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Abstract. We prove an explicit characterization of the points in Thurston’s Master Teapot,
which can be implemented algorithmically to test whether a point in C× R belongs to the
complement of the Master Teapot. As an application, we show that the intersection of the
Master Teapot with the unit cylinder is not symmetrical under reflection through the plane
that is the product of the imaginary axis of C and R.
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1. Introduction
The growth rate of a continuous dynamical system f : X→ X, where X is a compact
topological space, is the exponential of the topological entropy of f, ehtop(f ). When such a
dynamical system admits a Markov partition—as is the case for continuous, multimodal,
postcritically finite, self-maps of intervals, or pseudo-Anosov surface diffeomorphisms—a
consequence of the Perron–Frobenius theorem is that the growth rate must be a weak
Perron number, that is, a real, positive algebraic integer that is not less than the absolute
value of any of its Galois conjugates. In [Thu14], Thurston proved that every weak
Perron number arises as the growth rate of some continuous, multimodal, postcritically
finite, self-maps of intervals. (The analogous question for pseudo-Anosov surface diffeo-
morphisms remains open.) By considering the set of all interval maps of any modality
and any postcritical orbit portrait, Thurston stabilized the question; the question of
characterizing the set of growth rates of all postcritically finite interval maps of any fixed
modality d ≥ 2 is more subtle, and remains open. This work investigates growth rates of
the family of all continuous, unimodal, critically periodic interval self-maps, which we
denote Fcp

2 .
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Since the growth rates of maps in Fcp

2 are known to satisfy a condition involving
their Galois conjugates (namely, they are weak Perron numbers), it is natural to consider,
for any f ∈ Fcp

2 , the set {z ∈ C : z is a Galois conjugate of the growth rate, ehtop(f ), of f }.
Another, related reason to consider the set of Galois conjugates of ehtop(f ) is that the Galois
conjugates can be used to construct a ‘lift’ of this real, one-dimensional dynamical system
defined by f to a dynamical system defined on C

s × R
d , where r is the number of real

Galois conjugates of ehtop(f ) and s is the number of non-real complex-conjugate pairs of
Galois conjugates (see, e.g., Theorem 2.1 of [Thu14]). The Master Teapot for the family
Fcp

2 is the set

ϒ
cp

2 := {(z, λ) ∈ C× R | λ = ehtop(f ) for some f ∈ Fcp

2 , z is a Galois conjugate of λ}.

Thurston coined the term ‘Master Teapot’ because plots of finite approximations of this set
resemble a teapot, with a roughly cylindrical body over the unit circle, a ‘spout’ consisting
of points of the form {λ, λ}, and a ‘handle’ protruding from the body opposite the spout.
(See Figure 1.) Clearly, the geometry and topology of this set encode information about
which growth rates are realized by maps in the family Fcp

2 . While the geometry of the
Master Teapot retains information about which growth rate λ corresponds to which Galois
conjugate z, it is also interesting to consider the subset of C formed by plotting all the
Galois conjugates (including the growth rate λ) of all maps in Fcp

2 in the same copy of C,
and taking the closure. The Thurston set is the set

�
cp

2 := {z ∈ C | z is a Galois conjugate of ehtop(f ) for some f ∈ Fcp

2 }.

Equivalently, the Thurston set is the projection of the Master Teapot to the complex
plane.

The Master Teapot and Thurston set have rich and mysterious geometrical and topolog-
ical structures that have been investigated in several recent works, including [BDLW19,
CKW17, Tho17, Thu14, Tio15, Tio18]. Describing the ‘shape’ of the Master Teapot
ϒ

cp

2 or the Thurston set �
cp

2 is a step toward refining Thurston’s result by characterizing
which weak Perron numbers arise as the growth rates of which PCF interval maps. In
particular, the ability to prove that a specific point z is not in the Master Teapot—which
the algorithms we present in §8 accomplish—provides a necessary condition for a growth
rate to be realized by a map in Fcp

2 .
In [BDLW19], the authors prove that the Master Teapot ϒ

cp

2 is connected and contains
the unit cylinder S1 × [1, 2]. Furthermore, the intersection of the height-λ slice of the
Master Teapot,

�λ := {z ∈ C : (z, λ) ∈ ϒ
cp

2 }

with the closed unit disk D grows monotonically with λ [BDLW19]. Consequently, the
part of the top level slice of the Master Teapot that is inside the unit cylinder, �2 ∩ D,
coincides with �

cp

2 ∩ D, the part of the Thurston set inside the unit disk.
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FIGURE 1. A plot of a finite approximation of ϒ
cp

2 , showing all points coming from maps in Fcp whose critical
orbits have periods at most 23. The two black circles are S1 × {1} and S1 × {2}, where S1 is the unit circle. The

color gradients show the height of the plotted points. This figure is from [BDLW19].

The growth rates of PCF self-maps of real intervals may be seen as a specific case of
core entropy for PCF complex polynomials. Indeed, the filled Julia set of a PCF complex
polynomial contains a forward invariant, finite topological tree, called the Hubbard tree,
that contains the critical points of the polynomial; the core entropy of such a polynomial
is the topological entropy of the restriction of the dynamics to the Hubbard tree. For a
polynomial with real coefficients, the Hubbard tree is a real interval, and so the restriction
of the map to the Hubbard tree is a PCF multimodal self-map of an interval. Although we
confine our investigation here to self-maps of real polynomials, similar questions could be
explored in the complex setting. The interested reader may read more about core entropy
for complex polynomials in [GT21, Tio16].

Another motivation for investigating PCF multimodal self-maps of real intervals is
that these maps may also be seen as one-dimensional analogs of pseudo-Anosov surface
diffeomorphisms. A uniform expander is a continuous, piecewise affine-linear (with
finitely many pieces) self-map of an interval such that the derivative on each piece is±λ for
some expansion factor λ > 1. Classical results in entropy theory imply that the growth rate
of a uniform expander with expansion factor λ is λ. Milnor and Thurston proved that every
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continuous, self-map of an interval with finitely many critical points and positive topolog-
ical entropy is semi-conjugate to a uniform expander with the same topological entropy
[MT88]. Both PCF uniform expanders and pseudo-Anosov surface diffeomorphisms are
uniformly expanding maps except at finitely many points, admit Markov partitions, and
their expansion factors (called the dilatation of a pseudo-Anosov surface diffeomorphism)
coincide with their growth rates. Constructions of pseudo-Anosov surface diffeomor-
phisms from uniform expanders are explored in [BRW16, Far21]. Characterizing the set of
dilatations realized by pseudo-Anosov surface diffeomorphisms remains an open question.

The Master Teapot and Thurston set are also closely related to the theory of β- and
generalized β-expansions (cf. [DMP11, G0́7, IS09, LSS16, Ste13]), roots of Littlewood,
Newman, and Borwein polynomials (cf. [BEL08, HM14, Kon99, Muk10, OP93, SS06]),
and dynamics of iterated function systems (cf. [Ban02, BH85, Sol04, SX03]).

1.1. Overview of main results. The main contribution of this paper is an explicit
characterization of the Master Teapot ϒ

cp

2 —necessary and sufficient conditions for a point
to be in ϒ

cp

2 . (The part of the Master Teapot inside the unit cylinder D× [1, 2] is described
by Theorem 1.7 and the part outside the unit cylinder by Theorem 1.8.) Theorem 1.7
establishes a new connection between horizontal slices of the Master Teapot and iterated
function systems. Specifically, the part in D of each horizontal slice of the Teapot can
be viewed as an analog of the Mandelbrot set for a family of ‘restricted iterated function
systems’ (cf. Remark 1.15). From this characterization, we prove an algorithm (§8) for
showing that certain weak Perron numbers cannot be the exponent of the topological
entropy of a critically periodic unimodal interval map. As an application of this algorithm,
we prove that the part of the Master Teapot inside the unit cylinder is not symmetrical with
respect to reflection across the imaginary axis (Theorem 1.14). Conjecture 1.16 proposes
that an analogy of the Mandelbrot–Julia set correspondence holds for horizontal slices and
limit sets of restricted iterated function systems.

1.2. Precise statement of results and commentary. To state the results precisely, we
introduce some terminology and notation.

First, we define words and sequences in the alphabet {0, 1}.

Definition 1.1

(1) A sequence w = w1w2 . . . is an element in {0, 1}N. The shift map σ : {0, 1}N→
{0, 1}N is defined by removing the first element of a sequence, that is,
σ(w1w2w3 . . .) := w2w3 . . . .

(2) A word w = w1w2 . . . wn is an element in {0, 1}n for some positive integer n. The
number n is called the length of the word w and is denoted by |w|.

