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PSEUDODIFFERENTIAL RESOLVENT FOR A 
CERTAIN NON-LOCALLY-SOLVABLE OPERATOR 

C. HOEL 

Introduction. In this note we construct a pseudo-differential resolvent for 
P = Dx

2 + x2Dy
2 — \Dy by the method of [3] and study the dependence on 

the parameter X as X —> 1. Grushin [2] first pointed out that P is solvable and 
hypoelliptic if X is not an odd integer, whereas P is neither locally solvable 
at the origin nor hypoelliptic if X is an odd integer. Gilioli and Treves [1] showed 
that this discrete nature of the condition for solvability persists to a more 
general class of operators. But when X is an odd integer, adding a nonreal 
constant term to P recovers solvability; thus a description of how the resolvent 
depends on X would be of interest. In particular, this paper comprises a proof 
of the Proposition: (zl — P ) - 1 has a pseudodifferential symbol which is 
expressible in closed form if z is not a nonnegative real. This symbol can be 
used to compute the X dependence of the symbol of the spectral resolution of P , 
which reveals the non-local-solvability of P as X —> 1. 

1. P = Dx
2 + x2Dy

2 — \Dy is a symmetric operator on S(R2) when X is 
real, and thus it extends to a self-adjoint operator on L2(R2) [4]. This guaran
tees the existence of a resolution of the identity, E, and a method of computation : 

E((b, c)) = lim lim -^— I R(r - it) - R(r + ie)dr. 
51 o e 1 o 2, irl J b+ a 

Here R(z) — (zl — P)~l for z a complex number, b and c are real numbers, 
possibly infinite, and the limits are in the strong operator topology. 

Construction of resolvent for Re z < 0. First we presume that (z — P ) _ 1 is 
a pseudodifferential operator with symbol k(x, £, 77; X; z), and thus we try to 
solve 

(1) 1= Z ±(z-(f + xW-\n))MD. 
a Oi. 

•k. 

As in [3] we look for a solution of the form 

k = - Jo exp (- / )* 

with/(#,£, 17, X,z, t) satisfying the ^-boundary conditions: / (0) = OandRef—>oo 
as t —f 00. This leads to an equation for / 

df J , » Î . _i_o>a/_i_ d'f ( dA'' 
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PSEUDODIFFERENTIAL RESOLVENT 1131 

which is easily solved when Re z < 0 and yields 

/= cr + xV) 
2v tanh 2rjt 

+ ix£(l — sech 2rjt) + \ log cosh 2rjt — \r}t — zt. 

Notice t h a t / is invar iant under the change 77 —> —77, X —» — X so we will only 
consider 77 > 0 and — 1 ^ X ^ 1; also 77 = 0 gives / = (J2 — z)t. Of course 
Re z < 0 guarantees R e / —» 00 as t —> co. Last ly we note t h a t allowing Im X 
to be nonzero does not affect the validity of this representation for the symbol 
of the resolvent. 

This existence of (z — P ) - 1 for Re z < 0 indicates the spectrum of P is 
contained in î^+. Now \k\ S 2*\Re z\~x and clearly k is smooth s i n c e / is real 
analyt ic . In fact by differentiating and est imating as in [3] we find t h a t k is 
in Sll±(R*) when |X| < 1, bu t only t h a t k is in 5 i , i (P 2 ) if X = ± 1 . Incidental ly 
this implies z — P is locally solvable and hypoelliptic for X = dzl since k is 
also the symbol of a left inverse. 

2 . We analytically extend k into Re z ^ 0, Im 2 ^ 0 by deforming the 
integrat ion contour, and since everything is analyt ic the equat ion (1) will 
still be satisfied. Since Im z < 0 and Im z > 0 are handled symmetrical ly 
we will jus t consider the lat ter . 

We deform the t integration contour as follows: 

Î7T 

o-
(1) (2) (3) 

7i?rl 

4?7 

bin 
4T7 

Siw[ 

4.7? 

