LINEARIZATION OF THE PRODUGT OF JAGOBI POLYNOMIALS. II

GEORGE GASPER

1. Introduction. Let [3, p. 170, (16)]

$$
\begin{equation*}
P_{n}^{(\alpha, \beta)}(x)=\binom{n+\alpha}{n} F(-n, n+\alpha+\beta+1 ; \alpha+1 ;(1-x) / 2) \tag{1.1}
\end{equation*}
$$

denote the Jacobi polynomial of order $(\alpha, \beta), \alpha, \beta>-1$, and let $g(k, m, n ; \alpha, \beta)$ be defined by

$$
\begin{equation*}
R_{n}{ }^{(\alpha, \beta)}(x) R_{m}{ }^{(\alpha, \beta)}(x)=\sum_{k=|n-m|}^{n+m} g(k, m, n ; \alpha, \beta) R_{k}^{(\alpha, \beta)}(x), \tag{1.2}
\end{equation*}
$$

where $R_{n}{ }^{(\alpha, \beta)}(x)=P_{n}{ }^{(\alpha, \beta)}(x) / P_{n}{ }^{(\alpha, \beta)}(1)$. It is well known $[\mathbf{1} ; \mathbf{2} ; \mathbf{4} ; \mathbf{5} ; \mathbf{6}]$ that the harmonic analysis of Jacobi polynomials depends, at crucial points, on the answers to the following two questions.

Question 1. For which (α, β) do we have

$$
\begin{equation*}
g(k, m, n ; \alpha, \beta) \geqq 0, \quad k, m, n=0,1, \ldots ? \tag{1.3}
\end{equation*}
$$

Question 2. For which (α, β) do we have

$$
\begin{equation*}
\sum_{k}|g(k, m, n ; \alpha, \beta)| \leqq G \tag{1.4}
\end{equation*}
$$

where G depends only on (α, β) ?
Notice that (1.3) implies (1.4); in fact, since $R_{n}{ }^{(\alpha, \beta)}(1)=1$, (1.2) and (1.3) yield

$$
\sum_{k}|g(k, m, n ; \alpha, \beta)|=1
$$

In [4] we mentioned several applications of (1.3) and (1.4), and we proved that if $\alpha \geqq \beta$ and $\alpha+\beta+1 \geqq 0$, then (1.3) holds. Our aim in this paper is to give the answer (Theorem 1) to Question 1 and a partial answer (Theorem 2) to Question 2.

Theorem 1. Let $\alpha>-1, \beta>-1, a=\alpha+\beta+1, b=\alpha-\beta$, and

$$
V=\left\{(\alpha, \beta): \alpha \geqq \beta, a(a+5)(a+3)^{2} \geqq\left(a^{2}-7 a-24\right) b^{2}\right\} .
$$

If $(\alpha, \beta) \in V$, then (1.3) holds. However, if $(\alpha, \beta) \notin V$, then there exist positive integers k, m, and n such that $g(k, m, n ; \alpha, \beta)<0$. In particular:

[^0](i) If $\alpha \geqq \beta$ and $(\alpha, \beta) \notin V$, then $g(2,2,2 ; \alpha, \beta)<0$;
(ii) If $\beta>\alpha$, then $g(n-m+1, m, n ; \alpha, \beta)<0, n \geqq m \geqq 1$.

Theorem 2. Let a and b be defined as in Theorem 1 and let

$$
W=\left\{(\alpha, \beta): \alpha \geqq \beta, 2 b^{2}>-a(a+3)\right\} \cup\left\{\left(-\frac{1}{2},-\frac{1}{2}\right)\right\} .
$$

If $(\alpha, \beta) \in W$, then (1.4) holds. However, if $-1<\alpha<-\frac{1}{2}$, then $g(0, n, n ; \alpha, \beta)$ is not bounded and so (1.4) does not hold.

Observe that

$$
\{(\alpha, \beta): \alpha \geqq \beta>-1, \alpha+\beta+1 \geqq 0\} \subset V \subset W
$$

For $-1<\beta \leqq-\frac{1}{2}$, the set W is bounded on the left by the curve

$$
\begin{equation*}
b=w(a)=[-a(a+3) / 2]^{\frac{1}{2}}, \quad-\frac{1}{3} \leqq a \leqq 0 \tag{1.5}
\end{equation*}
$$

By considering $w^{\prime}(a)$ we find that (1.5) determines a path in the (α, β)-plane which starts at $\left(-\frac{1}{3},-1\right)$ and approaches the line $\alpha+\beta+1=0$ tangentially from the left, meeting it at $\left(-\frac{1}{2},-\frac{1}{2}\right)$.

