\epsilon)$ for the left dotted side we have the symbol of

$$
\int_{b+\delta}^{c-\delta} R(r-i \epsilon)-R(r+i \epsilon) d r
$$

equal to

$$
\int_{C} k(x, \xi, \eta, \lambda, z) d z+O(\epsilon)
$$

with C the solid contour below.

Now if c were nonpositive the symbol would be $O(\epsilon)$ and if b were nonnegative the contour would be the two solid lines below.

We now proceed with b nonnegative. For η positive we have, since $r \geqq b+\delta>0$,

$$
\begin{aligned}
& k(x, \xi, \eta, \lambda, r-i \epsilon)-k(x, \xi, \eta, \lambda, r+i \epsilon)=\frac{i}{2 \eta} \\
& \times \int_{R} \exp \left(\frac{i Q}{2 \eta} \tan s-i x \xi(1-\sec s)-\frac{1}{2} \log \cos s-\frac{i s}{2}\left(\lambda+\frac{r}{\eta}\right)-\frac{\epsilon}{2 \eta}|s|\right) d s
\end{aligned}
$$

where $\log \cos \pi l=-i \pi l$. Then using the periodicity of the trig functions we find this difference equal to

$$
\begin{array}{r}
\frac{i}{2 \eta} \sum_{l \in Z} \exp \left(i \pi l\left(1-\lambda-\frac{r}{\eta}\right)\right) \exp \left(-\left(\epsilon|l| \frac{\pi}{\eta}\right)\right) \\
\times \int_{0}^{2 \pi} \exp \left(\frac{i Q}{2 \eta} \tan s-i x \xi(1-\sec s)-\frac{1}{2} \log \cos s-\frac{i s}{2}\left(\lambda+\frac{r}{\eta}\right)\right) \\
\times \exp \left(-\left(\frac{\epsilon s}{2 \eta}\right)\right) d s \\
+\frac{i}{2 \eta} \sum_{1>1} \exp \left(-\left(i \pi l\left(1-\lambda-\frac{r}{\eta}\right)\right)\right) \exp \left(-\epsilon l \frac{\pi}{\eta}\right) \cdot \int_{0}^{2 \pi} \exp \left(\frac{i Q}{2 \eta} \tan s-\right. \\
\left.\quad i x \xi(1-\sec s)-\frac{1}{2} \log \cos s-\frac{i s}{2}\left(\lambda+\frac{r}{\eta}\right)\right) 2 i \sin \frac{\epsilon s}{2 \eta} d s
\end{array}
$$

(2)

Clearly the integrals depend analytically on ϵ and $\lambda+r / \eta$, and the sums are trivial. The first sum equals $\left(1-|A|^{2}\right) /\left(1+|A|^{2}-2 \operatorname{Re} A\right)$ and the second is $A /(1-A)$ where $A=\exp (-i \pi(1-\lambda-r / \eta)) \exp (-\epsilon \pi / \eta)$. Then taking
the limit $\epsilon \rightarrow 0$ for

$$
\int_{b+\delta}^{c-\delta} k(x, \xi, \eta, \lambda, r-i \epsilon)-k(x \cdot \xi, \eta, \lambda, r+i \epsilon) d r
$$

is routine since the first sum is essentially the Poisson kernel and the second has a factor of ϵ from the second integral in (2). The result is that

$$
\begin{align*}
& \lim _{\epsilon \downarrow 0} \int_{b+\delta}^{c-\delta} k(x, \xi, \eta, \lambda, r-i \epsilon)-k(x, \xi, \eta, \lambda, r+i \epsilon) d r \\
& =i \sum_{m \in M} \int_{0}^{2 \pi} \exp \left(\frac{i Q}{2 \eta} \tan s-i x \xi(1-\sec s)\right. \tag{3}\\
& \left.-\frac{1}{2} \log \cos s-\frac{i s}{2}(2 m+1)\right) d s+\frac{1}{2} \sum_{m \in N} \int_{0}^{2 \pi} \exp \left(\frac{i Q}{2 \eta} \tan s-\right. \\
& \left.\quad \quad i x \xi(1-\sec s)-\frac{1}{2} \log \cos s-\frac{i s}{2}(2 m+1)\right) d s
\end{align*}
$$

where M is the set of integers, m, such $b+\delta<(2 m+1-\lambda) \eta<c-\delta$ and N is those m such that $(2 m+1-\lambda) \eta$ equals either $b+\delta$ or $c-\delta$. Now b has been presumed nonnegative and λ has magnitude at most one so M and N do not contain any negative integers. Also note that the limit as $\delta \rightarrow 0$ is immediate, i.e., N disappears. In the next section we evaluate the integrals in (3).
4. To evaluate