(3) For n ∈ N, the reverse function Rev : {0, 1}n→ {0, 1}n is defined as

Rev(w1w2 . . . wn) := wnwn−1 . . . w1.

(4) For k ∈ N, the k-prefix of a sequence w = w1w2 . . . is the word

Prek(w) := w1 . . . wk .
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(5) For a word w = w1 . . . wn of length n and a natural number k ≤ n, the k-prefix and
k-suffix of w are the words

Prek(w) := w1 . . . wk ,

Sufk(w) := wn−k+1wn−k+2 . . . wn.

Next, we relate words and sequences with dynamics on C via the following definitions.

Definition 1.2

(1) For any z ∈ C, define maps f0,z, f1,z : C→ C by

f0,z(x) := zx, f1,z(x) := 2− zx.

(2) For any w = w1 . . . wn and z ∈ C, set

F(w, z) := fwn,z ◦ · · · ◦ fw1,z(1).

(3) For any sequence w = w1w2 . . . and any z ∈ C with |z| > 1, set

H(w, z) := lim
n→∞(−1)(

∑n
i=1 wi)z−nF (Pren(w), z)

= lim
n→∞(−1)(

∑n
i=1 wi)z−nfwn,z ◦ · · · ◦ fw1,z(1).

(4) For any sequence w = w1w2 . . . and z ∈ C with |z| < 1, set

G(w, z) := lim
n→∞ F(Rev(Pren(w)), z)

= lim
n→∞ fw1,z ◦ · · · ◦ fwn,z(1).

The following definition is partly from [MT88].

Definition 1.3

(1) The cumulative sign of a word w = w1w2 . . . wn is defined as s(w) := (−1)
∑

i wi .
(2) The twisted lexicographic order ≤E is a total ordering on the set of sequences,

defined as follows: w <E w′ if and only if there is some k ∈ N such that
Prek−1(w)= Prek−1(w

′), and s(Prek−1(w))(w′k−wk) > 0. In other words, w <E w′
if and only if, denoting by k the index of the first letter where w and w′ differ, either
w′k > wk and the common (k − 1)-prefix has positive cumulative sign, or w′k < wk

and the common (k − 1)-prefix has negative cumulative sign.
(3) We define the total order ≤E on the set of words of length n exactly the same way as

above.

Definition 1.4

(1) Let λ ∈ (1, 2]. We call the map fλ : [0, 1]→ [0, 1] given by

fλ(x) =
{

λx, x ≤ 1/λ,

2− λx, x > 1/λ,

the λ-tent map. Let I0,λ = [0, 1/λ], I1,λ = [1/λ, 1].

https://doi.org/10.1017/etds.2022.73 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.73


A characterization of Thurston’s Master Teapot 3359

(2) The λ-itinerary, denoted as Itλ, is the minimum (with respect to ≤E) sequence w
such that for any k ≥ 0, f k

λ (1) ∈ Iwk+1,λ.

One can easily check that Itλ is the itinerary of 1 under fλ in the convention of the
Milnor–Thurston kneading theory.

Now we introduce a combinatorial condition on sequences.

Definition 1.5. For λ ∈ (1, 2], a sequence w is called λ-suitable if for every λ′ ∈ (λ, 2],
the following conditions hold:
(1) Rev(Pren(w)) ≤E Pren(Itλ′) for all n ∈ N;
(2) if Rev(Pren(w)) = Pren(Itλ′), then the cumulative sign s(Pren(w)) = −1;
(3) if Itλ′ = 1 · 0k · 1 . . . , k ∈ N, then w does not contain k + 1 consecutive 0s (that is,

if Itλ′ starts with 1 followed by k 0s and then 1, writing w as w = w1w2 . . . , there
does not exist n ∈ N such that wi = 0 for all n ≤ i ≤ n+ k);

(4) if k ∈ N satisfies
√

2 ≤ λ2k
< 2, then w = D′k(w′) for some sequence w′, where

D′ is the map that replaces 0 with 11 and 1 with 01, such that for every λ′ > λ2k
, if

Itλ′ = 1 · 0k · 1 . . . , then w′ does not contain k + 1 consecutive 0s.

Remark 1.6. Every sequence is (vacuously) 2-suitable.

For λ ∈ (1, 2), let �λ be a height-λ slice of the Master Teapot ϒ2:

�λ := {z : (z, λ) ∈ ϒ2}.
We will use the following notation:

D := {z ∈ C : |z| < 1} the open unit disk,

D := {z ∈ C : |z| ≤ 1} the closed unit disk,

S1 := {z ∈ C : |z| = 1} the unit circle,

C := D× [1, 2] the closed ‘unit cylinder’.

Our main theorem is the following.

THEOREM 1.7. For any λ ∈ (1, 2], the part of the slice �λ inside the closed unit disk can
be characterized as

�λ ∩ D = S1 ∪ {z ∈ D : G(w, z) = 1 for some λ-suitable sequence w}.
There is a similar characterization for outside the unit disc, which follows directly from

results in [Tio18].

THEOREM 1.8. For any λ ∈ (1, 2), the part of the slice �λ outside the unit disk can be
characterized as follows.
• If the λ-tent map is not critically periodic, then

�λ \ D = {z ∈ C \ D : H(Itλ, z) = 0}.
• If the λ-tent map is critically periodic with period p, then

�λ \ D = {z ∈ C \ D : H(Itλ, z) = 0 or zp = 2}.

https://doi.org/10.1017/etds.2022.73 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.73


3360 K. Lindsey and C. Wu

FIGURE 2. A constructive approximation of the part of ϒ
cp

2 outside the unit cylinder. This plot shows the 56 737
points outside the cylinder S1 × [1, 2] that are roots of the degree 100 partial sums of the kneading power series
for 1000 different growth rates λ in [1, 2]. The ‘spout’ on the right side of the image consists of points of the

form (λ, λ).

Remark 1.9. Theorems 1.7 and 1.8 both provide algorithms to certify that a point is in
the complement of �λ. This is useful since the definition of ϒ

cp

2 is not constructive,
as it involves taking a closure. Section 8 describes these algorithms. Figure 4 is a finite
approximation of �1.8 ∩ D using Theorem 1.7, and Figure 2 is a finite approximation of
ϒ

cp

2 \(D× [1, 2]) using Theorem 1.8.

Remark 1.10. Since the set of λ-suitable sequences is semicontinuous with λ (Lemma 5.5),
Theorem 1.7 implies that if 1 < λ < λ′ ≤ 2, then

�λ ∩ D ⊆ �λ′ ∩ D,

which is the ‘persistence theorem’ proved in [BDLW19]. However, our proof of
Theorem 1.7 depends on the persistence theorem in [BDLW19].

Remark 1.11. Tiozzo showed in [Tio18] that

�
cp

2 ∩ D = S1 ∪ {z ∈ D : G(w, z) = 1 for some sequence w},
and the persistence theorem [BDLW19] shows that �2 ∩ D = �2 ∩ D. It is also known
that the unit cylinder is in the teapot, that is, S1 × [1, 2] ⊂ ϒ

cp

2 [BDLW19]. Since every
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sequence is 2-suitable, this proves the conclusion of Theorem 1.7 for the top level of the
teapot, the case λ = 2.

Remark 1.12. Our first step towards proving Theorem 1.7 is proving Theorem 4.5, an
alternative characterization of slices �λ ∩ D. A corollary of Theorem 4.5 is that all roots
in D of all Parry polynomials coming from admissible words—even reducible Parry
polynomials—are in the Thurston set �

cp

2 .

COROLLARY 1.13. �
cp

2 ∩ D is the closure of the set of all roots in D of all Parry
polynomials associated to admissible words.

In particular, when using Parry polynomials to plot approximations of �
cp

2 , it is not
necessary to check whether the Parry polynomials are irreducible.

As an application of Theorem 1.7, we will show the following.

THEOREM 1.14. The part of the Master Teapot inside the unit cylinder is not symmetrical
with respect to reflection across the imaginary axis, that is, ϒ

cp

2 ∩ C is not invariant under
the map (z, λ) �→ (−z, λ).

Since Galois conjugates occur in complex conjugate pairs, it is immediate that
(x + iy, λ) ∈ ϒ

cp

2 if and only if (x − iy, λ) ∈ ϒ
cp

2 .
Theorem 1.14 is surprising because the Thurston set, �cp

2 , which is the projection to C of
ϒ

cp

2 , is symmetrical under the map z �→ −z (Proposition 9.1). However, this asymmetry
in the Master Teapot is confined to the slices of heights ≥ √2; one can prove, via the
renormalization procedure described in §2.3, that the unit cylinder part of slices of height
<
√

2 is symmetrical under reflection across the imaginary axis.