Similarly, for $-1<\beta \leqq-\frac{1}{2}$, the set V is bounded on the left by a curve which starts at $\left(\left(-11+(73)^{\frac{1}{2}}\right) / 8,-1\right)$ and approaches the line $\alpha+\beta+1=0$ tangentially, meeting it at $\left(-\frac{1}{2},-\frac{1}{2}\right)$. Therefore

$$
\begin{align*}
& V \subset\left\{(\alpha, \beta): a>\frac{1}{8}\left(-11+(73)^{\frac{1}{2}}\right)=-0.3069 \ldots\right\} \\
& W \subset\left\{(\alpha, \beta): a>-\frac{1}{3}\right\} \tag{1.6}
\end{align*}
$$

Before proving Theorems 1 and 2 we present some applications, the most important of which is the following convolution structure.

Consider (α, β) fixed and let $g(k, m, n)=g(k, m, n ; \alpha, \beta)$,

$$
\begin{aligned}
\gamma(k, m, n) & =\int_{-1}^{1} R_{k}^{(\alpha, \beta)}(x) R_{m}^{(\alpha, \beta)}(x) R_{n}^{(\alpha, \beta)}(x)(1-x)^{\alpha}(1+x)^{\beta} d x \\
h(n) & =\left(\int_{-1}^{1}\left[R_{n}^{(\alpha, \beta)}(x)\right]^{2}(1-x)^{\alpha}(1+x)^{\beta} d x\right)^{-1} \\
= & \frac{(2 n+\alpha+\beta+1) \Gamma(n+\alpha+1) \Gamma(n+\alpha+\beta+1)}{2^{\alpha+\beta+1} \Gamma(n+1) \Gamma(\alpha+1) \Gamma(\alpha+1) \Gamma(n+\beta+1)} .
\end{aligned}
$$

Then $g(k, m, n)=\gamma(k, m, n) h(k)$. If $F(n)$ is defined for $n=0,1, \ldots$, then we say that $F(n)$ belongs to the class $b^{(\alpha, \beta)}$ whenever its norm

$$
\|F\|=\sum_{n=0}^{\infty}|F(n)| h(n)
$$

is finite. For $F_{1}(n), F_{2}(n) \in b^{(\alpha, \beta)}$ we define their convolution $F_{1} * F_{2}$ by

$$
\left(F_{1} * F_{2}\right)(n)=\sum_{k=0}^{\infty} \sum_{m=0}^{\infty} F_{1}(k) F_{2}(m) \gamma(k, m, n) h(k) h(m)
$$

For $F(n) \in b^{(\alpha, \beta)}$ we define its transform $F^{\wedge}(x)$ by

$$
F^{\wedge}(x)=\sum_{n=0}^{\infty} F(n) R_{n}^{(\alpha, \beta)}(x) h(n), \quad-1 \leqq x \leqq 1
$$

and so the inversion formula is

$$
F(n)=\int_{-1}^{1} F^{\wedge}(x) R_{n}^{(\alpha, \beta)}(x)(1-x)^{\alpha}(1+x)^{\beta} d x
$$

Then, as in [5] for the ultraspherical case $\alpha=\beta$, Theorems 1 and 2 yield Corollary 1 and the usual Banach algebra proof of the Wiener-Lévy theorem yields Corollary 2.

Corollary 1. If $(\alpha, \beta) \in W$ and $F_{j}(n) \in b^{(\alpha, \beta)}, j=1,2,3$, then

$$
\left(F_{1} * F_{2}\right)(n) \in b^{(\alpha, \beta)}
$$

and

$$
\begin{equation*}
\left\|F_{1} * F_{2}\right\| \leqq G\left\|F_{1}\right\|\left\|F_{2}\right\|, \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
F_{1} * F_{2}=F_{2} * F_{1} \tag{ii}
\end{equation*}
$$

$$
\begin{equation*}
F_{1} *\left(F_{2} * F_{3}\right)=\left(F_{1} * F_{2}\right) * F_{3}, \tag{iii}
\end{equation*}
$$

$$
\begin{equation*}
\left(F_{1} * F_{2}\right)^{\wedge}(x)=F_{1} \wedge(x) F_{2}^{\wedge}(x), \tag{iv}
\end{equation*}
$$

where G depends only on (α, β). If (α, β) also belongs to V, then (i) holds with $G=1$.

Corollary 2. Suppose that $(\alpha, \beta) \in W$,

$$
f(x)=\sum_{n=0}^{\infty} a(n) R_{n}^{(\alpha, \beta)}(x), \quad \sum_{n=0}^{\infty}|a(n)|<\infty,
$$

and ϕ is a function holomorphic on an open set containing the range of f. Then

$$
\phi(f(x))=\sum_{n=0}^{\infty} b(n) R_{n}^{(\alpha, \beta)}(x) \text { with } \sum_{n=0}^{\infty}|b(n)|<\infty .
$$

Closely connected with the above convolution structure is the generalized translation operator for which we now have the following result.