$$
\int_{0}^{2 \pi} \exp \left(\frac{i Q}{2 \eta} \tan s-i x \xi(1-\sec s)-\frac{1}{2} \log \cos s-i \frac{s}{2}(2 m+1)\right) d s
$$

we split it into two parts:

$$
C=\int_{0}^{\pi / 2}+\int_{3 \pi / 2}^{2 \pi}=\int_{-\pi / 2}^{\pi / 2} \text { and }(-)^{m} B=\int_{\pi / 2}^{3 \pi / 2}=(-)^{m} \int_{-\pi / 2}^{\pi / 2}
$$

Now change variables: $w=\tan s$. This yields

$$
\begin{aligned}
C= & \int_{R} \exp \left(\frac{i Q}{2 \eta} w-i x \xi\left(1-\sqrt{1+w^{2}}\right)\right)\left(1+w^{2}\right)^{-3 / 4} \\
& \times \exp \left(-\left(\frac{i}{2}(2 m+1) \arctan w\right)\right) d w \\
B= & \int_{R} \exp \left(\frac{i Q}{2 \eta} w-i x \xi\left(1+\sqrt{1+w^{2}}\right)\right)\left(1+w^{2}\right)^{-3 / 4} \\
& \times \exp \left(-\left(\frac{i}{2}(2 m+1) \arctan w\right)\right) d w .
\end{aligned}
$$

Next deform the contour as shown:

To verify the legitimacy of this deformation just observe that $(Q / 2 \eta) \pm$ $x \xi \geqq 0$ by Cauchy's inequality (again $\eta>0$). Thus we have B and C defined as integrals over the contour

$$
\downarrow \int_{i} \uparrow
$$

which we split into the usual two pieces: the circle around i and the doubly used imaginary axis. For the circle we will employ a Taylor series on the integrand and then the radius will be shrunk to zero. But first observe that the imaginary axis integrals cancel in $C+(-)^{m} B$. To show this we let R denote the radius of the circle at i and then change variables $w=i+i t$. Thus

$$
\left.\begin{array}{rl}
C+ & (-)^{m} B=\int_{|w-i|=R} \ldots d w-i \exp \left(\frac{Q}{2 \eta}-i x \xi\right) \int_{R}^{\infty} \exp \left(-\frac{Q t}{2 \eta}\right) \\
\times\left\{\begin{array}{l}
\cosh x \xi\left(t^{2}+2 t\right)^{1 / 2} \\
\sinh x \xi\left(t^{2}+2 t\right)^{1 / 2} 2
\end{array}\right\}^{1 / 2}(i-1)\left(t^{2}+2 t\right)^{-3 / 4}
\end{array} \quad \times \exp \left(\frac{i \pi}{4}(2 m+1)\right)\left(\frac{2+t}{t}\right)^{1 / 2 m+1 / 4} d t+i \exp \left(-\frac{Q}{2 \eta}-i x \xi\right)\right\}
$$

where the cosh is used with m even and the sinh with m odd. Of course $\arctan w= \pm \pi / 2+i / 2 \log ((2+t) / t)$ was employed. Clearly the t integrals cancel and introducing polar coordinates at $i, w=i-i R \exp (i \theta)$, yields

$$
\begin{aligned}
& C+(-)^{m} B=\int_{-\pi}^{\pi} R \exp (i \theta) \exp \left(-\left(\frac{Q}{2 \eta}+i x \xi\right)\right) \\
& \times \exp \left(\frac{Q R}{2 \eta} \exp (i \theta)\right) 2\left\{\begin{array}{r}
\cos x \xi\left(1+w^{2}\right)^{1 / 2} \\
i \sin x \xi\left(1+w^{2}\right)^{1 / 2}
\end{array}\right\}\left(1+w^{2}\right)^{-3 / 4} \\
& \times \exp \left(-\left(\frac{i}{2}(2 m+1)\right) \arctan w\right) d \theta .
\end{aligned}
$$

