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Abstract

In this paper, we characterize quadratic number fields possessing unique factorization in terms of the
power cancellation property of torsion-free rank-two abelian groups, in terms of6-unique decomposition,
in terms of a pair of point set topological properties of Eilenberg–Mac Lane spaces, and in terms of the
sequence of rational primes. We give a complete set of topological invariants of abelian groups, we
characterize those abelian groups that have the power cancellation property in the category of abelian
groups, and we characterize those abelian groups that have 6-unique decomposition. Our methods can
be used to characterize any direct sum decomposition property of an abelian group.

2000 Mathematics subject classification: primary 20K99; secondary 16K99.

Keywords and phrases: abelian groups, point set topological spaces, homology, homotopy, rings and
modules, categories, functors.

1. Introduction

Our references for abelian group theory are [1, 6, 10, 11] and our reference for
topology is [12]. The main results of this paper are on algebraic problems, so we
use as little topology as possible.

Let G be an abelian group. Then G has the power cancellation property if for each
integer n > 0 and abelian group H , Gn ∼= Hn

⇒ G ∼= H . We say that G has6-unique
decomposition if for each integer n > 0, there is exactly one direct sum decomposition
of Gn up to the order of the indecomposable direct summands and the isomorphism
classes of the indecomposable direct summands.

Let KAb be the category of K (A, 1)-spaces where A ranges over abelian groups A.
Let ∼ denote is homotopic to. Let Y ∈KAb. We say that Y is K-indecomposable if
given U, V ∈KAb such that Y ∼U × V , then U or V contracts to a point. We say
that Y has a unique finite Cartesian K-decomposition if:

(1) Y =
∏

i∈I Ui for some finite set {Ui | i ∈ I} ⊂KAb of K -indecomposable
spaces; and

(2) Y =
∏

j∈J V j for some finite set {V j | j ∈ J } ⊂KAb of K -indecomposable
spaces, then there is a bijection6 : I −→ J such that Ui ∼ V6(i) for each i ∈ I .
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39 T. G. Faticoni [2]

The topological space Y has the power cancellation property in KAb if for each
integer n > 0 and topological space Z ∈KAb, Y n

∼ Zn
⇒ Y ∼ Z . We say that Y has

a 6-unique decomposition in KAb if for each integer n > 0, Y n has a unique finite
Cartesian K -decomposition. These direct sum properties appear surprisingly in the
study of the unique factorization problem in algebraic number fields.

The sequence {L(p)h(G(p)) | rational primes p} is asymptotically equal to the
sequence of rational primes. In particular, let k be a quadratic number field, let
E be the ring of algebraic integers in k, and for each rational prime p let E(p)=
Z+ pE . Let G(p) be a reduced torsion-free rank-two abelian group such that
End(G(p))∼= E(p). These groups exist by Butler’s theorem [6, Theorem I.2.6]. Let
L(p)= card(u(E)/u(E(p))) where u(R) is the groups of units in the ring R. For
an abelian group H let h(H) be the number of isomorphism classes of groups L
that are locally isomorphic to H . Sequences sn and tn are asymptotically equal if
limn→∞ sn/tn = 1.

The main theorem of this paper is as follows.

THEOREM 1.1. Let k be a quadratic number field. The following are equivalent.

(1) The quadratic number field k has unique factorization.
(2) The sequence {L(p)h(G(p)) | rational primes p} is asymptotically equal to the

sequence of rational primes.
(3) Each strongly indecomposable reduced torsion-free rank-two abelian group G

such that End(G)∼= E has the power cancellation property.
(4) Some strongly indecomposable reduced torsion-free rank-two abelian group G

such that End(G)∼= E has the power cancellation property.
(5) Each strongly indecomposable reduced torsion-free rank-two abelian group G

such that End(G)∼= E has 6-unique decomposition.
(6) Some strongly indecomposable reduced torsion-free rank-two abelian group G

such that End(G)∼= E has 6-unique decomposition.
(7) Given a strongly indecomposable reduced torsion-free rank-two abelian group G

such that End(G)∼= E, each K (G, 1)-space has the power cancellation property
in KAb.

(8) For some strongly indecomposable reduced torsion-free rank-two abelian group
G such that End(G)∼= E, each K (G, 1)-space has the power cancellation
property in KAb.

(9) Given a strongly indecomposable reduced torsion-free rank-two abelian group
G such that End(G)∼= E, each K (G, 1)-space has 6-unique decomposition in
KAb.

(10) For some strongly indecomposable reduced torsion-free rank-two abelian group
G such that End(G)∼= E, each K (G, 1)-space has 6-unique decomposition in
KAb.

Consider some of the more popular consequences of the properties used above.
In Theorem 8.7, for a given integer h > 0, we characterize those algebraic number
fields k with class number h(k)= h. Determining the class number of an algebraic
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[3] Diagrams of an abelian group 40

number field is a problem that goes back to Gauss. Specifically, one wishes to write
a list of the quadratic number fields k such that h(k)= 1 or, equivalently, such that k
has unique factorization. See Theorem 1.1(1).

Theorem 1.1(2) involves a sequence {sp | primes p} of integers that is
asymptotically equal to the sequence of rational primes. Thus, {sp | primes p}
is related to the prime number theorem, although we do not explore the relationship in
this paper.

Theorem 1.1(3) and (5) are about direct sum decompositions of strongly
indecomposable torsion-free rank-two abelian groups. These properties, called power
cancellation and6-unique decomposition, will be hard because they are related to hard
problems in number theory. We also apply our methods to the study of more general
direct sum decompositions of abelian groups. Consequently, we give a complete set
of topological invariants for abelian groups up to isomorphism, and we show how one
would characterize any direct sum property of an abelian group.

Theorem 1.1(7) and (9) are about the classic K (G, 1)-spaces from pointset
topology. We give decomposition properties of K (G, 1)-spaces for which End(G)∼=
E provide a topological characterization of the unique factorization property in the
quadratic number field k.

To begin our proof of Theorem 1.1 we construct commutative diagrams of
categories and category equivalences. With these diagrams we show that abelian
groups are at the center of several areas of mathematics, including ring theory, module
theory, homology, and point set topology. The first diagram is Figure 1. Opposing
arrows denote inverse category equivalences.

Until we reach Section 8, G denotes a fixed abelian group, A and Q denote variable
abelian groups, and

P(G) = {abelian groups Q | Q ⊕ Q′ ∼=⊕I G for some set I
and some abelian group Q′}.

Let X = K (G, 1) be a fixed Eilenberg–Mac Lane space [12]. Let Y , U , and V denote
topological spaces, and let f denote a continuous map or a sequence of continuous
maps. These are abstract topological spaces, not linear topologies, on groups. For
a space X , π1(X) is the fundamental group of X ,

∏
i∈I Xß is a Cartesian product

of the spaces {X i | i ∈ I}, X ∼ Y means that X is homotopic to Y , f ∼ g denotes
homotopic continuous maps f and g, [ f ] denotes the homotopy equivalence class
of f , and f ∗ = π1( f ).