Remark 1.15. Theorem 1.7 allow us to interpret each slice �λ ∩ D as an analogy of the
Mandelbrot set. The conclusion of Theorem 1.7 for the top slice (cf. Remark 1.11) allows
one to characterize �2 as the union of S1 and the set of all parameters z ∈ D such that
the point 1 is an element of the limit set �z associated to the iterated function system
generated by f0,z and f1,z. Theorem 1.7 suggests viewing �λ ∩ D as the set of parameters
z for which the point 1 is an element of the ‘limit set’ associated to the ‘restricted iterated
function system’ generated by f0,z and f1,z in which only the compositions represented by
λ-suitable sequences are allowed.

Based on numerical experiments, we propose the following conjectured analogy of the
Julia–Mandelbrot correspondence [DH85, Lei90].

Conjecture 1.16. For any complex number |z| < 1, any λ∈ (1, 2], the set {z′ − z : z′ ∈ �λ}
is asymptotically similar to the set

Jz = {G(w, z)− 1 : w is λ-suitable}.
By these two sets being asymptotically similar, we mean there exists a real number

r > 0 and sequences (tn), (t ′n) ∈ C with tn, t ′n→∞ such that, denoting Hausdorff
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FIGURE 3. A constructive plot of an approximation of the slice �1.8 ∩ D. The plotted black points are all the
roots of modulus ≤ 1 of all Parry polynomials for superattracting tent maps with growth rate < 1.8 and critical

length at most 29.

distance by dHaus,

lim
n→∞ dHaus(Br(0) ∩ (tn(�λ − z)), Br(0) ∩ (t ′nJz)) = 0.

If Conjecture 1.16 is true, or at least true for ‘enough’ points z, we would also be able to
show the following.

Conjecture 1.17. There exists λ ∈ (1, 2) such that �λ ∩ D has infinitely many connected
components.

Figure 3 shows a constructive plot (in black) of the slice �1.8 ∩ D, while Figure 4
shows (in white) points of D \�1.8. Comparison of these images suggests the existence
of multiple small connected components in the region Re(z) < 0 near the inner boundary
of the ‘ring.’

The Thurston set �
cp

2 is known to be path-connected and locally connected [Tio18,
Theorem 1.3]. It follows from Theorem 1.8 that for many heights λ ∈ (1, 2], the part of
the slice of height λ that is outside the unit cylinder consists of more than one connected
component.
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FIGURE 4. The upper half of the slice ϒ
cp

2 ∩ (D× {1.8}) plotted using Theorem 1.7. Specifically, the plotted
white points are shown to be in the complement of ϒ

cp

2 (by checking the condition of Theorem 1.7 for all
m ≤ 18).

Conjecture 1.17 could be potentially proven by computation via an effective version of
Theorem 1.7 similar to Proposition 8.4. However, a tighter bound than that obtained in
Proposition 8.4 would probably be needed for the computation to be feasible.

The structure of the paper is as follows.
Section 2 provides definitions and notation for Parry polynomials, admissible

and dominant words and sequences, growth rates, and the renormalization/doubling
operators.

Section 3 proves some elementary results about the doubling map which we will need
in later sections to extend results about the top part of the teapot to the part with height
<
√

2.
Section 4 proves Theorem 4.5, which implies that all roots in the unit disk of all Parry

polynomials associated to admissible words are in the teapot.
Section 5 discusses λ-suitability and proves Lemma 5.7, which is the key combinatorial

result we need to prove Theorem 1.7.
Section 6 uses Theorem 4.5 and Lemma 5.7 to prove Theorem 1.7.
Section 7 proves Theorem 1.8.
Section 8 presents algorithms, derived from Theorems 1.7 and 1.8, which will detect if

a point (z, λ) ∈ C× R belongs to the complement of the height-λ slice �λ, and proves
lemmas that justify the algorithms.

Section 9 proves Theorem 1.14 by exhibiting a point (z, λ) that is in the teapot and using
the algorithm from §8 to prove that (−z̄, λ) is in the complement of the slice �λ.

2. Preliminaries
2.1. Concatenation. We use · or just adjacency to denote concatenations, that is, for any
word w = w1 . . . wn and any word or sequence v = v1v2 . . . ,

w · v = wv = w1 . . . wnv1v2 . . . .

We denote the concatenation of n copies of a word w by wn for n ∈ N ∪ {∞}.

https://doi.org/10.1017/etds.2022.73 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.73


3364 K. Lindsey and C. Wu

2.2. Parry polynomials. Let w be a word with positive cumulative sign. The Parry
polynomial of w, Pw : C→ C, is defined as

Pw(z) := F(w, z)− 1

(cf. [BDLW19, Definition 2.7]). It is evident that if Itλ = w∞, then λ is a root of Pw, and
hence all Galois conjugates of λ must be roots of Pw.

One can check by simple bookkeeping that for any word w of positive cumulative sign,
Pw(z), G(Rev(w)∞, z) and H(w∞, z) satisfy the following relationship.

LEMMA 2.1. If w is of length n and has positive cumulative sign, then

Pw(z) = (1− zn)G(Rev(w)∞, z) = zn(1− z−n)H(w∞, z).

2.3. Admissibility, itineraries, and dominance. The shift map σ is defined on sequences
by

σ(w1w2w3 . . .) = (w2w3 . . .).

A sequence w = w1w2 . . . is a generalized symbolic coding of fλ for some λ ∈ (1, 2]
if and only if

f k
λ (1) ∈ Iwk+1,λ

for every integer k ≥ 0. Because the point 1/λ belongs to both intervals I0,λ and I1,λ,
there may exist more than one generalized symbolic coding for the itinerary of the point 1
under fλ. The λ-itinerary Itλ is the least (with respect to ≤E) such generalized symbolic
coding.

A sequence w starting with 10 is called admissible if

σk(w) ≤E w

for all k ∈ N. A word w is called admissible if w has positive cumulative sign and w∞ is
admissible.

We will use the following immediate consequence of Theorem 12.1 of [MT88].

THEOREM 2.2. For every λ ∈ (1, 2], Itλ is admissible.

PROPOSITION 2.3. [BDLW19] Let w be a word with positive cumulative sign. If w is
admissible and the associated Parry polynomial, Pw(z), can be written as the product of
(z− 1) and another irreducible factor, then w∞ = Itλ for some λ ∈ (1, 2].

The following is a straightforward corollary [MT88, Theorem 13.1].

COROLLARY 2.4. If 1 < λ < λ′ ≤ 2, then Itλ <E Itλ′ .

A word w is called dominant (cf. [BDLW19, Definition 4.1, Lemma 4.2]) if it has
positive cumulative sign, and for any 1 ≤ k ≤ |w| − 1,

Sufk(w) · 1 <E Prek+1(w).
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Every dominant word is admissible, but admissible words may not be dominant. A key
property of the dominant words is the following, which is proved in [Tio15] and reviewed
in [BDLW19, Proposition 4.4].

PROPOSITION 2.5. If λ ∈ (
√

2, 2) and Itλ = w∞, then for any n > 0, there exists a word
w′ such that wnw′ is dominant.

2.4. Growth rates and critically periodic tent maps. When a continuous self-map f of
an interval is postcritically finite, the exponential of its topological entropy, ehtop(f ), also
called its growth rate, is a weak Perron number—a real positive algebraic integer whose
modulus is greater than or equal to that of all of its Galois conjugates. This is because
cutting the interval at the critical and postcritical sets yields a Markov partition; each of the
resulting subintervals is mapped to a finite union of subintervals. The leading eigenvalue
of the associated incidence matrix is ehtop(f ), which the Perron–Frobenius theorem implies
is a weak Perron number.

In the present work, we consider growth rates of critically periodic unimodal interval
self-maps. A unimodal map f is said to be critically periodic if, denoting the critical point
of f by c, there exists n ∈ N such that f n(c) = c. A theorem of Milnor and Thurston
[MT88, Theorem 7.4] tells us that, from the point of view of entropy, instead of considering
all critically periodic unimodal maps, we only need to consider critically periodic tent
maps. For tent maps, it is easy to see that the growth rate is just the slope λ.

2.5. Renormalization and doubling. As shown in [BDLW19, §3], for any 1 < λ <
√

2,
the tent map fλ is critically periodic if and only if the tent map fλ2 is critically periodic.
(This phenomenon is related to renormalization of the Mandelbrot set.) Furthermore,
whenever 1 < λ <

√
2, Itλ can be obtained from Itλ2 by replacing each 1 in Itλ with 10

and each 0 in Itλ with 11. That is, the doubling map D : {0, 1}n→ {0, 1}2n, n ∈ N ∪ {∞},
defined by

D(w1w2 . . .) = 1 · (1− w1) · 1 · (1− w2) · . . . ,

satisfies D(Itλ2) = Itλ whenever fλ with 1 < λ < 2 is critically periodic. We say that a
sequence w is renormalizable if there exists a sequence w′ such that w = D(w′); in this
case, we say that w is the doubling of w′ and call w′ the renormalization of w. We define
renormalizable, doubling, and renormalization for words analogously.

