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ABSTRACT: Asteroseismology is interpreted as an extension of the field 
of variable stars, and not just as the stellar analogue of helio-
seismology. The main effects of stellar mass and evolution on oscil-
lation frequencies are discussed with the help of simplified wave-
propagation diagrams. Frequency separations resulting from asymptotic 
expressions are compared with the corresponding results from numerical 
computations. The validity of asymptotic theory can be gauged in this 
way. The seismological issues of solai—like stars and Ap stars are 
discussed in some detail, and a progress report on the equation of state 
for stellar interiors is given. The review ends with a summary of 
properties and important physical problems for selected classes of 
variable stars. 

1. INTRODUCTION 

From the moment that variable stars were recognized as stellar 
pulsators, the pulsation data became an important diagnostic tool to 
test stellar models. In 'classical' variable stars often only one and 
sometimes two modes have been observed. More recently, especially with 
the observational successes of solar oscillations, there has been an 
intensified effort to find many modes also in stars. While this new 
field of multi-mode stellar variability has been called astero-
seismology, in analogy to helioseismology, we would like to understand 
asteroseismology more generally to be a method of testing stellar 
structure and evolution theory, using al 1 available pulsation 
data, and not just observed frequencies. Such a broader definition is 
important, because we will always have to deal with a small number of 
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observed modes. There is no hope to obtain the analogue of the highly 
spatially resolved data of solar oscillations; this will preclude any 
attempt to solve the inverse problem. Furthermore, the lack of spatially 
resolved data and the small amount of observed modes has also the 
following consequences: (i) mode identification (radial order n, angular 
degree I, azimuthal order m) is difficult and (ii) the basic physical 
uncertainties (e.g. convection) will probably have to be parametrized. 
Therefore it is important that all pulsation data (not just frequencies, 
but also growth rates, phases, the fact that a mode exists, and 
sometimes ceases to exist, etc.) will have to be taken into account. 

Within this broad definition asteroseismology is not a separate 
science but becomes a natural development of the field of variable 
stars. Even if there will never be the plethora of solar data, there is 
already enough material around to embarrass the theorists. This is 
manifested, for instance, in the two periods of double-mode Cepheids or 
in the observed frequency differences of Ap stars. And sometimes even 
one single period combined with other information can be too much, as is 
the case with Spica and its defunct radial mode (Shobbrook et al. 1972, 
Odell 1980). 

2. CHANGES OF PROPAGATION PROPERTIES OF OSCILLATION MODES WITH MASS AND 
EVOLUTION 

The influence of stellar mass and age on oscillation properties is best 
discussed with propagation diagrams. We adopt the asymptotic discussion 
of Deubner and Gough (1984), which itself is based on Lamb (1932) Csee 
also Christensen-Dalsgaard (1986)]. For wavelengths much shorter than 
the solar radius, normal oscillation modes can be quite accurately 
discussed using the simplified wave equation 

Ψ" + K2(r)vJ/ = 0. (2.1) 

Here, ψ = >Γρ c 2 div(<SR), ρ and c are density and sound speed of the 
equilibrium configuration, and 6R is the fluid displacement vector. 
The local wave number is given by 

« 2-<*= 2 *<e+l) 
K2(r) = + ( N 2 / w

2 - 1 ), (2.2) 

C 2 Γ 2 

with the acoustic cut-off frequency ω«= defined by 

c 2 dH 
at 2 = < 1 - 2 — ), (2.3) 

4H 2 dr 

and the Brunt-Väisälä frequency Ν by 
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Ν* = g ( 1/H - g/c2 ), (S.4) 

where H is the density scale height and g the local gravity. From the 
form of (2.1) (to which upper and lower boundary conditions must be 
added), one immediately realizes that in propagation zones necessarily 
Κ* > 0. 