2. G-plexes and G-coplexes

We begin our discussion in earnest. Our discussion of G-plexes and G-coplexes
comes from [4, 6, 7]. A G-plex is a complex

Q= · · · −−−−−→ Qk+1
δk+1
−−−−−→ Qk

δk
−−−−−→ · · ·

δ1
−−−−−→ Q0 (2.1)
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FIGURE 1.

of abelian group homomorphisms δk such that:

(1) for each integer k ≥ 0, Qk ∈ P(G); and
(2) given an integer k > 0 and a map φ : G −→ Qk such that δkφ = 0, there is a map

ψ : G −→ Qk+1 such that δk+1ψ = φ as in the following commutative diagram:

G
∃ψ

||xx
xx

xx
xx

x
∀φ

��

0

""FF
FF

FF
FF

F

Qk+1
δk+1

// Qk
δk

// Qk−1

Let G-Plex denote the category of G-plexes whose maps are homotopy equivalence
classes [ f ] of chain maps f :Q−→Q′ between G-plexes. (The homotopy of chain
maps between algebraic complexes is the classic version found in [14].)
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Let H0(·) denote the zeroth homology functor acting on complexes of abelian
groups, and let

hG(·)= H0 ◦ Hom(G, ·) : G-Plex−−−−−→Mod-End(G).

We note that hG(Q)= coker Hom(G, δ1) is an object in Mod-End(G).
Let us say that G is self-small if for each cardinal c the natural map

⊕cHom(G, G)−→ Hom(G,⊕cG)

is an isomorphism of right End(G)-modules. Finitely generated modules are self-
small *-modules and tilting modules are self-small lattices over a Z-order in a finite-
dimensional Q-algebra are self-small and torsion-free finite rank modules over an
integral domain are self-small. The Arnold–Lady–Murley theorem [2, 7] states that G
is self-small if and only if the functor

Hom(G, ·) : P(G)−→ P(End(G))

is a category equivalence. From [7, Theorem 2.1.11] we see that if G is self-small,
then the functor

hG(·) : G-Plex−→Mod-End(G)

is a category equivalence. In this case, the inverse of hG(·) is a functor

tG(·) :Mod-End(G)−→ G-Plex

defined as follows. For each M ∈Mod-End(G) fix a projective resolution P(M)
of M . Given a map f : M→ M ′ in Mod-End(G) lift f to a chain map f #

: P(M)
−→ P(M ′). Then the assignments

tG(M)= P(M)⊗End(G) G

tG( f )= f #
⊗End(G) G

define tG(·) :Mod-End(G)−→ G-Plex.
We dualize the category G-Plex and the functor hG(·). Let coP(G)= {abelian

groups W |W ⊕W ′ =
∏

c G for some cardinal c and some group W ′}. A G-coplex
is a complex

W =W0
σ1

−−−−−→ · · ·
σk

−−−−−→Wk
σk+1
−−−−−→Wk+1 −−−−−→ · · ·

of abelian groups such that:

(1) for each integer k ≥ 0, Wk ∈ coP(G); and
(2) given an integer k > 0, and given a map φ :Wk −→ G such that φσk = 0

then there is a map ψ :Wk+1 −→ G such that ψσk+1 = φ as in the following
commutative diagram:

Wk−1

0 ""FF
FF

FF
FF

F
σk // Wk

∀φ

��

σk+1 // Wk+1

∃ψ||xx
xx

xx
xx

x

G

https://doi.org/10.1017/S0004972708001238 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972708001238
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Let G-coPlex denote the category whose objects are the G-coplexes and whose maps
are the homotopy equivalence classes [ f ] of chain maps f :W −→W ′ of G-coplexes.

We wish to dualize and characterize completely the left modules over the
endomorphism ring as in [4]. To do this we must make a set theoretic assumption.

The dual to the Arnold–Lady–Murley theorem is a result due to Huber and
Warfield [13]. We say that G is self-slender if for each nonmeasurable cardinal c
(see [3, 10, 11]), the natural map

⊕cHom(G, G)−→ Hom
(∏

c
G, G

)
is an isomorphism. Since we wish to find the most complete dualization of the Arnold–
Lady–Murley theorem we assume the axiom.

(µ) Measurable cardinals do not exist.

This axiom is not so bold as it is known [3] that measurable cardinals do not exist
under Gödel’s constructibility hypothesis V = L .

For our purposes the Huber–Warfield theorem [13] states that if (µ) is true and if G
is self-slender, then the point evaluation homomorphism

9W :W −→ Hom(HomEnd(G)(W, G), G)

is an isomorphism for each W ∈ coP(G). This is the last we have to say about set
theory except to state that we are assuming the (µ) holds.

Let
hG(·)= H0 ◦ Hom(·, G) : G-coPlex−−−−−→ End(G)-Mod

be defined by hG(W)= coker Hom(σ1, G). Then by [4], if (µ) is true and if G is
self-slender, then hG(·) is a duality.

Consequently, we have characterized Mod-End(G) and End(G)-Mod in terms of
categories G-Plex and G-coPlex. In G-Plex, G is a small projective generator [7, 9].
In G-coPlex, G is a slender injective cogenerator [4, 7].

3. Some algebraic topology

Our reference for topological issues is [12]. We have fixed an abelian group G, and
a point set topological space X = K (G, 1). For topological spaces U and V let

HomC(U, V )= {[ f ] | f :U −→ V is a continuous map}

and let EndC(X)= HomC(X, X). Our choice of X possesses a lifting property.

THEOREM 3.1 [12, Proposition 1B.9]. Let U = K (A, 1) and V = K (B, 1) for some
abelian groups A and B. A group homomorphism φ : A −→ B is induced by a
continuous map f :U −→ V that is unique up to homotopy equivalence.
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[7] Diagrams of an abelian group 44

COROLLARY 3.2. Let G be an abelian group and let X = K (G, 1).

(1) Then EndC(X) possesses a natural ring structure. The natural map ρ :

EndC(X)−→ End(G) taking [ f ] to f ∗ is a ring isomorphism.
(2) Let U = K (A, 1) for some abelian group A. Then HomC(X,U ) is a right

EndC(X)-module. The natural map α : HomC(X,U )−→ Hom(G, A) is a right
EndC(X)-module isomorphism.

(3) Let U = K (A, 1) for some abelian group A. Then HomC(U, X) is a left
EndC(X)-module. The natural map β : HomC(U, X)−→ Hom(A, G) is an
isomorphism of left EndC(X)-modules.