Corollary 3. Suppose that $f(x)$ is integrable on $(-1,1)$ with respect to $(1-x)^{\alpha}(1+x)^{\beta}$ and let

$$
\begin{aligned}
F(n) & =\int_{-1}^{1} f(x) R_{n}^{(\alpha, \beta)}(x)(1-x)^{\alpha}(1+x)^{\beta} d x \\
F(n, m) & =\int_{-1}^{1} f(x) R_{n}^{(\alpha, \beta)}(x) R_{m}^{(\alpha, \beta)}(x)(1-x)^{\alpha}(1+x)^{\beta} d x
\end{aligned}
$$

If $(\alpha, \beta) \in V$, then the operator which takes $F(n)$ into $F(n, m)$, the generalized
translate of $F(n)$, is a positive operator in the sense that if $F(n) \geqq 0, n=0,1, \ldots$, then $F(n, m) \geqq 0, n, m=0,1, \ldots$.

By setting

$$
\begin{aligned}
S_{n}^{(\alpha, \beta)}(x) & =\frac{P_{n}^{(\alpha, \beta)}(x)}{P_{n}^{(\alpha, \beta)}(-1)}, \\
V^{*} & =\{(\alpha, \beta):(\beta, \alpha) \in V\}, \\
W^{*} & =\{(\alpha, \beta):(\beta, \alpha) \in W\},
\end{aligned}
$$

and using $P_{n}{ }^{(\alpha, \beta)}(x)=(-1)^{n} P_{n}^{(\beta, \alpha)}(-x)$, one obtains analogous results with $R_{n}{ }^{(\alpha, \beta)}(x), V$, and, W replaced by $S_{n}^{(\alpha, \beta)}(x), V^{*}$, and W^{*}, respectively.
2. Proof of Theorem 1. Our main tool in [4] was a recurrence formula for a positive multiple of $g_{k}=g(k, m, n)=g(k, m, n ; \alpha, \beta)$. In order to work directly with g_{k}, we first obtain its recurrence formula.

In [6] Hylleraas let

$$
y_{n}(z)=F(-n, n+p ; q ; z), \quad p+1>q>0
$$

and derived a recurrence formula for $c_{k}=c(k, m, n)$, where c_{k} is defined by

$$
y_{n} y_{m}=\sum_{k=n-m}^{n+m} c_{k} y_{k}
$$

and it is assumed that $n \geqq m$. Setting $p=\alpha+\beta+1, q=\alpha+1$, and $z=(1-x) / 2$, we find from (1.1) and (1.2) that $y_{n}(z)=R_{n}{ }^{(\alpha, \beta)}(x)$ and $c_{k}=g_{k}=g(k, m, n)$. We also set $a=\alpha+\beta+1, b=\alpha-\beta, s=n-m$, and $k=s+j$. Observe that $2(\alpha+1)=a+b+1>0, \quad 2(\beta+1)=$ $a-b+1>0, a>-1, s \geqq 0$, and that $b \geqq 0$ if and only if $\alpha \geqq \beta$. The recurrence formula [$6,(4.13)$] for c_{k} yields

$$
\begin{align*}
& \frac{(j+1)(2 s+j+1)(2 n+j+a+1)}{(2 s+2 j+a+1)} \tag{2.1}\\
& \quad \times \frac{(2 m-j+a-1)(2 s+2 j+a-b+1)}{(2 s+2 j+a+2)} g_{s+j+1} \\
& = \\
& \quad b\left[\frac{(j+1)(2 s+j+1)(2 m-j)(2 n+j+2 a)}{(2 s+2 j+a+1)}\right. \\
& \left.\quad-\frac{j(2 s+j)(2 m-j+1)(2 n+j+2 a-1)}{(2 s+2 j+a-1)}\right] g_{s+j} \\
& \\
& \quad+\frac{(2 m-j+1)(j+a-1)(2 s+j+a-1)}{(2 s+2 j+a-2)} \\
& \quad \times \frac{(2 n+j+2 a-1)(2 s+2 j+a+b-1)}{(2 s+2 j+a-1)} g_{s+j-1}
\end{align*}
$$

and the formulas [6, (3.3) and (3.8)] for c_{n+m} and c_{n-m} yield

$$
\begin{align*}
& g_{n+m}=\frac{\binom{2 n+\alpha+\beta}{n}\binom{2 m+\alpha+\beta}{m}\binom{n+m+\alpha}{n+m}}{\binom{2 n+2 m+\alpha+\beta}{n+m}\binom{n+\alpha}{n}\binom{m+\alpha}{m}} \tag{2.2}\\
& g_{n-m}=\frac{\binom{n}{m}\binom{2 m+\alpha+\beta}{m}\binom{n+\beta}{m}}{\binom{2 m}{m}\binom{2 n+\alpha+\beta+1}{2 m}\binom{m+\alpha}{m}} \tag{2.3}
\end{align*}
$$