Invoke Taylor series:

$$
\begin{aligned}
& \left(1+w^{2}\right)^{1 / 2}=2^{1 / 2} R^{1 / 2} \exp \left(\frac{1}{2} \theta\right)\left(1-\sum_{n \geqslant 1} \frac{1 \cdot 1 \cdot 3 \cdot 5 \cdots(2 n-3)}{n!2^{2 n}} R^{n}\right. \\
& \quad \times \exp (i n \theta)),\left(1+w^{2}\right)^{-3 / 4}=2^{-3 / 4} R^{-3 / 4} \exp \left(-\frac{3 i}{4} \theta\right) \\
& \quad \times\left(1+\sum_{n \geqslant 1} \frac{3 \cdot 7 \cdot 11 \cdots(4 n-1)}{n!2^{3 n}} R^{n} \exp (i n \theta)\right)
\end{aligned}
$$

$$
\arctan w=\frac{1}{2} \theta+\frac{1}{2} \sum_{n \geqslant 1} \frac{R^{n} \sin n \theta}{n 2^{n}}+\frac{i}{2} \log \frac{2}{R}+\frac{i}{4} \log \left(1-R \cos \theta+R^{2}\right) .
$$

This yields $C+(-)^{m} B$ by just expanding

$$
\exp \left(\frac{Q R}{2 \eta} \exp (i \theta)\right), \cos x \xi\left(1+w^{2}\right)^{1 / 2},\left(1-R \cos \theta+R^{2}\right)^{(2 m+1) / 8}
$$

and $\exp \left(-\frac{1}{2}(2 m+1) \sum\right)$ up to $m / 2$ powers of R and doing the θ integrals which almost all vanish. Of course negative powers of R have zero θ integrals, as is obvious by inspection. We compute for $m=0,1$, and 2 and guess the result for $m \geqq 3$.

$$
\begin{aligned}
(C+B)(m=0) & =2 \pi \sqrt{ } 2 \exp (-Q / 2 \eta-i x \xi) \\
& =2 \pi \psi_{0}(x) \overline{\hat{\psi}_{0}(\xi)} \exp (-i x \xi) \\
(C-B)(m=1) & =2 \pi 2 \sqrt{ } 2 i x \xi \exp (-Q / 2 \eta-i x \xi) \\
& =2 \pi \psi_{1}(x) \overline{\hat{\psi}_{1}(\xi)} \exp (-i x \xi) \\
(C+B)(m=2) & =2 \pi 2 \sqrt{ } 2\left(Q / 2 \eta-x^{2} \xi^{2}-\frac{1}{4}\right) \exp (-Q / 2 \eta-i x \xi) \\
& =2 \pi \psi_{2}(x) \overline{\hat{\psi}_{2}(\xi)} \exp (-i x \xi)
\end{aligned}
$$

where $\psi_{j}(x)=A_{j} H_{j}(x \sqrt{ } \eta) \exp \left(-\frac{1}{2} x^{2} \eta\right)$ and A_{j} is chosen so

$$
\int_{R}\left|\psi_{j}\right|^{2} d x=1
$$

Hence the Hermite functions appear, as expected.
So we have found the integral at the beginning of the section to be $2 \pi \psi_{m}(x) \overline{\hat{\psi}_{m}(\xi)} \exp (-i x \xi)$ and now we have $E((b, c))$ in hand for $0 \leqq b<$ $c<\infty$. Explicitly for $\eta=0$ it is easy to see that the procedure of sections 3 and 4 gives a symbol of $\theta\left(c-\xi^{2}\right) \theta\left(\xi^{2}-b\right)$, and for $\eta<0$ we find the symbol by using $-\eta$ and $-\lambda$ in place of η and λ.

Thus for $\varphi \in L^{2}\left(R^{2}\right)$ we have

$$
E((b, c)) \hat{\phi}(\xi, \eta)=\sum_{M} \hat{\psi}_{m}(\xi) \int_{R} \overline{\hat{\psi}_{m}(\zeta)} \hat{\phi}(\zeta, \eta) \frac{d \zeta}{2 \pi} \quad \text { if } \eta>0
$$

and the analogue if $\eta<0$. Clearly this is a projection; also recall M and ψ_{m} depend on η. Of course this result could have been found by directly solving for the eigenfunctions of P.

Now for $\lambda=1$ the $m=0$ term is missing from the $\eta>0$ sum and if $\lambda=-1$ the $m=0$ term does not appear in the $\eta<0$ sum. This is explained in the next section where we finally allow b to be negative.
5. In this section b is presumed negative; in fact we also presume δ is so small that $b+\delta<-\frac{1}{2}$ and $c-\delta>\frac{1}{2} \delta$. Then the contour of section 3 , shown as a solid line, is deformed to the dotted line for each ϵ.