We identify EndC(X) and End(G) via the isomorphism in Corollary 3.2(a).
We are motivated by the category G-Plex and the category equivalence hG(·)

from [9] defined above to study EndC(X) in a similar manner.
An X-plex is a complex

C = · · · −−−−−→ Xk+1
λk+1
−−−−−→ Xk

λk
−−−−−→ · · ·

λ1
−−−−−→ X0 (3.1)

of continuous maps λk such that:

(1) for each integer k ≥ 0, Xk is a K (Qk, 1) space for some Qk ∈ P(G);
(2) for each integer k ≥ 0, λkλk+1 is a null homotopic map;
(3) for each integer k > 0 and for each continuous map f : X −→ Xk such that λk f

is a null homotopic map, there is a map g : X −→ Xk+1 such that f ∼ λk+1g as
in the following diagram:

X
∃g

||yyyyyyyy
∀ f

��

null homotopic map

""EEEEEEEE

Xk+1
λk+1

// Xk
λk

// Xk−1

In this context, commutativity of the diagram means that λk+1g ∼ f . A ladder map
f : C −→ C′ is a sequence f = (. . . , f2, f1, f0) of continuous maps such that

fk−1λk ∼ λ
′

k fk for each integer k > 0.

The way to remember this is by the following familiar commutative diagram:

· · ·
λk+1 // Xk

fk

��

λk // Xk−1

fk−1

��

λk−1 // · · ·

· · ·
λ′k+1

// X ′k
λ′k

// X ′k−1
λ′k−1

// · · ·

We define the homotopy equivalence of ladder maps between X -plexes. Let
f and g : C −→ C′ be ladder maps. As a∗ = b∗ whenever a ∼ b, we see that
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f ∗ = ( f ∗k | k ≥ 1) : π1(C)−→ π1(C′) is a chain map between complexes of abelian
groups. The classic homotopy equivalence class, [ f ∗], is then defined. We say that
f is homotopic to g, and we write f ∼ g, if [ f ∗] = [g∗]. It follows that is homotopic
to is an equivalence relation on the set of ladder maps between X -plexes C and C′.

Let X -Plex denote the category whose objects are X -plexes, and whose maps
[ f ] : C −→ C′ are the homotopy equivalence classes of ladder maps f : C −→ C′.

LEMMA 3.3. Let G be an abelian group and let X = K (G, 1). Then π1(·) lifts to a
functor

π̂1(·) : X -Plex−−−−−→ G-Plex

defined by

π̂1(C)= · · · −−−−−→ π1(Xk+1)
λ∗k+1
−−−−−→ π1(Xk)

λ∗k
−−−−−→ · · ·

λ∗1
−−−−−→ πk(X0) (3.2)

for X-plexes C and
π̂1([ f ])= [(. . . , f ∗2 , f ∗1 , f ∗0 )]

for ladder maps f = (. . . , f2, f1, f0) : C −→ C′ in X-plex.

PROOF. It is readily shown that π̂1 is well defined, thus proving the lemma. 2

THEOREM 3.4. Let G be an abelian group and let X = K (G, 1). Then

π̂1(·) : X -Plex−−−−−→ G-Plex

is a category equivalence.

PROOF. Let Q be a G-plex with terms Qk and connecting maps δk . For each integer
k ≥ 0 let Xk = K (Qk, 1), so that π1(Xk)= Qk ∈ P(G). Since Xk = K (Qk, 1),
Theorem 3.1 states that for integers k > 0 there are continuous maps λk : Xk −→ Xk−1
such that λ∗k = δk . Since

0= δkδk+1 = (λkλk+1)
∗

for each integer k ≥ 1, and since the lifting is unique up to homotopy equivalence,
λkλk+1 is null homotopic. We have constructed a complex C as given in (3.1) such
that π1(C)=Q.

Let k > 0 be an integer and let f : X −→ Xk be a continuous map such that λk f
is null homotopic. Then λ∗k f ∗ = (λk f )∗ = 0 and f ∗ : G −→ π1(Xk)= Qk . By the
lifting property of G over the G-plex Q, there is a map ψ : G −→ Qk+1 such that
f ∗ = δk+1ψ = λ

∗

k+1ψ . Theorem 3.1 states that ψ = g∗ for some continuous map
g : X −→ Xk+1. Then f ∗ = λ∗k+1g∗ = (λk+1g)∗. By Theorem 3.1 these liftings are
unique up to homotopy equivalence, so f ∼ λk+1g. Thus, C is an X -plex such that
π̂1(C)=Q.

If π̂1([ f ])= π̂1([g]) for some ladder maps f, g in X -Plex, then [ f ∗] = [g∗]
which by definition implies that f ∼ g. Therefore, π̂1(·) : X -Plex−→ G-Plex is a
faithful functor.

https://doi.org/10.1017/S0004972708001238 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972708001238


[9] Diagrams of an abelian group 46

Let φ = (φk | k ≥ 0) :Q−→Q′ be a chain map between G-plexes. By the above
construction, there are complexes C and C′ such that π1(C)=Q and π1(C′)=Q′. By
Theorem 3.1 for each integer k ≥ 0 there is a map gk , unique up to homotopy, such that
g∗k = φk . By the fact that φ : π1(C)−→ π1(C′) is a chain map g∗kλ

∗

k+1 = λ
′
∗

k+1g∗k+1.
Again the uniqueness of the lifting in Theorem 3.1 implies that gkλk+1 ∼ λ

′

k+1gk+1.
We have constructed the ladder map g = (gk | k ≥ 0) : C −→ C′ such that g∗ = φ.
Thus, π̂1(·) : X -Plex−→ G-Plex is a full functor and, therefore, π̂1(·) : X -Plex
−→ G-Plex is a category equivalence. 2

COROLLARY 3.5. The inverse of π̂1 : X -Plex−→ G-Plex is the functor

K̂ (·) : G-Plex−→ X -Plex

given by K̂ (A)= K (A, 1).

PROOF. The construction of K (A, 1) is functorial in A by [12] so K̂ (·) is a functor.
By its construction π1(K (A, 1))∼= A so, by Theorem 3.4, K̂ (·) is the inverse of π̂1.
This proves the corollary. 2

We dualize the above discussion. An X-coplex is a complex

U =U0
µ1

−−−−−→ · · ·
µk

−−−−−→Uk
µk+1
−−−−−→Uk+1 −−−−−→ · · ·

such that:

(1) for each integer k ≥ 0, Uk is a K (Wk, 1) space for some Wk ∈ coP(G);
(2) for each k ≥ 0, µk+1µk is a null homotopic map; and
(3) for a given integer k > 0, and given a map f :Uk −→ X such that f µk is null

homotopic, then there is a map g :Uk+1 −→ X such that gµk+1 ∼ f as in the
accompanying commutative diagram:

Uk−1

null homotopic map ""EEEEEEEE
µk // Uk

∀ f
��

µk+1 // Uk+1

∃g||yyyyyyyy

X

Let X -coPlex denote the category whose objects are the X -coplexes and whose maps
are the homotopy equivalence classes [ f ] of ladder maps f : U −→ U ′.

Dual to Theorem 3.4 is Theorem 3.6.

THEOREM 3.6. Let G be an abelian group and let X = K (G, 1). Then

π̂∗1 (·) : X -coPlex−−−−−→ G-coPlex

is a category equivalence with inverse

K̂ ∗(·) : G-coPlex−−−−−→ X -coPlex

given by K̂ ∗(·)= K (·, 1).