Clearly $g_{n+m}>0$ and $g_{n-m}>0$. Setting $j=0$ and then $j=1$ in (2.1) and using $g_{s-1}=0$, we obtain:

$$
\begin{equation*}
g_{s+1}=\frac{4 b m(n+a)(2 s+a+2)}{(2 n+a+1)(2 m+a-1)(2 s+a-b+1)} g_{s} \tag{2.4}
\end{equation*}
$$

and

$$
\begin{align*}
\frac{(s+1)(2 n+a+2)(2 m+a-2)(2 s+a-b+3)}{(2 s+a+3)(2 s+a+4)} & g_{s+2} \tag{2.5}\\
& =C m(n+a)\left(a A+b^{2} B\right) g_{s}
\end{align*}
$$

where

$$
\begin{gathered}
A=A(m, n, a)=(2 n+a+1)(2 m+a-1)(2 s+a+3)(2 s+a+1)^{2}, \\
B=B(m, n, a)=4(2 s+a+2)[(s+1)(2 m-1)(2 n+2 a+1)(2 s+a+1) \\
-m(n+a)(2 s+1)(2 s+a+3)] \\
-a(2 n+a+1)(2 m+a-1)(2 s+a+3), \\
C=C(m, n, a, b) \quad \\
=[(2 n+a+1)(2 m+a-1)(2 s+a+1)(2 s+a+3) \\
\\
\times(2 s+a-b+1)]^{-1} .
\end{gathered}
$$

Note that $A>0$ and $C>0$ when $n \geqq m \geqq 1$. Since $g_{s}>0$, it follows from (2.4) that if $\beta>\alpha$, then $g_{s+1}=g(n-m+1, m, n)<0, n \geqq m \geqq 1$, while if $\alpha \geqq \beta$, then $g_{s+1}=g(n-m+1, m, n) \geqq 0, n \geqq m \geqq 1$. Hence, because $g_{n-m}>0$ and $g_{n+m}>0$, we have $g(k, m, n) \geqq 0$ when $\alpha \geqq \beta$ and $n \geqq m=1$. When $n=m=2$ we have

$$
a A+b^{2} B=(a+1)^{2}\left[a(a+5)(a+3)^{2}-\left(a^{2}-7 a-24\right) b^{2}\right],
$$

so that by (2.5), $g_{s+2}=g(2,2,2) \geqq 0$ if and only if

$$
a(a+5)(a+3)^{2} \geqq\left(a^{2}-7 a-24\right) b^{2}
$$

Consequently, in view of the definition of V, we have reduced the proof to showing that if $(\alpha, \beta) \in V, n \geqq m \geqq 2$, and $n \geqq 3$, then

$$
\begin{equation*}
g_{s+j+1}=g(s+j+1, m, n) \geqq 0, \quad j=1,2, \ldots, 2 m-2 \tag{2.6}
\end{equation*}
$$

In proving this we may assume that $a<0$, for we have already considered the case $a \geqq 0$ in [4]. Set $J=j-1$ and write the coefficient of g_{s+j} in (2.1) in the form

$$
\begin{equation*}
\operatorname{coef}\left(g_{s+j}\right)=\frac{b F(J)}{(2 s+2 J+a+1)(2 s+2 J+a+3)} \tag{2.7}
\end{equation*}
$$

where

$$
\begin{gathered}
F(J)=(J+2)(2 s+J+2)(2 m-J-1)(2 s+2 m+J+2 a+1) \\
\times(2 s+2 J+a+1)-(J+1)(2 s+J+1)(2 m-J) \\
\times(2 s+2 m+J+2 a)(2 s+2 J+a+3) \\
=-6 J^{4}-12[2 s+a+2] J^{3}+2\left[-16 s^{2}+4(m-4 a-9) s\right. \\
\left.+4 m(m+a)-3 a^{2}-19 a-17\right] J^{2}+2\left[-8 s^{3}+4(2 m-3 a-8) s^{2}\right. \\
+2\left\{2 m(2 m+3 a+2)-2 a^{2}-17 a-17\right\} s+4 m(m+a)(a+2) \\
\left.\quad-7 a^{2}-19 a-10\right] J+\left[16(m-1) s^{3}+8\{2 m+(3 a+1)\right. \\
+3\}(m-1) s^{2}+4\left\{2 m(a+2)+2 a^{2}+3(3 a+1)+2\right\}(m-1) s \\
\left.+(3 m-2)\left(4 a^{2}+11 a+3\right)+\{2(3 a+1)(2 m-1)+a+1\}(m-2)\right] \\
=a_{4} J^{4}+a_{3} J^{3}+a_{2} J^{2}+a_{1} J+a_{0} .
\end{gathered}
$$

Since, from (1.6), $3 a+1>0$ and $4 a^{2}+11 a+3>0$, it is clear that $a_{4}<0, a_{3}<0, a_{0}>0$, and
$a_{1}-2 s a_{2}=2\left[24 s^{3}+20(a+2) s^{2}\right.$
$+2\left\{2(m-1)+2(a+1)(m+1)+a^{2}\right\} s+a^{2}(4 m-7)$
$\left.+\left\{4\left(m^{2}-4\right)+8(m-2)+13\right\}(a+1)+4 m(m-2)+9\right]>0$.
Hence, $F(J)$ has only one variation of sign, and so by Descartes' rule there exists a positive integer $J_{0}=J_{0}(m, n, a)$ such that