Thus the limit $\epsilon \rightarrow 0$ yields a principal value integral around the rectangle plus the same sums (3) with M and N defined using $\frac{1}{2} \delta$ in place of $b+\delta$. Lastly the limit $\delta \rightarrow 0$ will give the symbol of $E((0, c))$ plus a residue at the origin which we now compute. The principal value integral is

$$
\begin{align*}
& \int_{-1 / 2 \delta}^{1 / 2 \delta} k\left(x, \xi, \eta, \lambda,-\delta^{2}+i s\right) i d s \\
& +\int_{-\delta^{2}}^{1 / 2 \delta} k\left(x, \xi, \eta, \lambda, s-i \frac{1}{2} \delta\right)-k\left(x, \xi, \eta, \lambda, s+i \frac{1}{2} \delta\right) d s \tag{4}\\
& +\lim _{\epsilon \downarrow 0} \int_{\epsilon}^{1 / 2 \delta} k\left(x, \xi, \eta, \lambda, \frac{1}{2} \delta-i s\right)-k\left(x, \xi, \eta, \lambda, \frac{1}{2} \delta+i s\right) i d s .
\end{align*}
$$

The first integral of (4) is evaluated by applying Fubini after using section 1 for k, and we find it equal to

$$
\begin{aligned}
\int_{0}^{\infty} \exp \left(-\frac{Q}{2 \eta} \tanh 2 \eta t-i x \xi(1-\operatorname{sech} 2 \eta t)-\frac{1}{2} \log \cosh 2 \eta t\right. & \left.+\lambda \eta t-\delta^{2} t\right) \\
& \times 2 \frac{\sin \frac{1}{2} \delta t}{t} d t
\end{aligned}
$$

The limit $\delta \rightarrow 0$ is trivial by changing variables, $w=\frac{1}{2} \delta t$, and including
$1 / 2 \pi i$ equals

$$
\begin{cases}0, & \lambda<1 \\ \frac{1}{2} \sqrt{ } 2 \exp \left(-\frac{Q}{2 \eta}-i x \xi\right), & \lambda=1\end{cases}
$$

The second integral of (4) is split into two pieces:

$$
\int_{0}^{1 / 2 \delta}+\int_{-\delta^{2}}^{0}
$$

The latter piece is seen to be $O(\delta)$ by using the estimate $|k| \leqq C|\operatorname{Im} z|^{-1}$ which appears at the end of section 2. The former piece is evaluated using (2) and integrating after summing and approximating:

$$
\begin{aligned}
& \int_{0}^{1 / 2 \delta} k\left(x, \xi, \eta, \lambda, r-i \frac{1}{2} \delta\right)-k\left(x, \xi, \eta, \lambda, r+i \frac{1}{2} \delta\right) d r \\
& =\int_{0}^{1 / 2 \delta} \frac{i}{2 \eta} \sum_{i \in Z} \exp \left(i \pi l\left(1-\lambda-\frac{r}{\eta}\right)\right) \exp \left(-\left(\frac{\delta \pi|l|}{2 \eta}\right)\right) \\
& \int_{0}^{2 \pi} \exp \left(\frac{i Q}{2 \eta} \tan s-i x \xi(1-\sec s)-\frac{1}{2} \log \cos s-\frac{1}{2} i s\left(\lambda+\frac{r}{\eta}\right)\right) \\
& \times \exp \left(-\frac{\delta s}{4 \eta}\right) d s+\frac{i}{2} \sum_{1 \geqslant 1} \exp \left(-\left(i \pi l\left(1-\lambda-\frac{r}{\eta}\right)\right)\right) \exp \left(-\left(\frac{\delta \pi|l|}{2 \eta}\right)\right) \\
& \times \int_{0}^{2 \pi} \exp \left(\frac{i Q}{2 \eta} \tan s-i x \xi(1-\sec s)-\frac{1}{2} \log \cos s-\frac{1}{2} i s\left(\lambda+\frac{r}{\eta}\right)\right) \\
& \times 2 i \sin \frac{\delta s}{4 \eta} d s d r \\
& =\int_{0}^{1 / 2 \delta} \frac{i}{2 \eta}\left(1+\frac{A}{1-A}+\frac{\bar{A}}{1-\bar{A}}\right) \\
& \times \int_{0}^{2 \pi} \exp \left(\frac{i Q}{2 \eta} \tan s-i x \xi(1-\sec s)-\frac{1}{2} \log \cos s-\frac{1}{2} i s\left(\lambda+\frac{r}{\eta}\right)\right) \\
& \times \exp \left(-\frac{\delta s}{4 \eta}\right) d s+\frac{i}{2} \frac{A}{1-A} \\
& \times \int_{0}^{2 \pi} \exp \left(\frac{i Q}{2 \eta} \tan s-i x \xi(1-\sec s)-\frac{1}{2} \log \cos s-\frac{1}{2} i s\left(\lambda+\frac{r}{\eta}\right)\right)
\end{aligned}
$$