PROOF. Dualize the proof of Theorem 3.4. 2
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FIGURE 2.

4. Commutative triangles

We use the category equivalences as a basis for the construction of the diagrams
in Figures 2, 1, and 7. These diagrams provide a functorial connection between the
topological structure of X , the homological structure of G, and the modules over
End(G).

Let H0 denote the zeroth homology functor, and define a functor

hX (·) : X -Plex−→Mod-EndC(X)

by
hX (C)= H0 ◦ HomC(X, C)

for X -plexes C and
hX ([ f ])= H0 ◦ HomC(X, f ).

THEOREM 4.1. Let G be an abelian group and let X = K (G, 1). There is a
commutative triangle (see Figure 2) in which opposing arrows denote inverse category
equivalences.

PROOF. Let C ∈ X -Plex. The terms Xk in C satisfy π̂1(Xk)∼= Qk for some Qk ∈

P(G). Also the maps λk : Xk −→ Xk−1 in C satisfy π̂1(λk)= δk : Qk −→ Qk−1. So,
by Corollary 3.2,

hG ◦ π̂1(λk)= H0 ◦ Hom(G, λ∗k)∼= H0 ◦ HomC(X, λk)= hX (λk).

Thus, hX (C)∼= hG ◦ π̂1(C). Similarly, hX ([ f ])= hG ◦ π̂1([ f ]), for ladder maps f , so
the triangle commutes. 2

THEOREM 4.2. Let G be a self-small abelian group and let X = K (G, 1). There is
a commutative triangle (see Figure 3) in which opposing arrows represent inverse
functors.

PROOF. The functors π̂1(·) and K̂ (·) are inverse functors by Theorem 3.4. The
functors hG(·) and tG(·) are inverse functors by [7, Theorem 2.1.12]. Also, by
Theorem 4.1, hX (·) is a category equivalence. This completes the proof. 2
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FIGURE 3.

FIGURE 4.

By dualizing the above arguments one can prove the following results. Define
a functor

hX (·) : X -coPlex−→ End(G)-Mod

by

hX (W)= H0 ◦ HomC(W, X)

hX ([ f ])= H0 ◦ HomC( f, X).

THEOREM 4.3. Let G be an abelian group and let X = K (G, 1). There is a
commutative diagram (Figure 4) in which opposing arrows represent inverse dualities.

THEOREM 4.4. Assume that measurable cardinals do not exist, let G be a self-slender
abelian group, and let X = K (G, 1). There is a commutative diagram (Figure 5) in
which opposing arrows represent inverse dualities.

REMARK 4.5. It is worth noting that the vertices of these triangles represent
categories from ring theory, abelian groups, homology theory, and topology.

REMARK 4.6. A right R-module G is self-small if it is finitely generated as an R-
module or if its additive structure (G,+) is a self-small abelian group. At the time of
writing the only known examples of self-slender right R-modules G are those G whose
additive structure (G,+) is a self-slender abelian group. The torsion-free abelian
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FIGURE 5.

group G is self-slender if and only if G does not contain copies of Q,
∏

N Z, or the
p-adic integers Ẑp for some rational prime p (see [10] and [11, Theorem 95.3]).

5. Three diamonds

The goal of this section is to construct the diagram shown in Figure 1.
We have constructed the commutative triangles at the top and bottom of Figure 1 as

Figures 2 and 4.
The objects in the category SAb are the sequences S = (Ak | k > 0) of

abelian groups and the maps φ : S −→ S′ in SAb are the sequences φ = (φk | k > 0)
of abelian group homomorphisms φk : Ak −→ A′k for each integer k > 0.

Let

Tor∗E (·, G)= (Tork
End(G)(·, G) | integers k > 0)

Ext∗E (·, G)= (ExtkEnd(G)(·, G) | integers k > 0).

The functors Tor∗E (·, G) and Ext∗E (·, G) have image in SAb.
Define the functors U and U∗ in the only manner possible that makes the diagram

in Figure 1 commute:

U(·)= Tor∗E (hX (·), G) : X -Plex−→ SAb (5.1)

U∗(·)= Ext∗E (h
X (·), G) : X -coPlex−→ SAb.

Now to define the middle diamond in Figure 1.
The objects in the category SKAb are sequences (Uk | integers k > 0) where for

each integer k > 0 there is an abelian group Ak such that Uk = K (Ak, 1). Maps in
SKAb are sequences

([ fk] | integers k > 0) : (Uk | integers k > 0)−→ (Vk | integers k > 0)

where for each integer k > 0, [ fk] is the homotopy equivalence class of a continuous
map fk :Uk −→ Vk .
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The fundamental group functor π1(·) induces a functor

51(·) : SKAb−→ SAb

such that 51(Uk | integers k > 0)= (π1(Uk) | integers k > 0).
Let A be an abelian group. The construction of the topological space K (A, 1)

induces a functor
K (·) : SAb−→ SKAb

given by K (S)= (K (Ak, 1) | integers k > 0) (see [12]).

PROPOSITION 5.1. The equivalences 51(·) and K (·) are inverse category
equivalences.

PROOF. Since π1(K (A, 1))∼= A for an abelian group A, given S ∈ SAb we have

51(K (S))∼= S. (5.2)

Furthermore, since K (π1(X), 1)∼ X for an Eilenberg–Mac Lane space X , given
X ∈ SKAb we have

K (51(X ))∼ X . (5.3)

This proves the proposition. 2

Now to define the functors V and V∗ in the only manner possible that makes the
diagram in Figure 1 commute:

V(·)= K ◦ U(·) : X -Plex−→ SKAb (5.4)

V∗(·)= K ◦ U∗(·) : X -coPlex−→ SKAb.

THEOREM 5.2. Let G be an abelian group and let X = K (G, 1). There is a
commutative diagram, Figure 1, of additive categories and functors, where opposing
arrows denote inverse category equivalences.

REMARK 5.3. We can fill in a blank place in Figure 1 as follows. Let Bim be the
category of End(G)–End(G)-bimodules M such that

Tor∗E (M, G)∼= Ext∗E (M, G).

The End(G)–End(G)-bimodule End(G) is in Bim so Bim is not a trivial category.
The category Bim and the canonical inclusion functors Bim−→Mod-End(G) and
Bim−→ End(G)-Mod embed in Figure 1 in a way that makes Figure 1 commute. It
is interesting that such an unnatural isomorphism should arise in such a natural context.

If we assume that (µ) holds and assume that G is self-small and self-slender,
then we produce the more detailed diagram, Figure 6. We construct Figure 6 under
these assumptions.
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FIGURE 6.

Since G is self-small, there is a commutative triangle Figure 3 of categories and
category equivalences. This triangle replaces the top triangle in Figure 1 to form the
top triangle in Figure 6. Similarly, assuming that (µ) holds and assuming that G is self-
slender, Figure 5 replaces the bottom triangle in Figure 1 to form the bottom triangle
of Figure 6.