$$
F(J) \geqq 0, \quad J=0,1, \ldots, J_{0}-1
$$

and $F(J)<0, J=J_{0}, J_{0}+1, \ldots$. Thus by (2.7),

$$
\operatorname{coef}\left(g_{s+j}\right) \geqq 0, \quad j=1,2, \ldots, J_{0}
$$

and coef $\left(g_{s+j}\right) \leqq 0, j=J_{0}+1, J_{0}+2, \ldots$. In (2.1) we have

$$
\operatorname{coef}\left(g_{s+j+1}\right)>0, \quad j=1,2, \ldots, 2 m-2
$$

and $\operatorname{coef}\left(g_{s+j-1}\right)>0, j=2,3, \ldots, 2 m$. But coef $\left(g_{s+j+1}\right)<0$ for $j=2 m-1$ and coef $\left(g_{s+j-1}\right)<0$ for $j=1$ since $a<0$. This presents difficulties not encountered in the case $a \geqq 0$. Nevertheless, if we could prove (2.6) for $j=1,2 m-3,2 m-2$, then the general case would easily follow. For, with (2.6) for $j=1,2 m-3,2 m-2$ and our previous observations, we would have

$$
g_{s+j} \geqq 0, \quad j=0,1,2,2 m-2,2 m-1,2 m
$$

and so by successive applications of (2.1) with $j=2,3 \ldots, \min \left(J_{0}, 2 m-4\right)$ and (if $J_{0}<2 m-4$) $j=2 m-2,2 m-3, \ldots, J_{0}+1$ we would obtain (2.6). Consequently, it suffices to prove (2.6) for $j=1,2 m-3,2 m-2$.

Let us first consider the case $j=1$; i.e., $g_{s+2} \geqq 0$. Put

$$
D(a)=\left(a^{2}-7 a-24\right) A+(a+5)(a+3)^{2} B
$$

If $D(a) \geqq 0$, then by the definition of V, we have

$$
(a+5)(a+3)^{2}\left[a A+b^{2} B\right] \geqq b^{2} D(a) \geqq 0,
$$

which implies that $g_{s+2} \geqq 0$. We obtain $D(a) \geqq 0,-\frac{1}{3}<a<0$, by demonstrating that
(2.8) $D\left(-\frac{1}{3}\right) \geqq 0, \quad D^{\prime}\left(-\frac{1}{3}\right) \geqq 0, \quad D^{\prime \prime}(a) \geqq 0, \quad-\frac{1}{3} \leqq a \leqq 0$,
where the primes indicate differentiations with respect to a. A long computation yields

$$
\begin{array}{r}
D(a)=4\left\{[(2 m-1) s+3 m-6] a^{6}+\left[(10 m-5) s^{2}+\left(2 m^{2}+43 m-58\right) s\right.\right. \\
\left.+3 m^{2}+24 m-60\right] a^{5}+\left[(16 m-8) s^{3}+\left(8 m^{2}+156 m-188\right) s^{2}\right. \\
\left.+\left(40 m^{2}+222 m-436\right) s+24 m^{2}+72 m-240\right] a^{4}+\left[(8 m-4) s^{4}\right. \\
+\left(8 m^{2}+212 m-252\right) s^{3}+\left(116 m^{2}+622 m-1096\right) s^{2} \\
\left.+\left(198 m^{2}+470 m-1342\right) s+72 m^{2}+102 m-492\right] a^{3} \\
+\left[(96 m-120) s^{4}+\left(96 m^{2}+680 m-1120\right) s^{3}\right. \\
+\left(424 m^{2}+954 m-2482\right) s^{2}+\left(398 m^{2}+454 m-2023\right) s \\
\left.+102 m^{2}+69 m-546\right] a^{2}+\left[(256 m-380) s^{4}\right. \\
+\left(256 m^{2}+724 m-1668\right) s^{3}+\left(556 m^{2}+592 m-2451\right) s^{2} \\
\left.\quad+\left(352 m^{2}+183 m-1480\right) s+69 m^{2}+18 m-312\right] a \\
\quad+\left[(168 m-264) s^{4}+\left(168 m^{2}+240 m-792\right) s^{3}\right. \\
=4\left\{d_{6} a^{6}+d_{5} a^{5}+\ldots+d_{1} a+d_{0}\right\} .
\end{array}
$$