Our present qualitative discussion of the influence of mass and 
evolution on oscillation frequencies aims at showing the maximum of 
effects with a minimum of curves. Here, we restrict ourselves to the 
role of N* and ^ 2 in K. For finer details we again refer the reader to 
Deubner and Gough (1984), Christensen-Dalsgaard (1984) or Gough (1985). 
With the convenient definition of the Lamb frequency 

£<£+l) 
(S*)* = c 2 , (2.5) 

r2 

we obtain the simplified necessary conditions for propagation of an 
acoustic wave, ω > ^ and «> S*. Additionally, in order to have a 
trapped standing wave, it is also necessary that in some surface layer 
fc>c becomes greater than «. In propagation zones (if the adiabatic 
exponent of the gas is 5/3 and constant) a further simplification 
follows from the fact that ω > g/c implies ω > ω,- . And finally, we 
choose the approximation of identifying (the absolute value of) g/c 
with N, which certainly gives the correct order of magnitude in 
radiative zones (but would be entirely wrong in convection zones, where 
Ν ~ 0). The advantage of this choice is that the same curves will give 
information about g modes, too. Let us now consider S x (we choose the 
representative case £ = 1) and Ν in a model of a 1 Ii« star 
(Figure 1). Due to the rather deep convection zone, Ν cannot represent 
the increase of w c close to the surface, and so the diagram does not 
show the upper turning point that is caused by the large spatial 
inhomogeneity near the surface (it will do so, however, in the example 
of a higher mass, see below). In Figure 1, S i defines the penetration 
depth of the d = 1 modes; for £ > 1 the corresponding S * curves would 
be shifted to the right. 

The ensemble of Figures 1-4 shows the principal effects of 
evolution and mass. The first effect of evolution is an increase of the 
inner 'N-mountain', caused by the growing spatial chemical inhomogeneity 
in the central regions. The inner mountain is capable eventually to 
prevent radial modes from penetrating to the center. Modes with £ > 1 
can acquire 'dual status', i.e. they become gravity modes in the core 
and remain acoustic modes in the envelope. Thus they penetrate deeper 
into the interior, while simultaneously their frequency spectrum becomes 
denser. The second effect of evolution is the decrease of the outer 
N-mountain (in our figures only visible in the 1.5 11« star). As we 
have discussed before, this decrease goes parallel with a decrease in 

and it therefore causes a smaller total number of modes.The main 
effect of mass (in the range around and slightly above 1 M«) on the 
frequency spectrum is related to the disappearance of the convective 
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Figure 1. Critical frequencies as functions of the fractional radius r/R. 
The solid line denotes the Brunt-Väisälä frequency, the dashed line the 
Lamb frequency S« for £=1. The model parameters are: hydrogen abundance 
X = 0.70, heavy-element abundance Ζ = 0.01, and mixing-length parameter 
£/H p = 1.5. Stellar age is indicated by the central hydrogen 
abundance X c. 

0 .2 Λ .6 .8 1 

r / R 
Figure 2. Same as Figure 1, but for a different stellar model. 
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Figure 3. Same as Figure 1, but for a different stellar model. 
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Figure 4. Same as Figure 1» but for a different stellar model. 
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envelope and the forming of a convective core. This has a major 

influence on g-mode propagation. 

3. SOLAR-LIKE OSCILLATIONS 

Solar high-order acoustic modes and their seismological relevance have 

been extensively discussed in the literature Crecent reviews are Brown 

et al. (1986), Deubner and Gough (1985) and Gough (1985)3. As mentioned 

in the previous section, high-order ρ modes only exist in fairly 

unevolved stars. Besides the Sun, they are observed in Ap stars [Kurtz 

(1982), Kurtz (1985)3, and there have been reports of observations in 

Procyon, <x Centauri, and € Eridani CNoyes et al. (1984), Gelly et al. 

(1986)3. Before we address the important seismological issues of these 

stars, we introduce three definitions pertaining to the structure in the 

periodogram of high-orderpulsators (given by a set of frequencies v„*). 

3.1. Terminology for Periodograms 

(i) Large Separation: 

To first order asymptotic theory it is well known that 

R 

-1 

Δ„Λ ζ 2 I (l/c) dr. 

(3.1) 

(3.2) 

(ii) Small Separation: 

2 
( 3 . 3 ) 

Note that the form of (3.3) differs from the one usually considered in 

solar applications, which is v„* - V n - i . t - c e (see, for instance, Gough 

1985). The reason is that in stellar periodograms only a pair of 

two adjacent ^-values is know, in contrast to the large number of 

different observed solar ^-values. The ratio between small and 

large separation is, to second-order asymptotic theory, given by 

(Tassoul 1980) 