Remark 2.6. The ‘renormalization’ we are considering here is only the period-2 renor-
malization, that is, the inverse of tuning by the basilica. The reason is that higher order
renormalization would create roots in the Pw that are Galois conjugate of the leading root.

3. Properties of the doubling map
The goal of this section is to prove some elementary properties of renormalizable words
and sequences that we will use in later sections to extend the results about the part of the
teapot above height

√
2 to the lower part.
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LEMMA 3.1. The doubling map D preserves the twisted lexicographic ordering ≤E ,
cumulative signs, and hence also admissibility.

Proof. If the number of 1s in a word w equals n, then for any letter a, the number of 1s
in Pre2|w|+1(D(w · a)) equals 2|w| + 1− n. It follows that if n is odd, w · 1 <E w · 0 and
D(w · 1) <E D(w · 0); if n is even, w · 0 <E w · 1 and D(w · 0) <E D(w · 1). Thus, D
preserves ≤E . Furthermore, if a word w has positive cumulative sign, then the number, n,
of 1s in w is even, implying that D(w), which contains 2w − n1s, also has positive
cumulative sign.

LEMMA 3.2. The doubling map D takes itineraries to itineraries. That is, if λ2k = λ′,
then Dk(Itλ′) = Itλ.

Proof. By induction, it is easy to see that we only need to prove it for k = 1, that is,
D(Itλ2) = Itλ. For any λ ≤ √2, the tent map fλ sends the interval [2/(λ+ 1), 1] to [2−
λ, 2/(λ+ 1)] and vice versa. Hence, f 2

λ is a tent map from [2/(λ+ 1), 1] of slope λ2, and
any x = f 2k

λ (1) lies on the left-hand side of the critical point of f 2
λ if and only if x and

fλ(x) are both to the right of 1/λ, while f 2k
λ (1) lies on the right-hand side of the critical

point of f 2
λ if and only if x is to the right of 1/λ and fλ(x) is to the left of 1/λ, and this

finishes the proof for the case when Itλ2 is not periodic. The case when Itλ2 is periodic
follows from this argument together with Lemma 3.1.

PROPOSITION 3.3. If w is a word with positive cumulative sign and w′ is the renormal-
ization of w, then

Pw(z) = z− 1
z+ 1

Pw′(z
2).

Proof. Suppose w and w′ are words satisfying D(w′) = w. It is easy to see that if w =
w1w2 . . . w2n has a positive cumulative sign, then w′ = w′1w′2 . . . w′n also has a positive
cumulative sign. So, the proposition follows from the following more general statement: if
w′ is any word, w is the doubling of w′, then

F(w, z)− 1 = z− 1
z+ 1

(F (w′, z2)− 1). (3.1)

We will prove (3.1) using induction on |w′|. In the base case, |w′| = 1, w′ = 1, or w′ = 0,
and the statement is true by calculation. Now assume the statement is true for all words w′
such that |w′| ≤ n− 1. Let w′ and w be words with |w′| = n and D(w′) = w. Let w′0 be
w′ with the last letter removed, and let w0 be w with the last two letters removed. Then, by
the inductive hypothesis,

F(w0, z)− 1 = z− 1
z+ 1

(F (w′0, z2)− 1).

We divide the inductive step into two cases.
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Case 1: w′n = 0. This implies w = w0 · 11, so

F(w, z)− 1 = 2− z(2− z(F (w0, z)))− 1

= 2− z

(
2− z

(
z− 1
z+ 1

(F (w′0, z2)− 1)+ 1
))
− 1

= z− 1
z+ 1

(z2F(w′0, z2)− 1)

= z− 1
z+ 1

(F (w′, z2)− 1).

Case 2: w′n = 1. This implies w = w0 · 10, so

F(w, z)− 1 = z(2− z(F (w0, z)))− 1

= z

(
2− z

(
z− 1
z+ 1

(F (w′0, z2)− 1)+ 1
))
− 1

= z− 1
z+ 1

(2− z2F(w′0, z2)− 1)

= z− 1
z+ 1

(F (w′, z2)− 1).

PROPOSITION 3.4. Let w be an admissible word. Then w∞ renormalizable if only if

w∞ <E It√2 (= 10 · 1∞).

Proof. First, it is easy to see that a sequence is renormalizable if and only if all its odd
index letters are 1, and a word is renormalizable if and only if it has even length and all its
odd indexed letters are 1. Because any admissible word starts with 10, an admissible word
w is renormalizable if and only if w∞ is admissible and renormalizable.

Now suppose w∞ is admissible and renormalizable. Suppose the second 0 in w∞ is at
the kth location. It suffices to show that Prek−1(w

∞) has positive cumulative sign, which
is equivalent to showing that k is even, because the (k − 1)-prefix of w∞ and 10 · 1∞ are
the same. This is an immediate consequence of the admissibility of w∞.

Now we prove the other direction. The sequence w∞ being admissible implies that the
first 0 in w∞ is at the second location. If we can further prove that the distance between any
two consecutive 0s is even, then all 0s are at even locations, and hence w∞ is admissible.
Denote by ik the location of the kth0. Let km be the smallest number such that ikm − ikm−1

is odd. Then by definition of <E ,

σ
ikm−1−1

(w∞) >E 10 · 1∞.

Remark 3.5. By kth renormalization or kth doubling, we mean carrying out the renormal-
ization or doubling on a word or sequence k times. Proposition 3.3 above implies that if w′
is the kth renormalization of w, then the roots of Pw not on the unit circle are the (2k)th
roots of the roots of Pw′ that are not on the unit circle.

Furthermore, because renormalization of sequences preserves <E (Lemma 3.1), we can
apply Proposition 3.4 above repeatedly to show that if the wk is the kth doubling of 10 · 1∞,
w is admissible, and w∞ <E wk , then w has a kth renormalization.
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4. Roots in D of reducible Parry polynomials
The purpose of this section is to prove Theorem 4.5, an alternative characterization of sets
�λ ∩ D, for λ ∈ (1, 2], using the results in [BDLW19]. An upshot of Theorem 4.5 is that
we do not need to worry about extraneous roots in D from reducible Parry polynomials.

We will use the following four results from [BDLW19].

THEOREM 4.1. [BDLW19, Theorem 1 (‘persistence theorem’), Theorem 2] If (z, λ) ∈
ϒ

cp

2 , |z| ≤ 1, then so is (z, y) for any y ∈ [λ, 2].

PROPOSITION 4.2. [BDLW19, Lemma 5.3] Let w1 be dominant, w1 >E 10 · 1|w1|−2, w2

be admissible, w∞1 >E w∞2 , and assume that there is some m such that

2m|w2| > |w1| > m|w2|.

Then there is some w′, some integer m′ ≥ m, such that (w1w
′wm′

2 )∞ is admissible,

|w1| + |w′| ≥ m′|w2|,
and the Parry polynomial P

w1w′wm′
2

(z) can be written as the product of (z− 1) and another

polynomial Q(z) such that Q(z2k
) is irreducible for all integers k ≥ 0.

PROPOSITION 4.3. [BDLW19, Lemma 5.5] If w2 is an admissible word and z ∈ D is a
root of Pw2 , then for any ε > 0, there exists N ∈ N such that for any word w1 and any
integer n ≥ N , Pw1w

n
2

has a root within distance ε of z.

PROPOSITION 4.4. [BDLW19, Lemma 5.7, Remark 5.8] If y ∈ [
√

2, 2], for any ε > 0,
there exists a dominant word w1 such that for any word w2, the leading root of Pw1w2 is
within distance ε of y, and w1 >E 10 · 1|w1|−2.

We now use the above results to establish the following characterization of the sets
�λ ∩ D, which will be the starting point of our proof of Theorem 1.7.

THEOREM 4.5. Fix 1 < λ < 2. For each λ′ > λ, define Yλ′ to be the closure of the set of
roots in D of all Parry polynomials Pw such that w is admissible and w∞ ≤E Itλ′ , union
with S1, that is,

Yλ′ := S1 ∪ {z ∈ D : Pw(z) = 0 for some admissible word w such that w∞ ≤E Itλ′ }.
Then,

�λ ∩ D =
⋂
λ′>λ

Yλ′ .

Remark 4.6. The condition ‘w∞ <E Itλ′ for every λ′ > λ’ is different from ‘w∞ ≤ Itλ’
because there could exist a symbolic coding for the itinerary of 1 under the tent map fλ

that is >E Itλ.
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Proof. For any 1 < λ < 2, let

�′λ =
⋂
λ′>λ

Yλ′ .