Each d_{k} is positive since $m \geqq 2$. Therefore

$$
\begin{aligned}
& D\left(-\frac{1}{3}\right) \geqq \frac{4}{27}\left\{-d_{5}-d_{3}+3 d_{2}-9 d_{1}+27 d_{0}\right\} \\
& =\frac{4}{27}\left\{[2512(m-2)+960] s^{4}+\left[2512\left(m^{2}-4\right)\right.\right. \\
& +1792 m+568] s^{3}+\left[2632(m-2)^{2}+10508(m-2)\right. \\
& +2388] s^{2}+\left[904(m-2)^{2}+3304(m-2)+303\right] s \\
& \left.+96(m-2)^{2}+303(m-2)\right\} \geqq 0, \\
& D^{\prime}\left(-\frac{1}{3}\right) \geqq \frac{4}{27}\left\{-d_{6}-4 d_{4}+9 d_{3}-18 d_{2}+27 d_{1}\right\} \\
& =\frac{4}{27}\left\{[5256(m-2)+2376] s^{4}+\left[5256\left(m^{2}-4\right)\right.\right. \\
& +9152(m-2)+12216] s^{3}+\left[8392\left(m^{2}-4\right)+3786 m\right. \\
& +2955] s^{2}+\left[3962\left(m^{2}-4\right)+109 m+1969\right] s \\
& \left.+579(m-2)^{2}+2187(m-2)\right\} \geqq 0,
\end{aligned}
$$

and, for $-\frac{1}{3} \leqq a \leqq 0$,
$D^{\prime \prime}(a) \geqq 4\left\{-d_{5}-2 d_{3}+2 d_{2}\right\}$

$$
\begin{array}{r}
=4\left\{[176(m-2)+120] s^{4}+\left[176 m^{2}+936(m-2)\right.\right. \\
+136] s^{3}+\left[616(m-2)^{2}+3118(m-2)+1005\right] s^{2} \\
+\left[398(m-2)^{2}+1517(m-2)+138\right] s+57(m-2)^{2} \\
+138(m-2)\} \geqq 0 .
\end{array}
$$

This yields (2.8) and hence (2.6) for $j=1$.
Now we consider the cases $j=2 m-2$ and $j=2 m-3$ of (2.6). Setting $j=2 m$ and then $j=2 m-1$ in (2.1) and using $g_{s+2 m+1}=0$, we obtain

$$
\begin{equation*}
g_{n+m-1}=\frac{4 b n m(2 n+2 m+a-2)}{(2 n+2 m+a+b-1)(2 n+a-1)(2 m+a-1)} g_{n+m} \tag{2.9}
\end{equation*}
$$

and

$$
\begin{align*}
& \frac{(2 n+2 m+a+b-3)(n+m+a-1)}{(2 n+2 m+a-4)} \tag{2.10}\\
& \quad \times \frac{(2 n+a-2)(2 m+a-2)}{(2 n+2 m+a-3)} g_{n+m-2}=\operatorname{Mnm}\left(a K+b^{2} L\right) g_{n+m}
\end{align*}
$$

where

$$
\begin{aligned}
& K=K(m, n, a)=(2 n+2 m+a-3)(2 n+a-1) \\
& \quad \times(2 m+a-1)(2 n+2 m+a-1)^{2}, \\
& \begin{array}{r}
L=L(m, n, a)=4(2 n+2 m+a-2)[(2 n-1)(2 m-1) \\
\\
\quad \times(n+m+a-1)(2 n+2 m+a-1) \\
\\
\quad-n m(2 n+2 m+2 a-1)(2 n+2 m+a-3)] \\
M=M(m, n, a, b) \quad-a(2 n+a-1)(2 m+a-1)(2 n+2 m+a-3), \\
=
\end{array} \quad[(2 n+a-1)(2 m+a-1)(2 n+2 m+a+b-1) \\
& \\
& \quad \times(2 n+2 m+a-3)(2 n+2 m+a-1)]^{-1} .
\end{aligned}
$$

Note that $K>0$ and $M>0$ for $n \geqq m \geqq 1$. From (2.9), $g_{n+m-1} \geqq 0$ which is (2.6) for $j=2 m-2$. For the remaining case $j=2 m-3$ of (2.6), we observe by an argument similar to the one which precedes (2.8) that it is enough to prove
(2.11) $E\left(-\frac{1}{3}\right)>0, \quad E^{\prime}\left(-\frac{1}{3}\right)>0, \quad E^{\prime \prime}(a)>0, \quad-\frac{1}{3} \leqq a \leqq 0$, where