where $A=\exp (-(i \pi(1-\lambda-r / \eta)-\delta \pi / 2 \eta))$. Now the $0-2 \pi$ integrals depend on r analytically so we write them as the value at $r=0$ plus $O(\delta)$. This $O(\delta)$ is negligible and integrating yields

$$
\begin{aligned}
& \frac{i}{2 \eta}\left(\frac{1}{2} \delta+\frac{\eta}{i \pi} \log \left(\frac{1-\exp \left(i \pi\left(1-\lambda-\frac{\delta}{2 \eta}\right)-\frac{\delta \pi}{2 \eta}\right)}{1-\exp \left(i \pi(1-\lambda)-\frac{\delta \pi}{2 \eta}\right)}\right)-\frac{\eta}{i \pi}\right. \\
& \quad \times \log \left(\frac{1-\exp \left(-i \pi\left(1-\lambda-\frac{\delta}{2 \eta}\right)-\frac{\delta \pi}{2 \eta}\right)}{1-\exp \left(-i \pi(1-\lambda)-\frac{\delta \pi}{2 \eta}\right)}\right) \cdot \int_{0}^{2 \pi} \cdots d s-\frac{i}{2 \eta} \frac{\eta}{i \pi} \\
& \quad \times \log \left(\frac{1-\exp (-i \pi) 1-\lambda-\frac{\delta}{2 \eta}\left(-\frac{\delta \pi}{2 \eta}\right)}{1-\exp \left(-i \pi(1-\lambda)-\frac{\delta \pi}{2 \eta}\right)}\right) \\
& \left.\times \int_{0}^{2 \pi} \exp \left(\frac{i Q}{2 \eta} \tan s-i x \xi(1-\sec s)-\frac{1}{2} \log \cos s-\frac{1}{2} i s \lambda\right) 2 i \sin \frac{\delta s}{4 \eta} d s\right)
\end{aligned}
$$

Now the limit $\delta \rightarrow 0$ is easy and with the $1 /(2 \pi i)$ included we have

$$
\begin{cases}0, & \lambda<1 \\ \frac{1}{4} & \sqrt{ } 2 \exp \left(-\frac{Q}{2 \eta}-i x \xi\right), \\ & \lambda=1\end{cases}
$$

The $\lambda=-1$ case here corresponds to $m=-1$ in section 4 and is found to vanish. Recall $\eta>0$ is still presumed so only $\lambda=1$ is expected to be trouble.

The third integral of (4) is essentially the same as the second and gives the same result.

Thus for $|\lambda|<1$ the spectral resolution is continuous, but for $\lambda=1$ there is a mass at the origin that projects onto $\psi_{0}(x)$ for $\eta>0$. Recalling how ψ_{0} depends on η we see that $E(\{0\})$ projects onto the subspace spanned by $\exp \left(-\left(s\left(\frac{1}{2} x^{2}-i y\right)\right)\right)$ for $s>0$. Of course these functions are homogeneous solutions for P and are used in showing non-local-solvability for ${ }^{t} P$.

Lastly for $E((b, \infty))$ with b small positive the symbol includes ψ_{0} for $b<(1-\lambda) \eta<\infty$, i.e., for $\eta>b /(1-\lambda)$. Thus as $\lambda \rightarrow 1$ the $\eta>a>0$ part of the ψ_{0} projection is contained in $E((0, a(1-\lambda)))$ which becomes $E(\{0\})$ and causes the solvability trouble.

For $\lambda=-1$ the analogues with $\eta<0$ hold.

References

1. A. Gilioli and F. Trèves, An example in the solvability theory of linear PDE's, Amer. J. Math. (to appear).
2. V. Grushin, Les problemes aux limites degeneres et les operateurs pseudo-differentiels, Actes, Congres Intern. Math., 1970, Tome 2, p. 737 a 743.
3. C. Hoel, Fundamental solutions of some degenerate operators (to appear).
4. F. Riesz and B.Sz.-Nagy, Functional analysis (F. Ungar Pub. Co., New York, 1955).

Rutgers University,
New Brunswick, New Jersey