We will first prove �λ ⊆ �′λ. For any λ′, define the set Zλ′ to be the closure of the set of
Galois conjugates of critically periodic growth rates that are at most λ′, union with S1. By
the persistence theorem, λ1 < λ2 implies Zλ1 ⊆ Zλ2 . So if any point x ∈⋂

λ′>λ Zλ′ , then
x ∈ �λ since ϒ

cp

2 is closed; similarly, if x �∈⋂
λ′>λ Zλ′ , then x �∈ �λ. Hence,

�λ ∩ D =
⋂
λ′>λ

Zλ′ .

The conclusion will now follow from the statement that Zλ′ ⊆ Yλ′ for all λ′. If z is a
Galois conjugate of a critically periodic growth rate λ′′ that is at most λ′, then z is a root
of the Parry polynomial Pw such that w∞ = Itλ′′ , and Itλ′′ ≤E Itλ′ by Corollary 2.4. Thus,
Zλ′ ⊆ Yλ′ for all λ′.

We will now prove �′λ ⊆ �λ. To do this, it suffices to show

Yλ′ ⊆
⋂

λ′′>λ′
Zλ′′ .

We first consider the case λ′ ≥ √2. Suppose z is the root of some Pw, where w is
admissible and the leading root of Pw is no larger than λ′. (Yλ′ is the closure of all such
z terms.) For any ε > 0, Proposition 4.4 guarantees the existence of a dominant word w1

such that for any w2, the leading root of Pw1w2 is in [λ′, λ′ + ε) and w1 >E 10 · 1|w1|−2. By
monotonicity (Corollary 2.4), w∞1 >E w∞. Without loss of generality, we may choose w1

so that its length, |w1|, is arbitrarily big (this is because as we let ε → 0, we get arbitrarily
many such dominant strings, and there are finitely many strings of at most any given
length). Thus we may assume that w1 and w satisfy the assumptions of Proposition 4.2
with the m of Proposition 4.2 being arbitrarily large, and in particular, m is ≥ the N
of Proposition 4.3 using w for w2. Let w3 be the word constructed by Proposition 4.2.
Because w3 is admissible, has positive cumulative sign, and Pw3(z)/(z− 1) is irreducible,
w∞3 = Itλ3 for some λ3 by Proposition 2.3. We know λ3 ∈ [λ′, λ′ + ε] because w3 has the
prefix w1. Also, any root of Pw3 in D will be a Galois conjugate of λ3, and by construction,
Pw3 has a root close to z. The containment now follows from letting ε → 0.

Now we deal with the case 1 < λ′ <
√

2. Let k be the unique natural number such that
(λ′)2k ∈ [

√
2, 2). Remark 3.5 implies that w has a kth renormalization w0, and z2k

is a
root of Pw0 . Using w0 in place of w in the argument in the previous paragraph, we get a
critically periodic growth rate λ4 close to (λ′)2k

, such that one of its Galois conjugates
z2 is close to z2k

. The conclusion in Proposition 4.2 further implies that any (2k)th root
of z2 must be a Galois conjugate of the (2k)th root of λ4 as well, which implies that
there is a Galois conjugate of λ2−k

4 which is close to z, which finishes the proof of the
proposition.

The following corollary is not used to prove any further results in the present work.
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COROLLARY 4.7. Let V denote the set of all real numbers λ ∈ (1, 2) such that:
(1) the tent map fλ is critically periodic;
(2) there exists a word w such that Itλ = w∞;
(3) the Parry polynomial Pw(z) can be written as the product of an irreducible

polynomial (in Z[z]) and some cyclotomic polynomials.
Then V is dense in [1, 2].

Proof. The growth rates λ3, as well as the growth rates λ2−k

3 , k ∈ N, constructed in the
proof of Theorem 4.5 all satisfy conditions (1)–(3).

5. λ-suitability
In this section, we establish some basic properties of λ-suitability and prove the technical
lemmas about λ-suitability that we will need in §6.

For convenience, we reproduce the definition of λ-suitability here. For λ ∈ (1, 2), a
sequence w is called λ-suitable if for every λ′ ∈ (λ, 2], the following conditions hold.
(1) Rev(Pren(w)) ≤E Pren(Itλ′) for all n ∈ N.
(2) If Rev(Pren(w)) = Pren(Itλ′), then the cumulative sign s(Pren(w)) = −1.
(3) If Itλ′ = 1 · 0k · 1 . . . , k ∈ N, then w does not contain k + 1 consecutive 0s (that is,

if Itλ′ starts with 1 followed by k0s and then 1, writing w as w = w1w2 . . . , there
does not exist n ∈ N such that wi = 0 for all n ≤ i ≤ n+ k).

(4) If n ∈ N satisfies
√

2 ≤E (λ′)2n
< 2, then w = D′n(w′) for some sequence w′,

where D′ is the map that replaces 0 with 11 and 1 with 01. Furthermore, if

Itλ′2n = 1 · 0k · 1 . . . ,

then w′ does not contain k + 1 consecutive 0s.
The intuition behind the definition of λ-suitability is that we need a condition on

sequences w so that Lemma 5.7 works.

Remark 5.1. An immediate consequence of monotonicity (Corollary 2.4) is that if λ′
satisfies conditions (1)–(4) of Definition 1.5 for a sequence w, then so does every λ′′ > λ′.

Remark 5.2. Every itinerary Itλ′ is admissible (by Theorem 2.2), so the admissibility con-
dition implies that if Itλ′ = 1 · 0k · 1 . . ., then Itλ does not contain k + 1 consecutive 0s.

Remark 5.3. Note that the map D′ defined in the definition of λ-suitability is related to
the doubling map D by

Rev ◦ Pre2n ◦D = D′ ◦ Rev ◦ Pren(w)

for every sequence w and n ∈ N. (Recall that D is replacing 0 with 11, 1 with 10, while D′
is replacing 0 with 11, 1 with 01.)

LEMMA 5.4. The set of λ-suitable sequences is closed.

Proof. We will show that the set of all sequences that are not λ-suitable is open. To do
this, it suffices to show that given any sequence w which is not λ-suitable, we can find a
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prefix of w such that every sequence that shares this prefix is not λ-suitable. It is clear that
conditions (1) and (2) are closed conditions. For condition (3), we choose the prefix to be
one that contains the first k + 1 consecutive 0s. Condition (4) is similar.

The following lemma is immediate because the definition of λ-suitability is of the form
‘for all λ′ > λ, P(w, λ′),’ where P is a predicate.

LEMMA 5.5. Let Mλ denote the set of λ-suitable sequences. Then,

Mλ =
⋂

λ′′∈(λ,2]

Mλ′′ .

LEMMA 5.6. If w is an admissible word that satisfies w∞ ≤E Itλ for λ ∈ (1, 2), then
(Rev(w))∞ is λ-suitable.

Proof. Observe that for any n ∈ N, if we pick some k ∈ N such that n+ k is some multiple
of |w|, then we have

Rev(Pren(Rev(w)∞))) = Pren(σ
k(w∞)). (5.1)

Since w is admissible, Pren(σ
k(w∞)) ≤E Pren(w

∞) for all k, n ∈ N. By Corollary 2.4,
for any λ′ > λ,

Itλ <E Itλ′ . (5.2)

We thus have that for any n ∈ N,

Rev(Pren(Rev(w)∞)) = Pren(σ
k(w∞)) ≤E Pren(w

∞) ≤E Pren(Itλ) ≤E Pren(Itλ′),

which is condition (1) of the definition of λ-suitability.
Now suppose that for some λ′ > λ,

Rev(Pren(Rev(w)∞) = Pren(Itλ′)

and Pren(Itλ′) has a positive cumulative sign. Then from (5.1), we have

Pren(σ
k(w∞)) = Pren(Itλ′).

Admissibility of w and (5.2) together imply that

σk(w∞) ≤E w∞ <E Itλ′ . (5.3)

Because Pren(Itλ′) is the common prefix of σk(w∞) and Itλ′ , (5.3) implies it must also be
a prefix of w∞. Removing this common n-prefix with positive cumulative sign from both
sides of the inequality (by applying σn) yields

w∞ ≤E σn(w∞).

However, admissibility also implies that σn(w∞) ≤ w∞, so in fact

w∞ = σn(w∞).

Therefore,

w∞ = (Pren(Itλ′))∞. (5.4)
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Let j be the index of the first place w∞ differs from Itλ′ . Clearly, j > n. Pick m ∈ N

such that mn < j ≤ (m+ 1)n. Then, after removing the common prefix of length mn and
positive cumulative sign from both w∞ and Itλ′ , we get from (5.4) and (5.2) that

σmn(w∞) = w∞ <E Itλ′ ,

and hence,

Pren(Itλ′) = Pren(w
∞) <E Pren(σ

mn(Itλ′)),

which contradicts with the fact that Itλ′ is admissible (by Theorem 2.2). Thus, condition
(2) of the definition of λ-suitability holds.