î 

1-K ' 

4T7] 

o 
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This deforming in a series of steps was to avoid any questions about crossing 
branch cuts in the domain of the log. The horizontal part of the contours is 
estimated using Re z < 0, Im z > 0, and the periodicity of the trig functions. 
Lastly the contribution from the semicircles vanishes as the contour is pressed 
onto the imaginary axis, as we now show. For t = iri/^rj introduce polar co
ordinates: 2rjt — \i-K = R exp (id) and then the semicircle integration becomes 

_ f " exp ( - (f + xV) E ^ I ^ P M _ ixU1 + • c s c h R e x p m 

- \ log i sinh R exp (id) + ( ^ + § exp (id) J (x + - ) ) ~- exp (id)dd. 

Now for R —•> 0 we use 

1 7? 

coth R exp (id) = jz exp (—id) + — exp (id) + . . . , 

1 7? 
csch R exp (id) = ^ exp ( — id) — — exp (id) + . . . , 

sinh R exp (id) = R exp (id) ( 1 + — exp (2idS + . . . ) , 

and find the exponent equal to 

-e-^^^^-iiogR + i(l(x + z--i)-^-ie) + o(R). 

Hence the integral is 0(R^). 
Thus we have a principal value integral along the imaginary axis and 

changing variables to 2rjt = is we write for Re z < 0, Im z > 0, rj > 0 

k(x,£,ri, \,z) = 

--- pv I exp I — -~ tan 5 — ix% (1 — sec s) — \ log cos s + — I X + - I I ds 

where Q denotes £2 + x2y2- Of course we now may allow Re z ^ 0. Also note 
log cos 7rZ = iirl and pv is not needed since |cos s\~* is locally integrable. 

Similarly for Im z < 0 we deform the contour to the negative imaginary 
axis and then again Re z ^ 0 is achieved. In this case we find 

with log cos TI = —iirl. Of course in both cases 

1^1^77" I |cos s|~1/2ds|Im z p 1 

2,7) J 0 

if llmzl < i . 
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3. As Im z —> 0 in Re z ^ 0, k should have singularities since this is where 
the spectrum of P lies. Now to use the formula of section 1 for the resolution 
of the identi ty we need 

/

»c-5 

b+8 
R(r — ie) — R(r + ie)dr 

as a pseudo-differential operator whose symbol we can compute by using 
section 2. Taking the limits e —> 0, ô —> 0 for the symbol will be immediate 
and actually simplify the calculation, as expected. T h e resulting symbol will 
of course not be a smooth function since E((b, c)) is a projection. 

For example, the operator Dx + Dv has a resolvent with symbol 
(z — £ — 7})~l which is real analytic if Im z is nonzero and E((b, c)) has the 
symbol 0(£ + 77 - b)d(c - £ - 77). 

Returning to P , we first note the symbol of R(r — ie) — R(r + ie) is 
k(x, J, r?, X, r — ie) — k(x, £, 77, X, r + '̂e) and for r < 0 this is given by 
section 1 as 0(e). T o take advantage of this we rewrite 

k(x, f, 77, X, r — '̂e) — &(x, £, 77, X, r + ^e)dr 
0+0 

as a contour integral 

I ( x , f , 77, X, sOûfe 

with C the two solid lines below; b and c are tacit ly taken as negative and 
positive, respectively. 

b + 5 ^11 

te 

o 

•ie 

Applying the Cauchy formula to the square with the dot ted vertical sides 
and using the bound 0(e) for the left dot ted side we have the symbol of 

/

*c-8 

R(r - ie) - R(r + ie)dr 

equal to 

I k(x,£,r), \,z)dz + 0(e) 
J c 
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with C the solid contour below. 

— e2 + ie «-

P c 

— e2 — ie L 

c - 5 

Now if c were nonpositive the symbol would be 0(e) and if b were nonnegative 
the contour would be the two solid lines below. 

b + Ô + ie- c — ô + ie 

o 
b + ô - ie c — ô — ie 

We now proceed with b nonnegative. For rj positive we have, since 
r ^ b + ô > 0, 

*(*> £, 17, X, r — ie) - *(*, J, 77, X, r + ie) = 
2*7 

X I exp I ~ tan 5 — ix£(l — sec 5) — § log cos 5 — -- I X + - ) — Ô" |s| Ids 

where log cos 71-/ = —iirl. Then using the periodicity of the trig functions we 
find this difference equal to 