The vertical maps in Figure 6 are the homology functors

H P
∗ (·) : G-Plex −−−−−→ SAb and

H c
∗ (·) : G-coPlex −−−−−→ SAb

of algebraic complexes. If G is self-small, then [7, Lemma 11.3.1] states that for each
integer k > 0

Tork
End(G)(hG(·), G)= H P

k (·) (5.5)
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so that the insertion of the homology functor H P
∗ (·) into Figure 6 preserves the

commutativity of the diagram in Figure 6.
Assuming that (µ) holds, and assuming that G is self-slender, the commutative

diagram [7, Diagram (11.16)] shows us that

ExtkE (h
G(·), G)= H c

k (·) (5.6)

for each integer k > 0. Thus, we can insert the vertical homology functor H c
∗ (·)

into the bottom diamond of Figure 6 and preserve the commutativity of the diagram
in Figure 6.

THEOREM 5.4. Assume that measurable cardinals do not exist, and let G be a self-
small and a self-sender abelian group. There is a commutative diagram (Figure 6) of
additive categories and functors, in which opposing arrows represent inverse category
equivalences.

REMARK 5.5. All of the arrows in the diagrams in Figures 1 and 6 are functors. This
property does not apply to the diagram constructed in [8], where some of the arrows
are not functors.

REMARK 5.6. Assume that measurable cardinals do not exist. The properties self-
small and self-slender occur naturally when studying End(G) and G. For instance,
in [2, 7] it was shown that self-small modules occur naturally when studying
Mod-End(G), while in [4, 13] it was shown that self-slender modules occur naturally
when studying End(G)-Mod. Reduced torsion-free finite rank abelian groups are both
self-small and self-slender.

COROLLARY 5.7. Assume that measurable cardinals do not exist, and assume that G
is a reduced torsion-free finite rank abelian group. There is a commutative diagram
(Figure 6) of additive categories and functors, in which opposing arrows represent
inverse category equivalences.

6. Prism diagrams

We construct several commutative diagrams whose purpose is to further emphasize
the relationship between the abelian group G and the K (G, 1) space X .

We continue to use the fixed abelian group G and X = K (G, 1). We make no other
assumptions until we state them explicitly. We first construct the diagram shown in
Figure 7.

We have defined π̂1(·), K̂ (·), hX (·), hG(·), 51, and K (·) when we constructed the
diagrams in Figures 2 and 1.

Define the arrow χ on the right-hand side of Figure 7 so that the triangle commutes:

χ(·)= Tor∗E (·, G) ◦ hG(·).
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FIGURE 7.

By the commutativity of the diagram in Figure 2, the upper triangle of Figure 7 is
commutative. Define τ(·) so that the diagram of Figure 7 commutes:

τ(·)= K ◦ Tor∗E (·, G).

Then define σ(·) so that the diagram of Figure 7 commutes:

σ(·)= τ ◦ hX (·).

THEOREM 6.1. Let G be an abelian group. There is a commutative diagram
(Diagram 7), of categories and functors, in which opposing arrows represent inverse
category equivalences.

By dualizing the above process we construct the diagram shown in Figure 8.

THEOREM 6.2. Let G be a group. There is a commutative diagram (Figure 8),
of categories and functors, in which opposing arrows represent inverse category
equivalences.

In the case where G is self-small or self-slender we can be specific about χ and χ∗.

PROPOSITION 6.3. Let G be an abelian group and let X = K (G, 1).

(1) Assume that G is self-small. Then χ(·)= H P
∗ (·), the homology functor.

(2) Assume that measurable cardinals do not exist, and assume that G is self-slender.
Then χ∗(·)= H c

∗ (·).

PROOF. Parts (1) and (2) follow from Figures 3 and 5, and the identities (5.5), (5.6).
This completes the proof. 2

REMARK 6.4. One of the first observations we can make about Figure 7 is that the
triangle with vertices X -Plex, Mod-End(G)=Mod-EndC(X), and SKAb is one of
topology, while the triangle with vertices G-Plex, Mod-End(G), and SAb is one of
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FIGURE 8.

algebra. As the horizontal arrows in Figure 7 represent inverse functors we see that the
triangle of topology is the same as the triangle of algebra. The same can be said of the
triangles in Figure 8.

7. Coherent complexes

Let us examine which parts of Figures 3, 6, and 8 are retained when we remove the
self-small and self-slender assumptions from the abelian group G.

The right End(G)-module M is coherent if it possesses a projective resolution
whose terms are finitely generated projective right End(G)-modules. Let Coh-End(G)
denote the category of coherent right End(G)-modules. The category of coherent left
End(G)-modules is denoted by End(G)-Coh.

A G-plex Q as in (2.1) is coherent if each term Qk in Q is a direct summand of
Gn for some integer n > 0. Let G-CohPlx be the full subcategory of G-Plex whose
objects are coherent G-plexes. Dually define a coherent G-coplex as a G-coplex W
whose terms Wk are direct summand of Gn for some integer n > 0. Let G-CohCoplex
denote the full subcategory of G-coPlex whose objects are coherent G-coplexes.

An X -plex C as in (3.1) is coherent if each term Xk of C is a K (Qk, 1) space
for some direct summand Qk of Gn for some integer n = n(C, k). The category
X -CohPlx is the full subcategory of X -Plex whose objects are coherent X -plexes.
We say that the X -coplex W is a coherent X-coplex if each term Wk of W is a
K (Qk, 1) space for some direct summand Qk of Gn for some integer n = n(W, k).
The full subcategory of X -coPlex whose objects are coherent G-coplexes is denoted
by X -CohCoplex.

THEOREM 7.1. Let G be an abelian group and let X = K (G, 1). There is a
commutative triangle (see Figure 9) of categories and category equivalences.
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FIGURE 9.

FIGURE 10.

PROOF. One readily verifies that

π̂1(X -CohPlx)⊂ G-CohPlx

K̂ (G-CohPlx)⊂ X -CohPlx

so by Theorem 3.4 there is a category equivalence

π̂1(·) : X -CohPlx−−−−−→ G-CohPlx

and its inverse K̂ as in Figure 9.
By [7, Theorem 2.1.13], there are inverse category equivalences

hG(·) : G-CohPlx−−−−−→ Coh-End(G)

tG(·) : Coh-End(G)−−−−−→ G-CohPlx

as in Figure 9. By the commutativity of the diagram in Figure 2 the functor hX (·) :

X -CohPlx−→ Coh-End(G) at the bottom of Figure 9 makes the diagram commute.
Hence, hX (·) is a category equivalence. This completes the proof. 2

Dualizing the above process yields a different commutative triangle.

THEOREM 7.2. Let G be an abelian group and let X = K (G, 1). There is a
commutative triangle (see Figure 10) of categories and category equivalences.
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PROOF. Dualize the proof of Theorem 7.1. 2

THEOREM 7.3. Let G be an abelian group. There is a commutative diagram,
Figure 11, of additive categories and functors, in which opposing arrows represent
inverse functors.