Now condition (3) of the definition of λ-suitability follows from the assumption that
w∞ ≤E Itλ.

For condition (4), suppose for some λ′ > λ,
√

2 ≤ (λ′)2n
< 2. Then λ2n

< 2, so by
Lemma 3.4, w = Dn(w′) for some w′. Hence,

(Rev(w))∞ = (D′n(Rev(w′))∞.

Because D preserves ≤E and sends itineraries to itineraries (Lemma 3.2), the number of
consecutive 0s in (Rev(w′))∞, which is the number of consecutive 0s in w′∞, cannot be
more than the number of consecutive 0s in Itλ′2n .

The key combinatorial result we need to prove Theorem 1.7 is the following.

LEMMA 5.7. Fix λ ∈ [1, 2) and let w0 be a finite dominant word such that Itλ′ ≤E w∞0
for some λ′ > λ. Let α be a word such that α:
(1) ends with 1;
(2) is a prefix of some λ-suitable sequence;
(3) has positive cumulative sign; and
(4) |w0| > |α|.
Then the word w0 · Rev(α) is admissible.

Proof. Let α′ = Rev(α). It suffices to show that the admissibility criterion

σk((w0α
′)∞) ≤E (w0α

′)∞

holds for all 1 ≤ k < |α| + |w0|.
Case 1: k < |w0|. This implies that the comparison between σk((w0α

′)∞) and (w0α
′)∞

is equivalent to the comparison of a proper suffix of w0 concatenated with 1 with a prefix
of w0 of the same length. Hence,

σk((w0α
′)∞) ≤E (w0α

′)∞

because w0 is dominant.
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Case 2: |w0| ≤ k < |α| + |w0|. Suppose the first place σk((w0α
′)∞) and (w0α

′)∞ differ is
at the j th position. It is evident that 1 ≤ j ≤ |α| + |w0|. We divide this into two subcases.

Case 2A: j ≤ |w0| + |α| − k. The fact that |w0| > |α| and k ≥ |w0| implies that j ≤
|w0|. Hence, the comparison between σk((w0α

′)∞) and (w0α
′)∞ is equivalent to the

comparison of a proper suffix of α′ with a prefix of w0. Hence, item (1) of Definition 1.5
gives us

σk((w0α
′)∞) ≤E (w0α

′)∞.

Case 2B: j > |w0| + |α| − k. The word β := Suf|w0|+|α|−k(α
′), which is a common prefix

of σk((w0α
′)∞) and (w0α

′)∞, is identical to a prefix of w0, which is ≥E than a prefix of
Itλ′ for some λ′ > λ. Hence, due to item (2) of Definition 1.5, β has a negative cumulative
sign. Now, using the conclusion of Case 1, we have

σ
|w0|+|α|−k
k (σ k((w0α

′)∞)) = (w0α
′)∞ >E σ

|w0|+|α|−k
k ((w0α

′)∞).

Hence,

σk((w0α
′)∞) ≤E (w0α

′)∞

because β has a negative cumulative sign.

LEMMA 5.8. Let w and w′ be sequences, and let λ∈ (1, 2) and k ∈N satisfy
√

2≤λ2k
< 2.

If w is λ-suitable and w = D′k(w′), then w′ is λ2k
-suitable.

Proof. By induction, we only need to prove it for k = 1. Assume w = D′(w′) is
λ-suitable, we will now show that w′ satisfies conditions (1)–(4) of Definition 1.5. By
definition,

Rev(D′(v)) = D(Rev(v))

for any word v, so for any λ′ > λ,

Rev(Pre2n(D
′(w′)) = Rev(D′(Pren(w

′)))

= D(Rev(Pren(w
′))) ≤ Pre2n(Itλ′) = D(Pren(Itλ′2)).

Hence condition (1) is true for w′ because of Lemmas 3.1 and 3.2. Condition (2) of
Definition 1.5 can be verified similarly. It is easy to see that w satisfies condition (4)
implies that w′ satisfies condition (4). Lastly, we will now show that w satisfies condition
(4) will imply w′ satisfies condition (3): if λ2 ≥ √2, this follows from the statement of
condition (4). If λ2 <

√
2, condition (4) implies that w′ = D′(w′′) for some w′′, which

implies that w′ can never have more than one consecutive 0, and hence it also satisfies
condition (3).

6. Characterization inside the unit cylinder
LEMMA 6.1. Let K denote the space of compact subsets of R3 with the Hausdorff metric
topology. Given any compact subset K of K, the union of the elements of K is a compact
subset of R3.
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Proof. First, we claim there exists R > 0 such that k ⊂ BR(0) for all k ∈ K . If this was
not the case, then there exist k1 and k2 in K such that dHaus(k1, k2) is arbitrarily large,
contradicting the fact that K is compact. Thus the claim is true.

Consider K × BR(0). As a product of compact sets, it is compact. Consider the subset
C ⊆ K such that C consists of all pairs (k, x) such that x ∈ k. We claim C is closed, and
thus as a closed subset of a compact set, C is compact. To see this, we will show that C is
sequentially closed, that is, if (ki , xi) is a sequence in C converging to (k∞, x∞) ∈ K ×
BR(0), then (k∞, x∞) ∈ C. We have that ki → k∞ and xi → x∞, so suppose x∞ �∈ k∞.
Since k∞ is a compact set, x �∈ k∞ implies there exists ε > 0 such that Bε(x) is contained
in the complement of k∞. This implies that lim inf dHaus(ki , k∞) ≥ ε, contradicting the
fact that ki → k∞ in the Hausdorff metric. So we have a continuous map from C to R

3

sending (k, x) to x. The image under this map is compact.

The following two lemmas, which we state without proof, are immediate consequences
of Rouché’s theorem.

LEMMA 6.2. Let M > 0 be some fixed number. Let A be the set of power series with
coefficients bounded by M equipped with the product topology. Let C be the set of compact
subsets of C equipped with the Hausdorff topology. Then the map ρ : A→ C defined by

ρ(f ) = S1 ∪ {z ∈ D : f (z) = 0}

is continuous.

LEMMA 6.3. Fix real numbers M > 0, 0 < r < 1, ε > 0. Suppose α is a power series
whose coefficients are all bounded in absolute value by M. Then there exists a real number
N = N(α, r , ε, M) such that for every power series β, whose coefficients are all bounded
in absolute value by M and whose first N terms equal the first N terms of α, for each root z
of α with |z| < r , there exists a root z′ of β such that |z− z′| < ε.

Now we prove the first main theorem.

Proof of Theorem 1.7. For the reader’s convenience, we reproduce here the statement of
Theorem 1.7. For any λ ∈ (1, 2],

�λ ∩ D = S1 ∪ {z ∈ D : G(w, z) = 1 for some λ-suitable sequence w}.

By Remark 1.11, the result holds for λ = 2. So fix λ ∈ (1, 2). For brevity, let

Zλ := {z ∈ D : G(w, z) = 1 for some λ-suitable sequence w}.

First, we show that S1 ∪ Zλ is compact. For each sequence w, the function from D to C

given by z �→ G(w, ·)− 1 is a power series with bounded coefficients. Furthermore, the
map from the set of sequences w (with the product topology) to the set of power series (with
the product topology on coefficients) given by w �→ G(w, ·)− 1 is continuous. Therefore,
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Lemma 6.2 implies that the map ρ from the set of sequences with the product topology
to C, the set of compact subsets of C with the Hausdorff topology, given by

ρ(w) = S1 ∪ {z ∈ D : G(w, z) = 1},
is continuous. By Lemma 5.4, the set of all λ-suitable sequences is closed (in the product
topology on the set of sequences), and hence compact. Therefore, since ρ is continuous,

{ρ(w) : w is λ− suitable}
is a compact subset of C. Hence, Lemma 6.1 implies that⋃

w is λ-suitable

ρ(w)

is compact. However, this set is precisely S1 ∪ Zλ, so we have shown S1 ∪ Zλ is compact
for any λ ∈ [1, 2].

Next, we show that

�λ ∩ D ⊆ S1 ∪ Zλ.

Theorem 4.5 shows that

�λ ∩ D =
⋂
λ′>λ

Yλ′ , (6.1)

where Yλ′ is defined to be the closure of the set of roots in D of all Parry polynomials Pw

such that w is admissible and w∞ ≤E Itλ′ , union with S1. For each such w, let wr be the
sequence

wr := (Rev(w))∞.