£+1 

2 π 2 ν „ * 

de dr 

dr r 

(3.4) 
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Figure S. Large frequency separations as functions of oscillation 
frequency. Solid» dotted, and dashed lines correspond to t = 0,1,2. 
Stellar model-parameters and indication of age are as in Figure 1. 
The asymptotic value [equation (3.2)1 for this model is 0.148 mHz 
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Figure 6. Same as Figure 5, but for a different stellar model. The 
asymptotic value is 0.107 mHz. 
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Figure 7 . Normalized small frequency separations (in units of MHz) 
D„.* = 2w«»„*<<»„ .* .» - *„*> /<»„ .» .« - v „ e ) - l/2)/<* + 1) as 
functions of oscillation frequency. The solid line corresponds to 
2 = 0 , the dashed line to ( = 1. The asymptotic value of D n . « 
Csee equation (3.4)1 for this model is -2.99 μΗζ. 
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Figure 8. Same as Figure 7 , but for a different stellar model. The 
asymptotic value for this model is -3.14 μΗζ. 
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(iii) Fine Structure: By fine structure we understand the 
m dependence (m = azimuthal order) of frequencies due to symmetry 
breaking effects such as rotation or magnetic fields. 

Since sound speed increases steeply from the surface to the center 
of a star, Δ„Λ probes more the surface regions and f n« more the central 
regions. An important diagnostic tool in the form of Δ- 6 diagrams was 
introduced by Christensen-Dalsgaard (1984). For examples, in which Δ and 
6 are shown as functions of mass and age, see Christensen-Dalsgaard 
(1986; these proceedings). Such diagrams are of great help in 
interpreting asteroseismological data. Since in stellar models the 
asymptotic expressions (3.2) and (3.4) are much simpler to handle than 
full-fledged numerical frequency calculations, we need to have an idea 
about their validity. Figures 5 to 8 show examples of small and large 
separations for two typical stellar models, and the corresponding 
asymptotic values are given in the captions. 

3.2. Procyon, α Centauri, and € Eridani 

Gelly et al. (1986) have reported ρ modes in Procyon and α Centauri. 
Only the large separation has been observed. Noyes et al. (1984) have 
reported three p-mode frequencies and the large separation for 
€ Eridani. To illustrate the potential of such observations for testing 
stellar structure and evolution, consider the recent controversial 
theoretical articles dealing with Noyes et al.'s (1984) observations. 
While Guenther and Démarque (1986) have concluded that a model of a very 
old star (z 12 Gyr) fits the data best (though they are aware of 
indications of stellar activity that speak against such a high age), 
Soderblom and Däppen (1987 and these proceedings) conclude that a model 
of a very young star (< lGyr) is equally well suited, provided that one 
accepts the unusually small value of the mixing-length parameter of 
£/H p ζ 0.45. More and better observed frequencies should 
help to resolve this issue. 

3.3. Ap stars 

More extensive data - and therefore even greater puzzles for 
theorists - are known for the class of Ap stars, for which high order 
ρ modes have been observed (Kurtz 1982,1985). 

Table 1. The observed frequencies and amplitudes of HD24712 
(from Kurtz 1985) 

f(mHz) 
±0.000004 

A(mmag) 
±0.03 

f 1 
f2 
f3 

2.720907 
2.652927 
2.687404 

1.16 
1.05 
0.63 
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Table 1 shows the frequency spectrum of HD24712 (=HR1217) reported in 

Kurtz and Seeman (1983). They have interpreted the spectrum in terms of 

a large separation for £=0 <fl - f3 and f3 - f2 are both about 

34 MHz). However,this explanation runs into difficulties, first, because 

the corresponding radial order would be n£80, i.e. four times higher 

than in the Sun, and second, because there is no main sequence model 

yielding the correct integral (3.2). Shibahashi and Saio (1984) 

constructed models of evolved stars that indeed explain the large 

separation, but it turns out that, in accordance with what we have said 

in section 2, for these evolved models at these frequencies no acoustic 

mode can be trapped. Therefore Shibahashi and Saio (1984) proposed a 

modified T(r)-relation that could push the critical acoustic frequency 

upward and thus allow trapped modes at the observed frequency. Magnetic 

field and chemical inhomogeneities were conjectured to be the cause of 

this modification. Gough (private communication) considered that the 

modes might exist in a nonadiabatic treatment. Imposing outgoing-wave 

boundary conditions, he found enough driving (kappa mechanism) to 

compensate amply for mechanical energy losses. 

Besides these problems with the large separations, there is 

also one associated with the small separation. The numerical value 

of the small separation is best fitted with the interpretation £=0,1. 

However, since it is observed that the peaks are modulated by the 

stellar rotation (note the amplitudes in Table 1), one is forced to 

adopt (at least) a 1=1,2 interpretation. Then, however, the small 

separation is too small to be understood [note the factor (£+1) in 

equation (3.4)3. 