2V 
Z e x p ( ^ ( l - X - ^ ) ) e x p ( 4 | ^ ) ) 

tan 5 — ix£(l — sec s) — \ log cos 5 

X exp 

-!(>+;)) 

( - ( * ) ) * 

(2) + £ Z exp ( _ ( , - T / ( l - X - j ) ) ) e x p ( - d ^ ) . / o exp ( g t a n s -

ix£ (1 — sec s) — \ log cos s — — I X + - I I 2i sin — ds 

Clearly the integrals depend analytically on e and X + r/rj, and the sums are 
trivial. The first sum equals (1 - |^4|2)/(1 + \A\2 — 2ReA) and the second 
is -4/(1 — A) where A = exp(—iV(l — X — r/77)) exp( — eir/t)). Then taking 
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the limit e —> 0 for 

/

» c - 5 

k(x, £, 77, X, r — ie) — k(x- £, 77, X, r + ie)^r 
0+5 

is routine since the first sum is essentially the Poisson kernel and the second 
has a factor of e from the second integral in (2). The result is that 

rc-8 
lim I k(x, £, 77, X, r — ie) — k(x, £, 77, X, r + ze)^r 
€>K) «/ 6+5 

(3) = i52 I e x P I o t a n 5 — ^£(1 ~~ s e c s) 
meM */ 0 \ ^ 7 7 

— \ log cos 5 - — (2m + 1) I ds + | 52 I exp I ^ tan s — 
* / rafWo \̂ 77 

ix£(l — sec s) — \ log cos s — — (2m + 1) tS '~ ' *N j ds, 

where ili" is the set of integers, ra, such b -\- 8 < (2m + 1 — X)^ < c — 8 
and iV is those m such that (2m + 1 — X)?7 equals either b + ô or c — 8, 
Now b has been presumed nonnegative and X has magnitude at most one so 
M and N do not contain any negative integers. Also note that the limit as 
8 —» 0 is immediate, i.e., N disappears. In the next section we evaluate the 
integrals in (3). 

4. To evaluate 

r* do s \ 
I exp I ~- tan 5 — ix£(l — sec s) — \ log cos s — i- (2m + 1) I ds 

we split it into two parts: 

/

»7T/2 /»2lT /*7T/2 /»37T/2 /»7T/2 

+ = and {-TB = = (-)» 
0 %/ 3TT/2 • / — T T / 2 t / T / 2 J—ir/2-

Now change variables: 20 = tan 5. This yields 

C = J exp ( ^ w - «e£(l - V Î + 1 ? ) ) (1 + w2)~3/4 

X exp I — I - (2m + 1) arctan w J J dw 

B = f exp y-^w - ixi(\ + VTTi?)) (i + ^2r3/4 

X exp I — I - (2m + 1) arctan w) J dw. 
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Next deform the contour as shown: 

lo 
(1) 

nf] 
o 

(2) 

To verify the legitimacy of this deformation just observe that (Q/2TJ) ± 
xt- ^ 0 by Cauchy's inequality (again 77 > 0). Thus we have B and C defined 
as integrals over the contour 

1 T 
0» 

which we split into the usual two pieces: the circle around i and the doubly 
used imaginary axis. For the circle we will employ a Taylor series on the 
integrand and then the radius will be shrunk to zero. But first observe that 
the imaginary axis integrals cancel in C + ( — )mB. To show this we let R 
denote the radius of the circle at i and then change variables w = i + it. Thus 

C+(-)mB = f ...dw-iexp i-Q-ixt) P e x p f - ^ j 

Jcoshx£('2 + 2/) 1 / 2A i/2,. m 2 , « v 
X lsinhxK^2 + 2/)1/22J V-VV +2t> 

- 3 / 4 

X exp 

X exp 

( ï (2- + 1)) ( 
f°° / _ OA/coshx 

• /B \ 2 n / Isinhx, 

l /2m+l/4 

d/ + i exp 

x ^ 2 + 2/)1/2 

K/2 + 2/)1/2 
2 i / . ( 

(-£-*) 
i) • (r + 20 - 3 / 4 

X exp ( - l-\ (2m + 1)) ( ^ l i p ^ ' V 
where the cosh is used with m even and the sinh with m odd. Of course 
arctan w = ±7r/2 + i/2 log ((2 + t)/i) was employed. Clearly the / integrals 
cancel and introducing polar coordinates at i, w = i — iR exp (id), yields 