So fix λ′ > λ and consider any admissible word w such that w∞ ≤E Itλ′ . By Lemma 2.1,

Pw(z) = (1− z|w|)G(wr , z).

By Lemma 5.6, wr is λ′-suitable. Hence, all roots in D of Pw are in S1 ∪ Zλ′ . Then, since
Zλ′ is closed, we have that

Yλ′ ⊆ S1 ∪ Zλ′ . (6.2)

Now, combining (6.1) and (6.2) shows that for any point z ∈ �λ ∩ D, for each n ∈ N,
there exists a (λ+ 1/n)-suitable sequence vn such that G(vn, z) = 1. Let v∞ be an
accumulation point of the set {vn : n ∈ N}. By Lemma 5.5, the sequence v∞ is λ-suitable.
The continuity of w �→ G(w, ·) implies that G(v∞, z) = 1. Hence, �λ ∩ D ⊆ S1 ∪ Zλ.

Lastly, we show that S1 ∪ Zλ ⊆ �λ ∩ D. We know from [BDLW19] that S1 × [1, 2] ⊂
ϒ

cp

2 . Thus, S1 ⊂ �λ, so it suffices to show that Zλ ⊂ �λ. Fix a point z ∈ Zλ and let w
be a λ-suitable sequence such that G(w, z) = 1. By condition (4) of Definition 1.5, there
exists a sequence w′ such that w = D′k(w′), and by Lemma 5.8, w′ is λ2k

-suitable and
λ2k ≥ √2. In particular, if λ ≥ √2, we can let k = 0 and w′ = w. As a consequence,
there are infinitely many prefixes of w′ that end with 1 and have a positive cumulative
sign.
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For any m ∈ N such that Prem(w′) has a positive cumulative sign and any word
w′′ with a positive cumulative sign, it follows immediately from the definitions of a
Parry polynomial and of G that the first m terms of the power series G(w′, z)− 1 and
Pw′′·Rev(Prem(w′))(z) agree. Therefore, for any fixed ε1 > 0, by Lemma 6.3, there exists
N ∈ N such that PreN(w′) ends with 1 and has a positive cumulative sign, and for any
word w′′ with a positive cumulative sign, there exists a point z′ ∈ Bε1(z

2k
) such that

Pw′′·Rev(PreN(w′))(z
′) = 0. (6.3)

For any fixed λ′ satisfying 2 > λ′ > λ2k
, pick a critically periodic growth rate λ′′ ∈

(λ2k
, λ′) and word w0 with a positive cumulative sign such that Itλ′′ = w∞0 . Since λ′′ < λ′,

for sufficiently large n,

wn
0 <E Pren|w0|(Itλ′).

Hence, by Proposition 2.5, there exists n ∈ N and a word w′1 such that the word

w1 := wn
0w′1

is dominant, |w1| > |w′|, and

w1 <E Pre|w1|(Itλ′). (6.4)

By Lemma 5.7,

w1 · Rev(PreN(w))′

is admissible. By (6.3),

Pw1·Rev(PreN(w′))

has a root within distance ε1 of z2k
. By (6.4),

(w1 · Rev(PreN(w′)))∞ <E Itλ′ .

Hence, the kth doubling of w1 · Rev(PreN(w′)), denoted as wd , satisfies

w∞d <E It
(λ′)1/2k

and Pwd
has leading root in [λ, (λ′)1/2k

] and a root in Bε′1(z), where ε′1 is the diameter of

the preimage of Bε′(z2k
) under the map z �→ z2k

.
Now, since ε1 > 0 and λ′ > λ were arbitrary, and since ϒ

cp

2 is closed, we obtain that
(z, λ) ∈ ϒ

cp

2 , and hence z ∈ �λ.

7. Characterization outside the unit cylinder
The goal of this section is to prove Theorem 1.8, a characterization of the part of the Master
Teapot that is outside the unit cylinder.

Proof of Theorem 1.8. For any λ ∈ (1, 2), denote by fλ the λ-tent map, and define the set

Rλ :=
{
{z ∈ C \ D : H(Itλ, z) = 0} if fλ is not critically periodic,

{z ∈ C \ D : H(Itλ, z) = 0 or zp = 2} if fλ is critically periodic with period p.
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Next, define

R :=
⋃

λ∈(1,2)

((Rλ ∪ S1)× {λ}).

We will show that

R = ϒ
cp

2 ∩ ({z : |z| ≥ 1} × (1, 2)).

Our argument will almost immediately follow from results in [Tio18], though these
results must be translated from the context of the Mandelbrot set to the context of
tent maps. The Milnor–Thurston kneading theory [MT88] yields an entropy-preserving
semiconjugacy from the set of real quadratic polynomials fc, c ∈ [−2, 1/4], to the set
of tent maps. If the quadratic fc is sent by this semiconjugacy to a tent map fλ, then
(1− z−1)Kc(z

−1) = H(Itλ, z), and hence the roots (in D) of the kneading determinant Kc

coincide with the reciprocals of the roots (in C \ D) of H(Itλ, z). By [Jun14, Theorem 4.7],
on the real slice of the Mandelbrot set, core entropy of fc : z �→ z2 + c is strictly increasing
except on ‘small Mandelbrot sets,’ where the core entropy is constant. Consequently, the
entropy-preserving semiconjugacy from real quadratics to tent maps is injective except for
collapsing each small Mandelbrot set to a single tent map. Furthermore, the semiconjugacy
induces a surjection from the set of critically periodic quadratics fc to the set of critically
periodic tent maps, and each small Mandelbrot set contains a critically periodic quadratic.

We will first show that R is a (relatively) closed subset of C× (1, 2). By Proposition 3.3
of [Tio18], the set that is the union of S1 and the roots of Kc varies continuously in the
Hausdorff topology with the parameter c. Consequently, when fλ is not critically periodic,
the function s �→ Rs ∪ S1 is continuous at s = λ. As stated in the proof of Theorem 7.1 of
[Tio18], if (c1, c0) is the real section of a small Mandelbrot set of period p, then Kc0(t) =
Pc0(t)/(1− tp) and Kc1(t) = Pc0(t)(1− 2tp)/(1− tp). Thus, in the Hausdorff topology,

{z ∈ D : Kc0(z) = 0 or zp = 1
2 } ∪ S1 = lim

c∗↗c1
{z ∈ D : Kc∗(z) = 0} ∪ S1,

and so denoting by λ the growth rate of fc0 , we have

{z ∈ C \ D : H(Itλ, z) = 0 or zp = 2} ∪ S1 = lim
λ∗↘λ
{z ∈ C \ D : H(Itλ∗ , z) = 0} ∪ S1.

Therefore, for any λ for which the tent map fλ is critically periodic,

Rλ ∪ S1 = lim
s→λ−

(Rs ∪ S1) ∪ lim
s→λ+

(Rs ∪ S1).

Hence, R is a closed subset of C× (1, 2).
When fλ is critically periodic, H(Itλ, z) can be written as a rational function with

integer coefficients; consequently, Rλ contains all the Galois conjugates of λ in C \ D.
Therefore, for every λ such that the tent map fλ is critically periodic,

(�λ\D) ∪ S1 ⊆ Rλ ∪ S1.
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Since ϒ
cp

2 ∩ {z | |z| ≥ 1} × (1, 2) is formed by taking the closure of the union of all sets
(�λ\D) ∪ S1 for λ critically periodic, and since R is already closed, this implies

ϒ
cp

2 ∩ ({z : |z| ≥ 1} × (1, 2)) ⊆ R.

To show containment in the other direction, Lemma 7.3 in [Tio18] implies that when
fλ is not critically periodic, Rλ × {λ} ⊂ ϒ

cp

2 . However,⋃
fλ is not critically periodic

(Rλ ∪ S1)× {λ}

is dense in R, and hence R ⊂ ϒ
cp

2 .

8. Algorithms to test membership of �λ

In this section, we will describe an algorithm to check if a point z0 ∈ C is in the
complement of a slice �λ for λ ∈ (1, 2).

First, if λ <
√

2, Theorems 1.7 and 1.8 imply that z ∈ �λ if and only if z2 ∈ �λ2 , so we
can always reduce the question to the case λ ∈ [

√
2, 2).

8.1. Testing z0 with |z0| > 1. When |z0| > 1, Theorem 1.8 gives us a straightforward
way to test if z0 �∈ �λ: calculating the first few terms of the power series H(Itλ, z−1),
then checking if z−1

0 is a root of this power series. More precisely, we have the following
algorithm.