$$
E(a)=\left(a^{2}-7 a-24\right) K+(a+5)(a+3)^{2} L
$$

$n \geqq m \geqq 2$, and $n \geqq 3$. Let $t=n+m-5$. Then $t \geqq 0$ and

$$
\begin{aligned}
& E(a)=4\left\{\left[(2 m-1) t-2 m^{2}+10 m-9\right] a^{6}+\left[(10 m-5) t^{2}\right.\right. \\
& \left.+\left(-10 m^{2}+117 m-92\right) t-67 m^{2}+335 m-315\right] a^{5} \\
& +\left[(16 m-8) t^{3}+\left(-16 m^{2}+336 m-272\right) t^{2}\right. \\
& \left.+\left(-256 m^{2}+2166 m-2036\right) t-886 m^{2}+4430 m-4356\right] a^{4} \\
& +\left[(8 m-4) t^{4}+\left(-8 m^{2}+332 m-308\right) t^{3}\right. \\
& +\left(-292 m^{2}+3898 m-4036\right) t^{2}+\left(-2438 m^{2}+18018 m-18934\right) t \\
& \left.-5828 m^{2}+29140 m-29898\right] a^{3}+\left[(96 m-120) t^{4}\right. \\
& +\left(-96 m^{2}+2264 m-2800\right) t^{3}+\left(-1784 m^{2}+19350 m-23062\right) t^{2} \\
& +\left(-10430 m^{2}+71710 m-81123\right) t-19560 m^{2} \\
& +97800 m-104013] a^{2}+\left[(256 m-380) t^{4}\right. \\
& +\left(-256 m^{2}+5068 m-6988\right) t^{3}+\left(-3788 m^{2}+37492 m-47895\right) t^{2} \\
& +\left(-18552 m^{2}+122865 m-145134\right) t-30105 m^{2} \\
& +150525 m-164187] a+\left[(168 m-264) t^{4}\right. \\
& +\left(-168 m^{2}+3120 m-4488\right) t^{3}+\left(-2280 m^{2}+21714 m-28602\right) t^{2} \\
& \left.\left.+\left(-10314 m^{2}+67122 m-81000\right) t-15552 m^{2}+77760 m-86022\right]\right\} \\
& =4\left\{e_{6} a^{6}+e_{5} a^{5}+\ldots+e_{1} a+e_{0}\right\} .
\end{aligned}
$$

Each e_{k} is positive when $n \geqq m \geqq 2$ and $n \geqq 3$. This can be seen by appropriately rewriting each e_{k} as a sum of positive terms of the form $n(m-2) t^{3}$, $m(n-3) t^{3}, m(n-m) t, n(m-2)$, etc. To illustrate one such arrangement we write

$$
\begin{aligned}
& e_{1}=\left[\{190 n(m-2)+66 m(n-3)\} t^{3}+\{2544 n(m-2)\right. \\
&+182 m(n-m)+880 m(n-3)\} t^{2}+\{11228 n(m-2)+n \\
&+1538 m(n-m)+4248 m(n-3)\} t+16430 n(m-2)+n \\
&+9633 m(n-3)+2021 m(n-m)+6145 m+108]
\end{aligned}
$$

from which its positivity is obvious. Due to the positivity of each e_{k} we have

$$
\left.\begin{array}{rl}
E\left(-\frac{1}{3}\right) \geqq \frac{4}{27}\left\{-e_{5}-e_{3}+3 e_{2}-9 e_{1}+27 e_{0}\right\} \\
= & \frac{4}{27}\left\{[2032 n(m-2)+480 m(n-3)] t^{3}+[23028 n(m-2)\right. \\
& +2624 m(n-m)+4252 m(n-3)] t^{2}+[88032 n(m-2) \\
& +20180 m(n-m)+11960 m(n-3)] t+112409 n(m-2) \\
& +n+39284 m(n-m)+10767 m(n-3)+3904(m-2) \\
+5156\}>0
\end{array}\right) \quad \begin{aligned}
& E^{\prime}\left(-\frac{1}{3}\right) \geqq \frac{4}{27}\left\{-e_{6}-4 e_{4}+9 e_{3}-18 e_{2}+27 e_{1}\right\} \\
&= \frac{4}{27}\left\{[4068 n(m-2)+1188 m(n-3)] t^{3}+[50168 n(m-2)\right. \\
&+4572 m(n-m)+13416 m(n-3)] t^{2}+[205803 n(m-2) \\
&+ n \\
&+37228 m(n-m)+53823 m(n-3)] t+281320 n(m-2) \\
&+6396 m(n)+100349 m(n-3)+58387 m+736\}>0
\end{aligned}
$$

and, for $-\frac{1}{3} \leqq a \leqq 0$,

$$
\begin{aligned}
E^{\prime \prime}(a) \geqq 4\left\{-e_{5}-2 e_{3}\right. & \left.+2 e_{2}\right\} \\
= & 4\left\{[116 n(m-2)+60 m(n-3)] t^{3}+[1912 n(m-2)\right. \\
& +52 m(n-m)+968 m(n-3)] t^{2}+[9464 n(m-2) \\
+n & +660 m(n-m)+5190 m(n-3)] t+14836 n(m-2) \\
+n+ & 57 m(n-m)+12447 m(n-3)+7955 m+440\}>0
\end{aligned}
$$

This concludes the proof.
3. Proof of Theorem 2. In order to indicate the origin of the set W and to give the main idea behind our proof, we begin by mentioning that W is also a best possible set in the sense that it is the answer to the following question.

Question 3. Find each (α, β) for which there exists a number $N=N(\alpha, \beta)$ such that

$$
\begin{equation*}
g(k, m, n ; \alpha, \beta) \geqq 0, \quad n \geqq N, \quad n \geqq m \tag{3.1}
\end{equation*}
$$

Since (3.1) implies (1.4) and since the unboundedness of $g(0, n, n ; \alpha, \beta)$ for $-1<\alpha<-\frac{1}{2}$ follows immediately by applying Stirling's formula to (2.3), we may confine ourselves to proving that the set W answers Question 3.