C + ( - )mB = £ R exp (id) exp ( - (& + ix£j 

(QR , ^ \ J COSX (̂l +W2)1/2\ „ , 2N_3/4 

^ e x p (te)) 2\.^ J ) , I . X i / . r (1 + w ) 3/ 
, C 5 / T A W c o s x ^ ( l + ^ 2 ) 1 / 2 

X exp I ^ - exp (te) ) 2) . . , 2:1/2 

X exp (-0 (2m + 1) J arctan w 'jdfl. 
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Invoke Taylor series: 

(1 + wT2 = 21/2i?1/2exp m ( l - Z i ^ - — ^ - ^ ^ ^ 

X exp (;«*)), (1 + W
2 r 3 / 4 = 2-3/4i?-3/4exp ( - f «) 

v fi j . V 3 - 7 - 1 1 - - - (4« - 1) „ , ,. .A 
\ rc>l 72.Z / 

arctan w = |0 + J X on 1" o l og "̂  + 7 l o§ (* ~~ ̂  c o s e + ^ 2 ) -
w >i ?£Z Z K 4 

This yields C + ( — )mB by just expanding 

exp ( f - e x p ( # ) ) , cos*£(l + w2)1/2, (l-Rcos6 + RYm+l)/\ 

and exp( — J (2m + 1)Z1) UP to m/2 powers of R and doing the d integrals 
which almost all vanish. Of course negative powers of R have zero 6 integrals, 
as is obvious by inspection. We compute for m = 0, 1, and 2 and guess the 
result for m ^ 3. 

(C + B)(m = 0) = 27TV2 exp(-<2/2?7 - i*£) 

= 2Tipo(x)\po(£) exp(-ix^) 

(C - B)(m = 1) = 27r2 v
/ 2^exp(-(3/2r ? - ix£) 

= 2x^i(x)^i(J) exp( — ix£) 

(C + 5) (m = 2) = 2TT2V
/2((2/277 - x2£2 - Î) expC-QA? - ix£) 

= 27r^2(x)^2(J) exp( —ix£) 

where ipj(x) — A jHj(x\/r}) exp( — ̂ x2rj) and Aj is chosen so 

i |^-| dx = 1. 
' R 

Hence the Hermite functions appear, as expected. 
So we have found the integral at the beginning of the section to be 

2TT\l/m(x)\j)m(£) exp( —ix£) and now we have E((b, c)) in hand for 0 ^ b < 
c < oo. Explicitly for rj = 0 it is easy to see that the procedure of sections 3 
and 4 gives a symbol of 6(c — £2)0(£2 — b), and for r\ < 0 we find the symbol 
by using — 77 and —X in place of 77 and X. 

Thus for <p G L2(R2) we have 

E((b,c))U^v) = E 4ft) f 4(r)*GM7)# if ^ > 0, 
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and the analogue if rj < 0. Clearly this is a projection; also recall M and \pm 

depend on 77. Of course this result could have been found by directly solving 
for the eigenfunctions of P. 

Now for X = 1 the m = 0 term is missing from the 77 > 0 sum and if X = — 1 
the m = 0 term does not appear in the 77 < 0 sum. This is explained in the 
next section where we finally allow b to be negative. 

5. In this section b is presumed negative; in fact we also presume ô is so 
small that b + ô < — J and c — 5 > Jô. Then the contour of section 3, 
shown as a solid line, is deformed to the dotted line for each e. 