The quality of the observational material on Ap stars is excellent: 

the fine structure of the modes is also visible (Kurtz 1982). To give an 

idea, we remark that typical periods of modes are between 6 and 12 

minutes, and a typical rotation period is about 20 days. The frequency 

splitting of a (2£+l)-times degenerate multiplet (radial order n, 

angular degree D is, according to Ledoux (1951) 

^ n « f f l = (l-C„*)mQ + (3.5) 

Here, C„* depends on I and η and the stellar structure, but 

not on the azimuthal order m. Uniform rotation with frequency Ω is 

assumed in (3.5). Kurtz's (1982) data suggest that the frequencies in 

the multiplets are precisely equidistant with separation Ω and thus not 

compatible with (3.5). For this reason he proposed the so-called 

'obiique-pulsatoi—model', which assumes that we observe instead of 

(21+1) modes [with frequencies given by equation (3.1)3 just one 

with a single azimuthal quantum number m, that refers to the magnetic 

field axis and not to the rotation axis. The frequency splitting in the 

nonrotating observer's frame is then explained as a pure kinematic 

effect of the rotating pulsator. [To understand this note that the 

signal on earth is modulated by a periodic function with frequency Ω; 

thus in Fourier space a multiplet with separation Ω appears; the 

multiplet has the finite number of (2£+l) terms due to the invariance 

properties of the vector space of spherical harmonic functions of 
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degree I ; see Kurtz (1982) for a discussion of explicit examples for 

the cases £=1,2.3 Despite an undeniable beauty of this explanation there 

are problems with it. In the presence of rotation, modes having the 

quantum number m with respect to the magnetic field axis are not pure 

eigenstates and there would be inevitably mixing with the other modes in 

the multiplets (all that of course under the assumption that the 

deviations from sphericity are small enough so that the quantum number I 

still makes sense). The destruction rate of a mode would be of order OC. 
Without further justification Kurtz (1982) thus assumes Cr ,* =0. 
Beyond this ad-hoc postulate two solutions have been proposed. Dolez and 

Gough (1982) argued that nonadiabatic effects might cause excitation and 

de-excitation of a given mode with the rate |τΙ >> ftC, thus not leaving 

enough time for mixing. Dziembowski and Goode (1985) carried out a 

perturbative analysis of modes in the presence of magnetic fields and 

rotation, thus allowing C „ * jz 0. They showed that this 'generalized 

obiique-pulsator model 7 essentially has the properties of Kurtz's (1982) 

model, if the effect of the magnetic field on splitting dominates that 

of rotation. Kurtz and Shibahashi (1986) have applied this model to the 

star HR3631. The main problem with this approach is that the field is 

too strong to be considered as small perturbation. Thus spherical 

harmonic functions can become inappropriate, and the large and small 

frequency separations (3.1) and (3.3) will have to be defined 

differently (Goode and Dziembowski, work in progress). 

3.4. The Problem of the Equation of State 

An important physical issue to be addressed by solar and stellar 

oscillations is the equation of state. The principal open problem is the 

number of excited states of hydrogen and helium in the zones of partial 

ionization. While for many astrophysical applications simple equation-of-

state recipes can be sufficient, it has been shown (Däppen 1987) that 

for finer helioseismological applications (e.g. helium abundance 

determination) such simple formalisms are not adequate. In contrast to 

various other improvements over the simple Saha equation, about which no 

disagreement exist, there are widely divergent opinions on the internal 

partition function of bound systems. There has been a recent controversy 

about the so-called Planck-Larkin partition function (Rouse 1983, 

Ebeling et al. 1985). The Planck-Larkin partition function essentially 

limits the number of excited states to those having a binding energy 

> kT. Optical hydrogen spectra, however, show more lines than predicted 

by the Planck-Larkin partition function (Däppen et al. 1987). Rogers 

(1986) explains this fact by allowing resonances that are not counted in 

the partition function but could be seen in optical spectra. Thus the 

Planck-Larkin controversy cannot be resolved with optical experiments, 

but thermodynamical properties will have to be known. Stellar models 

with and without Planck-Larkin partition function will have to be 

compared. While thermodynamical quantities based on the Planck-Larkin 

partition function will soon become available (Rogers, private 

communication), an advanced and very smooth version of a more 

conventional equation of state has been developed in the framework of an 
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ongoing opacity recomputation (Hummer and Mihalas 1 9 8 7 , Mihalas et al. 
1 9 8 7 , Däppen et al. 1 9 8 7 ) . If observational constraints on the partition 

functions can be obtained, helio- and asteroseismology could answer this 

question from microphysics. 