PROOF. Substitute the commutative diagrams in Theorems 7.1 and 7.2 into the
commutative diagram Figure 1. The result is a commutative diagram. Include the
vertical functors H P

∗ and H c
∗ as in Figure 6. We leave it as an exercise for the reader to

show that the inclusion of these vertical functors yields a commutative diagram. This
completes the proof. 2

8. Applications

In this section, G and A denote variable abelian groups, X is a K (G, 1)-space,
and Y is a K (A, 1)-space. As in [8], we apply Figures 3 and 5 to the uniqueness of
decomposition of abelian groups.

Let KAb denote the category of K (A, 1) spaces where A ranges over the category
Ab of abelian groups. Let A be a category in which ∼= is an equivalence relation,
and let T be a category in which ∼ is an equivalence relation. We say that T/∼ is
a complete set of topological invariants for A modulo ∼= if there is a bijective map
6 : A/∼=−→ T/∼.

Let A be an abelian group and identify K (A, 0, 0, . . .)= K (A, 1).

THEOREM 8.1. We say that KAb/∼ is a complete set of topological invariants for
Ab modulo isomorphism.

PROOF. The functors K (·) and51(·) are inverses by Proposition 5.1, so K (·) induces
a bijection 6 : Ab/∼=−→KAb/∼. This completes the proof. 2

Let Y ∈KAb. We say that Y is K-indecomposable if given U, V ∈KAb such that
Y ∼U × V , then U or V contracts to a point. We say that Y has a unique finite
Cartesian K-decomposition if:

(1) Y =
∏

i∈I Ui for some finite set {Ui | i ∈ I} ⊂KAb of K -indecomposable
spaces; and

(2) Y =
∏

j∈J V j for some finite set {V j | j ∈ J } ⊂KAb of K -indecomposable
spaces, then there is a bijection6 : I −→ J such that Ui ∼ V6(i) for each i ∈ I .

We say that A has a unique finite direct sum decomposition if:

(1) A =
⊕

i∈I Bi for some finite set {Bi | i ∈ I} of indecomposable abelian groups;
and

(2) A =
⊕

j∈J C j for some finite set {C j | j ∈ J } indecomposable abelian groups,
then there is a bijection 6 : I −→ J such that Bi ∼= C6(i) for each i ∈ I .
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FIGURE 11.

LEMMA 8.2. Let A be an abelian group and let Y = K (A, 1).

(1) If A = B ⊕ C, then Y ∼ K (B, 1)× K (C, 1).
(2) If Y ∼U × V for some U, V ∈KAb, then A ∼= π1(U )⊕ π1(V ).
(3) A is indecomposable if and only if Y is K -indecomposable.

PROOF. Parts (1) and (2) follow directly from [12, Theorem 1B.5].
Part (3) follows from parts (1) and (2). This proves the lemma. 2

THEOREM 8.3. Let A be an abelian group and let Y = K (A, 1). Then A has a
unique finite direct sum decomposition if and only if Y has a unique finite Cartesian
K -decomposition.

PROOF. One proceeds as in [8, Theorem 7.2]. We sketch a proof. Suppose that A has
a unique finite direct sum decomposition

⊕
i∈I Bi for some finite set {Bi | i ∈ I} of
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indecomposable abelian groups. Let Ui = K (Bi , 1). Then by Lemma 8.2(3), Ui is
K -indecomposable, and

Y = K (A, 1)= K

(⊕
I

Bi , 1
)
∼

∏
I

K (Bi , 1)=
∏

I
Ui .

Another K -decomposition Y ∼
∏

j∈J V j corresponds under the equivalence K (·) to
a decomposition

⊕
J C j of A. That is, V j ∼ K (C j )= K (C j , 1). Since A has

the unique finite direct sum decomposition
⊕

I Bi we may assume without loss of
generality that J = I and that Ci = Bi for i ∈ I . Then Vi ∼ K (Ci )= K (Bi )∼Ui ,
hence Y has a unique finite Cartesian K -decomposition. The proof of the converse
is found by reversing the above argument in the obvious way. This completes
the proof. 2

We say that the abelian group A has the cancellation property if A ⊕ B ∼= A ⊕ C
for some abelian groups B and C implies that B ∼= C . A space Y ∈KAb has the
cancellation property in KAb if Y ×U ∼ Y × V for some U , V ∈KAb implies
that U ∼ V .

The group A has the power cancellation property if for each integer n > 0
and abelian group B, An ∼= Bn implies that A ∼= B. We say that A has a 6-
unique decomposition if for each integer n > 0, An has a unique finite direct sum
decomposition.

The topological space Y has the power cancellation property in KAb if for each
integer n > 0 and topological space Z ∈KAb, Y n

∼ Zn implies that Y ∼ Z . We say
that Y has 6-unique decomposition in KAb if for each integer n > 0, Y n has unique
finite Cartesian K -decomposition.

Then the proof of Theorem 8.3 can be used to prove the following three results.

THEOREM 8.4. Let A be an abelian group and let Y = K (A, 1). Then A has the
cancellation property if and only if Y has the cancellation property in KAb.

THEOREM 8.5. Let A be an abelian group and let Y = K (A, 1). Then A has the
power cancellation property if and only if Y has the power cancellation property
in KAb.

THEOREM 8.6. Let A be an abelian group and let Y = K (A, 1). Then A has a
6-unique decomposition if and only if Y has a 6-unique decomposition in KAb.

These applications and the work in [5] can be combined to give a nice classification
of the unique factorization property in algebraic number fields.

Let G and H be abelian groups. We say that G is locally isomorphic to H if given an
integer n > 0 there is an integer m > 0 relatively prime to n, and maps f : G→ H and
g : H → G such that f g = g f = m · 1. See [6] for properties of locally isomorphic
abelian groups.
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Let k be an algebraic number field, let E be the ring of algebraic integers in k, and
let

�(E)= {abelian groups G | End(G)∼= E}.

The class number of k, denoted by h(k) is the number of isomorphism classes of
fractional right ideals of E . This is a classic idea from number theory [15].

Given an abelian group G the class number of G is the number of isomorphism
classes of groups H that are locally isomorphic to G. The class number of G is denoted
by h(G).

The spaces X and Y are power homotopic if and only if there is an integer n > 0
such that Xn

∼ Y n . Given a topological space X the class number of X in KAb is the
number of homotopy classes of topological spaces Y that are power isomorphic to X
in KAb. The class number of X is denoted by h(X).

The abelian group G has6(h)-unique decomposition if h > 0 is the smallest integer
that has the following property. There is a finite set {G1, . . . , Gh} of indecomposable
groups Gi such that for each n > 0, if Gn

= H1 ⊕ · · · ⊕ Ht for some integer t and
indecomposable abelian groups H1, . . . , Ht , then for each i = 1, . . . , t there is an
integer 1≤ j (i)≤ h such that Hi ∼= G j (i).