- ô 2 + j ô , i i ô + é ô 
I I 
I i 
I I 

, ! ZZ c — 8 + le 
1 1* 
I I _ » c - Ô - te 

i ! 
I | i ô _ | ô 

Thus the limit e —> 0 yields a principal value integral around the rectangle 
plus the same sums (3) with M and N defined using Jô in place of b + ô. 
Lastly the limit ô —» 0 will give the symbol of £ ( (0 , c)) plus a residue at the 
origin which we now compute. The principal value integral is 

X l / 2 

- 1 / : 

1/25 

k(x, £, 77, X, — ô + is)ids 
28 

/ •1 /25 

(4) + *(*, f, 77, X, 5 - i^ô) - k(x, £,77, X, s + i±ô)ds 
« / — Ô2 

J»1/2S 

&(x, £, 77, X, J5 — is) — k(x, £, 77, X, Jô + is)ids. 
e 

The first integral of (4) is evaluated by applying Fubini after using 
section 1 for k, and we find it equal to 

j exp ( — ~ tanh 2rjt — ix£(l — sech 277/) — J log cosh 277/ + X77/ — ô2t I 

The limit ô —> 0 is trivial by changing variables, w = Jô/, and including 

https://doi.org/10.4153/CJM-1974-105-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1974-105-9


PSEUDODIFFERENTIAL RESOLVENT 1139 

l/2wi equals 

0, X < 1 

h / 2 e x p ( - ^ - f x f ) , X = 1. 

The second integral of (4) is split into two pieces: 

nl/28 /»0 

+ 
The latter piece is seen to be 0(8) by using the estimate \k\ ^ C|Im2|_ 1 

which appears at the end of section 2. The former piece is evaluated using (2) 
and integrating after summing and approximating: 

/»l/25 

J k(x, £, 77, X, r — i\b) — k(x, £, 77, X, r + i\h)dr 

-'ns-(«(---))-p(-(f))-
I exp I —• tan 5 — ix£(l — sec s) — h log cos s — J i s ( x + - l l 

X e X p ( - | ) * + | E e x p ( - ( , V , ( l - X - r ) ) ) e x p ( - ( ^ ) ) 

X I exp I —• tan 5 — ix£(l — sec s) — \ log cos s — J is ( X + - ) I 

X 2i sin — dsdr 
477 

Jo 277 \ ^ 1 - 4 ^ 1 - ^ / 

X I exp ( •—• tan s — ix£(l — sec s) — f log cos s — J is I X + - I I 

/ 5s\ * ^ 
X e x p l~W^ + 477/ ' 2 1 - ^ 

X I exp I —• tan s — ix£(l — sec s) — \ log cos s — | is I X + - I ) . 

X 2i sin 7- dsdr, 
477 

where -4 = exp(— (iir(l — X — r/77) — ox/277)). Now the 0 — 2TT integrals 
depend on r analytically so we write them as the value at r = 0 plus 0(5). 
This 0(8) is negligible and integrating yields 
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. / /i-„p(Ji->-i)^)\ 
2A " \ l-exp(,V (1^)-|) / " 

V I — P ( - « . - X , - # / j> 

\ l - e x p ( - « ( l - X ) - g ) / 

X J expl ~ tan 5 — ix£(l — sec 5) — \ log cos 5 — \ is\J 2i sin — ds I. 

Now the limit ô —•> 0 is easy and with the l/(2iri) included we have 

(0, x < 1 

)i V'2exp \-~- - ixH, X = 1. 

The X = — 1 case here corresponds torn = —1 in section 4 and is found to 
vanish. Recall rj > 0 is still presumed so only X = 1 is expected to be trouble. 

The third integral of (4) is essentially the same as the second and gives 
the same result. 

Thus for |X| < 1 the spectral resolution is continuous, but for X = 1 there is 
a mass at the origin that projects onto x//o(x) for 77 > 0. Recalling how \f/Q 

depends on 77 we see that E(\0}) projects onto the subspace spanned by 
exp(— (s(Jx2 — iy))) for 5 > 0. Of course these functions are homogeneous 
solutions for P and are used in showing non-local-solvability for lP. 

Lastly for E((b,co)) with b small positive the symbol includes ^0 for 
b < (1 — X)?7 < 00, i.e., for 77 > 6/(1 - X). Thus as X —> 1 the 77 > a > 0 
part of the ^0 projection is contained in JE((0 , a ( l — X))) which becomes 
£({0}) and causes the solvability trouble. 

For X = — 1 the analogues with 77 < 0 hold. 
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