Algorithm 1: Algorithm to verify that |z0| > 1 is not in �λ.

if The λ-tent map is critically periodic with period n, and zn
0 = 2 then

z0 ∈ �λ

else
for n > 1 do

Calculate Pren+1(Itλ);
Find the polynomial Pn which consists of the first n terms of power series
H(Itλ, z−1);

If |Pn(z
−1
0 )| > 2|z0|−n/(1− |z0|), then z0 �∈ �λ;

Remark 8.1. If instead of checking if z0 �∈ �λ, we want to see if an ε-neighborhood of z0

is contained in the complement of �λ, we can change the last line of Algorithm 1 to make
use of Rouché’s theorem.

8.2. Testing z0 with |z0| < 1. If |z0| < 1, a way to certify that z0 �∈ �λ is by first finding
the set of all words of length N that satisfy conditions (1)–(3) of Definition 1.5 (condition
(4) is trivial because λ ≥ √2), denoted as MN ,λ, for each word w = (w1 . . . wN) ∈
MN ,λ, evaluating f−1

wN ,z0
◦ f−1

wN−1,z0
. . . f−1

w1,z0
(1), and checking that they are all suffi-

ciently large. More precisely, the algorithm can be described as follows.
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Algorithm 2: Algorithm to verify that |z0| < 1 is not in �λ, where λ ∈ [
√

2, 2).

for N > 1 do
Let MN ,λ be the set of all words of length N that satisfies conditions (1)–(3)
in Definition 1.5;

Let f lag← False;
for w← (w1 . . . wN) ∈MN ,λ do

if f−1
wN ,z0

◦ f−1
wN−1,z0

. . . f−1
w1,z0

(1) ≤ 2/(1− |z0|) then
f lag← T rue;
Break;

If f lag = False, then z0 �∈ �λ;

Remark 8.2. In the definition of MN ,λ above, one needs to check conditions (1)–(3) in
Definition 1.5 for all the λ′ > λ. However, in practice, one does not really need to check
these conditions for infinitely many λ′: instead, one can pick a decreasing sequence λ′j
converging to λ, then there must be some j = j0 such that for any i ≤ N , let fs be the
s-tent map, then Hi(s) = f ◦is (1) does not have any critical points in (λ, λ′j0

). One can
show that the N-prefix of Itλ′j for j > j0 should be the same as the N-prefix of Itλ′j0

, and

in Definition 1.5, the only thing we ever used for Itλ′ is its N-prefix, so we can set λ′ = λ′j0
and verify the three conditions in finite time.

The reason that Algorithm 2 is true is due to the following proposition.

PROPOSITION 8.3. Let λ ∈ [
√

2, 2), and let MN ,λ be defined as in Algorithm 2. Suppose
|z| < 1, then z �∈ �λ if and only if there exists N ∈ N such that for every word w =
w1 . . . wN ∈MN ,λ,

f−1
wN ,z ◦ · · · ◦ f−1

w1,z(1) ≥ 2
1− |z| + ε.

Proof. First, we assume that there is some N such that for every word w = w1 . . . wN ∈
MN ,λ,

f−1
wN ,z ◦ · · · ◦ f−1

w1,z(1) ≥ 2
1− |z| + ε

and prove that z �∈ �λ. Suppose z ∈ �λ. Then by Theorem 1.7, there must be some
λ-suitable sequence v = v1v2 . . . such that

1 = G(v, z) = lim
n→∞ fv1,z ◦ · · · ◦ fvn,z(1).

In other words, for any δ > 0, there is some n > N such that

|fv1,z ◦ · · · ◦ fvn,z(1)− 1| < δ.

By the definition of MN ,λ, the word v1 . . . vN ∈MN . Let u = fv1,z ◦ · · · ◦ fvn,z(1).
Then, |u− 1| < δ. Because f−1

vN ,z ◦ · · · ◦ f−1
v1,z is continuous, we can pick δ small enough

such that
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f−1
vN ,z ◦ · · · ◦ f−1

v1,z(u) >
2

1− |z| .
However,

f−1
vN ,z ◦ · · · ◦ f−1

v1,z(u) = fvN+1,z ◦ · · · ◦ fvn,z(1).

By calculation, it is easy to verify that 1 is in the disc

D2/(1−|z|) =
{
z ∈ C : |z| ≤ 2

1− |z|
}

,

and both f0,z and f1,z send D2/(1−|z|) to itself. Hence,

|fvN+1,z ◦ · · · ◦ fvn,z(1)| ≤ 2
1− |z| ,

which is a contradiction.
Now, for the other direction, we assume that for any N ∈ N, there is some word w =

w1 . . . wN ∈MN ,λ such that

f−1
wN ,z ◦ · · · ◦ f−1

w1,z(1) ≤ 2
1− |z|

and prove that z �∈ �λ. Let CN be the set of sequences such that an N-prefix of it is in
MN ,λ, and this N prefix is of the form w1 . . . wN such that

f−1
wN ,z ◦ f−1

wN−1,z . . . f−1
w1,z(1) ≤ 2

1− |z| .
The fact that f0,z and f1,z both send D2/(1−|z|) to itself implies that CN+1 ⊂ CN , and
all these sets are non-empty and compact under the product topology, and hence their
intersection is non-empty. Let w ∈⋂

N CN , then w is λ-suitable and it is easy to see that
G(w, z) = 1.

Furthermore, we have an effective version of the Proposition 8.3 above.

PROPOSITION 8.4. Let λ, z, N, and ε be as in Proposition 8.3 above, 1
2 < |z| < 1. Then

for any y ∈ C, if

|y − z| < min
{

1− |z|
2

,
(1− |z|)2ε

16
, |z| − 1

2
,

ε

N · 2N+1

}
,

then y �∈ �λ.

Remark 8.5. The assumption |z| > 1
2 is a reasonable one because it is well known (cf.

[Tio18]) that if |z| < 1
2 , then z �∈ �λ for any λ ∈ (1, 2).

Proof. It is easy to see that as long as |y| < 1,∣∣∣∣ 2
1− |z| −

2
1− |y|

∣∣∣∣ < ε/2,

and for any w = w1 . . . wN ∈MN ,λ,

|f−1
wN ,z ◦ f−1

wN−1,z . . . f−1
w1,z(1)− f−1

wN ,y ◦ f−1
wN−1,y . . . f−1

w1,y(1)| < ε/2,
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then y also satisfies the assumption in Proposition 8.3. The first condition, |y| < 1,
holds because |y − z| < (1− |z|)/2, which implies |y| < (1+ |z|)/2 < 1. The second
condition, ∣∣∣∣ 2

1− |z| −
2

1− |y|
∣∣∣∣ < ε/2,

holds because |y| < (1+ |z|)/2 and |y − z| < (1− |z|)2ε/16. The third condition,

|f−1
wN ,z ◦ f−1

wN−1,z . . . f−1
w1,z(1)− f−1

wN ,y ◦ f−1
wN−1,y . . . f−1

w1,y(1)| < ε/2,

holds because of the following argument. As a polynomial of 1/z,

f−1
wN ,z ◦ f−1

wN−1,z . . . f−1
w1,z(1)

has degree N and coefficients bounded between −2 and 2, and hence has its derivative
bounded by N2N−1 · 2 = N · 2N on the annulus {y ∈ C : 1 ≤ |y| ≤ 2}. Because |y −
z| < |z| − 1

2 , y is inside this annulus, so this third condition follows from the assumption
that |y − z| < ε/N · 2N+1 and the mean value theorem.

9. Asymmetry of �λ

The following proposition is likely well known to experts; we include the proof for
completeness.

PROPOSITION 9.1. �
cp

2 ∩ D is invariant under reflection across the real axis and across
the imaginary axis.

Proof. The set �
cp

2 ∩ D is invariant under reflection across the real axis because Galois
conjugates come in complex conjugate pairs. Tiozzo [Tio18] showed that �

cp

2 ∩ D\S1 is
the set of all the roots in D of all power series with all coefficients in {±1}. So if z ∈ D is
a root of a power series S with coefficients in {±1}, then −z is a root of the power series
formed from S by flipping the sign of the coefficients on all terms of odd degree. Therefore,
the complex conjugate, −z, is in �

cp

2 .

However, our Algorithm 2 in the previous section can be used to show that �λ ∩ D does
not necessarily have such symmetry, which proves Theorem 1.14.

Proof of Theorem 1.14. We only need to show that there is some z ∈ �1.82 ∩ D such that
−z �∈ �1.82 ∩ D. Consider the tent map with growth rate being the leading root of

−1+ z2 − z4 + z6 − 2z7 + 3z8 − 4z9 + 3z10 − 2z11 + z12 − 2z13 + z14,

which is approximately 1.8149185987640513 and is smaller than 1.82, and hence any
Galois conjugate of this leading root must be in �1.82. Let z be the Galois conjugate near
the point −0.5840341196392905+ 0.4820600149798202i. Applying Algorithm 2 to −z

for N = 20 shows that −z �∈ �1.82.
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