4 . 'CLASSICAL' VARIABLE STARS 

This section is by no means thought to be a thorough or systematic 

introduction to the field of variable stars. Its only purpose is to list 

very briefly some classes of variable stars with their most important 

properties. In the spirit of our unifying view, we merely hope to bridge 

the gap between the (already) 'conventional' asteroseismology and the 

time-honored subject of variable stars. 

4 . 1 . β Cepheids and 6 Scuti stars 

β Cepheids: 

Masses: 

Luminosity classes: 

Log Tm-τψ 
Periods: 

Evolutionary Status: 

Modes: 

Driving: 

1 0 - 2 0 M « 
IV - V 

4 . 3 - 4 . 4 
0 . 1 - 0 . 3 days 
Main Sequence or Early Post-Main Sequence 

radial and nonradial: p 0 or pi or p e 

unknown 

6 Scuti stars: 

Masses: 

Luminosity classes: 

Log T m „ 
Periods: 

Evolutionary Status: 

Modes: 

Driving: 

1 . 4 - a . o M» 
V - III 

3 . 8 5 - 3 . 9 5 
0 . 0 8 - 0 . 3 days 
Main Sequence or Early Post-Main Sequence 

radial and nonradial: p 0 - p* 

(often po + p» + pe or p 0 + pe) 

kappa mechanism 

There have been no serious attempts to do seismology for S Scutis or 
d Cepheids despite the fact that for some of these objects I values have 

been assigned by means of numerical simulation of line profile changes 

(see Smith 1 9 8 5 and references therein). The problem of theoretical 

diagnostics is not easy, because of the complexity of the frequency 

spectrum of evolved stars (see section 2 ) . If, however, in the future 
more frequencies will be observed, they will give the potential to 

determine the Ν profile in the interior and thus perhaps answer the 

question of mixing. 
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4.2. Population I Cepheids and RR Lyrae stars 

Cepheids: 

Masses: 

Luminosity class: 

Log T .rr 

Periods: 

Evolutionary Status: 

Modes: 

Driving: 

4 - 20 Μ φ 

I 

3.68 - 3.82 

1 - 5 0 days 

central helium burning 

only radial: p 0 or pi or, perhaps, p c 

(13 stars with p 0 and pi) 

kappa mechanism 

RR Lyrae stars: 

Masses: 

Luminosity class: 

Log 1„ΨΨ 

Periods: 

Evolutionary Status: 

Modes: 

0.55 - 0.65 M«, 

Ill 

3.72 - 3.85 

0.4 - 0.8 days 

central helium burning 

only radial: p 0 or p& or, perhaps, pi 

(13 stars with p 0 and p%) 

Cepheids and RR Lyrae stars are highly evolved stars, and therefore they 

present an opportunity to test the theory of advanced stellar evolution 

(with the mass-loss problem). Since Cepheids are used for distance 

calibrations, it is crucial to have independent ways to determine their 

absolute luminosity. RR Lyrae stars are among the oldest stars in the 

universe, and it is of great importance to know their age and chemical 

composition precisely. 

Although even one pulsation period can give interesting 

information, far more constraints on stellar structure and evolution are 

obtained from multiperiodic objects Csee Cox (1980, 1982) for 

comprehensive reviews; Dziembowski (1984) for a brief introduction]. The 

ratio of two observed periods has a high diagnostic value, as was first 

recognized by Peterson (1973). Multiperiodic Cepheids and RR Lyrae stars 

also allow to study nonlinear phenomena, which in turn can give 

additional diagnostic insight. Dziembowski and Kovàcz (1984) suggest 

that double-mode Cepheids and RR Lyrae stars could involve 2:1 resonance 

phenomena between one of the observed modes and an unobserved third 

mode. Thus three periods would be known, if the interpretation 

could be confirmed. However, a systematic search for such resonances in 

RR-Lyrae-star models showed that difficulties remain (Kovâcζ 1985). 

Moreover, Buch1er and Kovàcz (1986) showed that it is possible to 

explain double-mode pulsation without a three-mode resonance. Another 

interesting diagnostic potential could reside in the observed periodic 

amplitude modulation of RR Lyrae stars (Moskalik 1985). 
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