The topological space X has 6(h)-unique decomposition in KAb if h > 0 is the
smallest integer with the following property. There is a finite set {X1, . . . , Xh} of
K -indecomposable spaces X i such that for each n > 0, if Xn

∼ Y1 ⊕ · · · ⊕ Yt for
some integer t and K -indecomposable spaces Y1, . . . , Yt in KAb, then for each
i = 1, . . . , t there is an integer 1≤ j (i)≤ h such that Yi ∼ X j (i).

THEOREM 8.7. Let k be an algebraic number field and let h > 0 be an integer. The
following are equivalent:

(1) h(k)= h;
(2) h(G)= h for each G ∈�(E);
(3) h(G)= h for some G ∈�(E);
(4) for each G ∈�(E) there are exactly h isomorphism classes of groups H such

that Gn ∼= Hn for some integer n > 0;
(5) for some G ∈�(E) there are exactly h isomorphism classes of groups H such

that Gn ∼= Hn for some integer n > 0;
(6) each G ∈�(E) has 6(h)-unique decomposition;
(7) some G ∈�(E) has 6(h)-unique decomposition;
(8) given G ∈�(E), h(X)= h for each K (G, 1)-space X;
(9) for some G ∈�(E), h(X)= h for each K (G, 1)-space X;
(10 given G ∈�(E), each K (G, 1)-space has 6(h)-unique decomposition in KAb;
(11) for some G ∈�(E), each K (G, 1)-space has 6(h)-unique decomposition in

KAb.

PROOF. (1) if and only if (2). Let G ∈�(E). Then h(G)= h(E)= h(k) by [5,
Corollary 3.2]. This proves (1) if and only if (2).
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(2) implies (4). Let G ∈�(E). Let {(G1), . . . , (Gh)} be the set of isomorphism
classes of groups Gi that are locally isomorphic to G, and let {(Hi ) | i ∈ I } be a
set of isomorphism classes of groups H such that Gn ∼= Hn implies G ∼= H . By
Warfield’s theorem [1, Theorem 13.9], for each (Gi ) ∈ {(G1), . . . , (Gh)} there is an
integer n such that Gn ∼= Gn

i . Then {(G1), . . . , (Gh)} ⊂ {(Hi ) | i ∈ I }. On the other
hand, let (Hi ) ∈ {(Hi ) | i ∈ I }. Then Gn ∼= Hn for some integer n > 0. By Warfield’s
theorem [1, Theorem 13.9], G is locally isomorphic to Hi , so that {(G1), . . . , (Gh)} ⊃

{(Hi ) | i ∈ I }. Hence {(G1), . . . , (Gh)} = {(Hi ) | i ∈ I } so that h is the number of
isomorphism classes of groups H such that Gn ∼= Hn for some integer n > 0. This
proves part (4).
(4) implies (6). Let G ∈�(E). By part (4) there is a set {(G1), . . . , (Gh)}

of isomorphism classes of groups H such that Gn ∼= Hn for some integer n > 0.
Let n > 0 be an integer, and let Gn ∼= H1 ⊕ · · · ⊕ Ht for some integer t > 0 and
some indecomposable groups H1, . . . , Ht . Since E = End(G) is an integral domain,
[5, Corollary 2.6] states that each Hi is locally isomorphic to G, so Hi ∼= G j (i)
for some 1≤ j (i)≤ h. Thus, there is a minimal integer 0< h′ ≤ h and a set
{(K1), . . . , (Kh′)} of isomorphism classes (Ki ) of indecomposable groups such that
for each i = 1, . . . , t , there is an integer 1≤ j (i)≤ h′ such that Hi ∼= K j (i).

Specifically, given (H) ∈ {(G1), . . . , (Gh)}, then there is an integer n > 0 such
that Gn ∼= Hn . By our choice of {(K1), . . . , (Kh′)}, (H) ∈ {(K1), . . . , (Kh′)}, hence
{(G1), . . . , (Gh)} ⊂ {(K1), . . . , (Kh′)}, thus h ≤ h′. That is, h = h′, which proves
part (6).
(6) implies (2). Let G ∈�(E). Suppose that G has 6(h)-unique decomposition.

There is a set {(K1), . . . , (Kh)} of isomorphism classes (Ki ) such that for each
integer n > 0, if Gn ∼= H1 ⊕ · · · ⊕ Ht for some integer m and indecomposable
groups H1, . . . , Ht then for each i = 1, . . . , t there exists a 1≤ j (i)≤ h such that
Hi ∼= K j (i). Let {(G1), . . . , (Gh(G))} be a complete set of isomorphism classes of
groups H that are locally isomorphic to G. Suppose that H is locally isomorphic
to G. By Warfield’s theorem [1, Theorem 13.9] there is an integer n > 0 such
that Gn ∼= Hn . Then H ∼= K j for some 1≤ j ≤ h, so that {(G1), . . . , (Gh(G))} ⊂

{((K1), . . . , (Kh)}. Subsequently, h(G)≤ h.
Let (K ) ∈ {(K1), . . . , (Kh)}. By the minimality of h, there is an integer n > 0

and a direct sum decomposition Gn ∼= K ⊕ H2 ⊕ · · · ⊕ Ht . Since End(G)= E
is a commutative integral domain, [5, Corollary 2.6(2)] states that K is locally
isomorphic to G, so there exists a 1≤ j ≤ h(G) such that K ∼= G j . It
follows that h ≤ h(G), and hence that h = h(G). Thus, we have proved that
(1) if and only if (2) implies (4) implies (6) implies (2).
(2) implies (3) implies (5) implies (7) implies (2). By Butler’s theorem [6,

Theorem I.2.6], there is a G ∈�(E). Then part (2) implies part (3). The rest follows
as in (2) implies (4) implies (6) implies (2).
(2) implies (8). Let G ∈�(E) and let X be a K (G, 1)-space. Recall the

functors K̂ (·) and π̂(·) from Theorem 3.4. Let {(G1), . . . , (Gh(G))} be a complete
set of isomorphism classes of groups H that are locally isomorphic to G. Let
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{(X1), . . . , (Xh(X))} be a complete set of the homotopy classes of topological spaces
Y that are power homotopic to X . Let H ∈ {(G1), . . . , (Gh(G))}. By Warfield’s
theorem [1, Theorem 13.9], there is an integer n such that Gn ∼= Hn . Then

Xn
∼ K̂ (G)n ∼ K̂ (Gn)∼ K̂ (Hn)∼ K̂ (H)n

which shows us that X is power isomorphic to K̂ (H). Thus, K̂ (·) : G-Plex→
X -Plex induces a map f : {(G1), . . . , (Gh(G))} → {(X1), . . . , (Xh(X))} such that
f (Gi )= (K̂ (Gi )). Similarly π̂1(·) : X -Plex→ G-Plex induces a map g : {(X1), . . . ,

(Xh(X))} → {(G1), . . . , (Gh(G))} such that g(X i )= (π̂1(X i )). Since K̂ (·) and π̂1(·)

are inverse category equivalences, one shows that f and g are inverse bijections. Thus,
h(G)= h(X). This proves part (8).
(8) implies (10). Let G ∈�(E) and let X be a K (G, 1)-space. Let {(X1), . . . ,

(Xh(X))} be a complete set of homotopy classes of topological spaces X i that are
power homotopic to X . Let n > 0 be an integer, and suppose that Xn

∼ Y1 ×

· · · × Yt for some indecomposable topological spaces Y1, . . . , Yt . Then the category
equivalence π̂1 : X -Plex→ G-Plex (Theorem 3.4) takes the Cartesian product of K -
indecomposable spaces Yi in KAb to a direct sum of indecomposable abelian groups

Gn ∼= π̂1(X)
n ∼= π̂1(X

n)∼= π̂1(Y1)⊕ · · · ⊕ π̂1(Yt ).

It follows from [5, Corollary 2.6(2)] that since End(G)∼= E is a commutative integral
domain, and since each π̂1(Yi ) is indecomposable, each π̂1(Yi ) is locally isomorphic
to G. By Warfield’s theorem [1, Theorem 13.9], there is an integer m > 0 such that

π̂1(X
m)∼= Gm ∼= π̂1(Yi )

m ∼= π̂1(Y
m
i ),

and since π̂1(·) is a category equivalence,

Xm
∼ Y m

i

for each i = 1, . . . , t . Then for each i = 1, . . . , t there is a 1≤ j (i)≤ h(X) such
that Yi ∼ X j (i). Thus, X has 6(h)-unique decomposition in KAb for some integer
0≤ h ≤ h(X).

Let {(U1), . . . , (Uh)} be a set of homotopy classes of topological spaces
associated with the definition of 6(h)-unique decomposition for X . There are h(X)
homotopy classes (X1), . . . , (Xh(X)), and by arguing above with Warfield’s theorem
[1, Theorem 13.9], there are integers m, m1, . . . , mh(X) > 0 such that

Xm
∼

h(X)∏
i=1

Xmi
i .

Thus, {(X1), . . . , (Xh(X))} ⊂ {(U1), . . . , (Uh)}, and so h(X)≤ h. Hence, h(X)= h,
which proves part (10).
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(10) implies (4). Proceed in the by now familiar pattern, using the category
equivalences π̂1 and K̂ to show that the 6(h)-unique decomposition of G follows
from the 6(h)-unique decomposition of the K (G, 1)-space X .

This proves (2) implies (8) implies (10) implies (4). The equivalences (8) if and
only if (9) and (10) if and only if (11) are clear. This completes the logical cycle.

For the next theorem, let k be an algebraic number field, let E be the ring of
algebraic integers in k, and for each rational prime p let E(p)= Z+ pE . Let G(p) be
a reduced torsion-free finite rank abelian group such that End(G(p))∼= E(p). These
groups exist by Butler’s theorem [6, Theorem I.2.6]. Let L(p)= card(u(E)/u(E(p)))
where u(R) is the groups of units in the ring R. For an abelian group H let h(H) be
the number of isomorphism classes of groups K that are locally isomorphic to H .
Sequences sn and tn are asymptotically equal if limn→∞ sn/tn = 1.

If a group G possesses the 6(1)-unique decomposition we say that G has
the 6-unique decomposition. A similar statement is made for K (G, 1)-spaces that
have 6-unique decomposition in KAb. If there is exactly one isomorphism class of
groups H such that Gn ∼= Hn for some integer n > 0 then we say that G has the power
cancellation property. A similar statement is made about K (G, 1)-spaces X that have
the power cancellation property in KAb. Thus the following theorem is proved by
allowing h = 1 in Theorem 8.7. 2

THEOREM 8.8. Let k be an algebraic number field. The following are equivalent.

(1) The algebraic number field k has unique factorization.
(2) The sequence {L(p)h(G(p)) | rational primes p} is asymptotically equal to the

sequence {p f−1
| rational primes p}.

(3) Each G ∈�(E) has the power cancellation property.
(4) Some G ∈�(E) has the power cancellation property.
(5) Each G ∈�(E) has 6-unique decomposition.
(6) Some G ∈�(E) has 6-unique decomposition.
(7) Given G ∈�(E), each K (G, 1)-space has the power cancellation property in

KAb.
(8) For some G ∈�(E), each K (G, 1)-space has the power cancellation property

in KAb.
(9) Given G ∈�(E), each K (G, 1)-space has 6-unique decomposition in KAb.
(10) For some G ∈�(E), each K (G, 1)-space has6-unique decomposition in KAb.

PROOF. (1) if and only if (2) follows form [5, Theorem 9.4]. The proof of the rest of
the theorem follows from Theorem 8.7 and the fact that k has unique factorization if
and only if h(k)= 1. This proves the theorem. 2

PROOF OF THEOREM 1.1. (1) if and only if (2). Since k is a quadratic number field,
f = 2, so that the proof of the theorem follows from Theorem 8.8(2).
(1) if and only if (3). Assume that condition (1) holds, that is, that the quadratic

number field k has unique factorization. By Theorem 8.8(2), each reduced strongly
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indecomposable torsion-free rank-two group G such that End(G)∼= E has the power
cancellation property. This proves condition (3).
(3) if and only if (4). Assume that condition (3) holds. By Butler’s theorem

[6, Theorem I.2.6], there is a reduced torsion-free abelian group G such that E ⊂
G ⊂QE and such that End(G)∼= E . Since k is a quadratic number field, E and so G
have torsion-free rank two. Moreover, since E is an integral domain, the group G is
strongly indecomposable [1, Corollary 7.8]. Condition (4) is proved.
(4) implies (1). Assume that condition (4) holds. Theorem 8.8(3) implies that k

has unique factorization.
(1) implies (5) implies (6) implies (1) follow in a manner similar to the proof of

(1) implies (3) implies (4) implies (1).
(1) implies (7) implies (8) implies (9) implies (10) implies (1) follows from Theo-

rem 8.8. This completes the proof of Theorem 1.1. 2

REMARK 8.9. Owing to the category equivalence between Ab and KAb via the
functor K̂ (·) we can use the approach in Theorem 8.4 to topologically characterize
any direct sum decomposition property of a fixed abelian group A.

REMARK 8.10. The equivalence between Ab and KAb via the functor K̂ (·) allows
us to view abstract abelian groups, which do not come equipped with a geometry, as
subspaces of quotients of Euclidean k-space, for some integer k > 0.

REMARK 8.11. Over the past 35 years certain aspects of abelian group theory have
blurred with the study of modules over more general associative rings. Figures 2, 1,
and 7 represent an idea in abelian group theory that is not readily extended to modules
over more general rings. The key observation to see this is that a homotopy group is
not in general a module over a ring R 6= Z. Therefore Figures 2, 1, and 7 seem to
represent a concept in abelian group theory that will be unique to abelian groups for
some time.
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