Due to our observations in § 2 we may assume that $n \geqq m \geqq 2, \alpha \geqq \beta$, and $a<0$. Then, from (2.5), $g(s+2, m, n) \geqq 0$ if and only if $a A+b^{2} B \geqq 0$. Since

$$
\begin{aligned}
& B(m, n,-1)=32(m-1)\left[s^{2}+(m+1) s+m\right] s^{2} \geqq 0 \\
& B^{\prime}(m, n,-1)=4\left[16(m-1) s^{2}+\left(8 m^{2}+8 m-15\right) s+8 m(m-1)\right] s \geqq 0
\end{aligned}
$$

$$
\text { and, for }-1 \leqq a \leqq 0,
$$

$$
\begin{aligned}
B^{\prime \prime}(m, n, a)=-12 a^{2}+ & 6 a[(8 m-12) s+8 m-11]+(80 m-88) s^{2} \\
& +\left(16 m^{2}+112 m-144\right) s+16 m^{2}+32 m-54 \\
& \geqq 8\left[(10 m-11) s^{2}+\left(2 m^{2}+8 m-9\right) s+2 m(m-1)\right]>0,
\end{aligned}
$$

where primes indicate differentiations with respect to a, we have $B>0$ for $-1<a \leqq 0$. Hence $b^{2}=-a A / B$ determines a curve which we denote by $\gamma(m, n)$. Since

$$
\lim _{n \rightarrow \infty} \frac{-a A(n, n, a)}{B(n, n, a)}=-\frac{a(a+3)}{2}
$$

the curves $\gamma(n, n)$ tend to the curve $b^{2}=-a(a+3) / 2$ as $n \rightarrow \infty$. In addition, if $b^{2} \leqq-a(a+3) / 2$, then by the positivity of B, we have

$$
\begin{aligned}
2\left[a A(n, n, a)+b^{2} B(n, n, a)\right] \leqq 2 a A(n, n, a) & -a(a+3) B(n, n, a) \\
= & 3 a(a+1)^{3}(a+2)(a+3)<0
\end{aligned}
$$

i.e., $g(2, n, n ; \alpha, \beta)<0$ when $b^{2} \leqq-a(a+3) / 2$ and $a<0$. Consequently, (3.1) does not hold when $(\alpha, \beta) \notin W$.

To show that (3.1) holds when $(\alpha, \beta) \in W$, we first consider the function $F(J)=a_{4} J^{4}+\ldots+a_{1} J+a_{0}$ defined in §2. It is clear that we still have $a_{4}<0, a_{3}<0$, and $a_{1}-2 s a_{2}>0$. Even though a_{0} can now take on negative values, it is positive provided that n is sufficiently large (depending only on $(\alpha, \beta))$. For it follows from

$$
\begin{aligned}
a_{0}=4\left[4(n+a+1)(m-1) s^{2}+\right. & 2\left\{n(a+2)+a^{2}+3 a+2\right\}(m-1) s \\
& \left.+(3 a+1)(n+a+1)(m-1)+a^{2}+a\right]
\end{aligned}
$$

and $3 a+1>0$ that there exists a number $N_{1}=N_{1}(a)$ such that $a_{0}>0$ whenever $n \geqq N_{1}$. Consequently, our remarks in $\S 2$ concerning $F(J)$ are still valid when $n \geqq N_{1}$, and so it suffices to prove for each (α, β) under consideration that $a A+b^{2} B \geqq 0$ and $a K+b^{2} L \geqq 0$ whenever $n \geqq N=N(\alpha, \beta) \geqq N_{1}$.

Fix (α, β) and choose $\epsilon=\epsilon(\alpha, \beta)>0$ so small that $2 b^{2}>\epsilon-a(a+3)$. This is possible by the definition of W. Since (2.11) implies that $E(a)>0$, $-\frac{1}{3}<a<0$, it follows that we also have $L>0,-\frac{1}{3}<a<0$. Thus, if

$$
X=2 a A+\left(\epsilon-a^{2}-3 a\right) B \geqq 0
$$

and

$$
Y=2 a K+\left(\epsilon-a^{2}-3 a\right) L \geqq 0
$$

then $a A+b^{2} B>0$ and $a K+b^{2} L>0$. We shall now show that there is a number $N=N(\alpha, \beta) \geqq N_{1}$ such that $X \geqq 0$ and $Y \geqq 0$ for $n \geqq N$. To handle X we write

$$
\begin{aligned}
& X=32[\epsilon(m-1)-a(a+1)(m-2)] s^{4}+32\left[\epsilon m^{2}-a(a+1) m^{2}\right. \\
&+S(\epsilon, a, m)] s^{3}+32\left[\epsilon(a+2) m^{2}-a(a+1)^{2} m^{2}\right. \\
&+S(\epsilon, a, m)] s^{2}+8\left[\epsilon(a+1)(a+5) m^{2}-a(a+1)^{3} m^{2}\right. \\
&+S(\epsilon, a, m)] s+8 \epsilon(a+1)^{2} m^{2}+S(\epsilon, a, m),
\end{aligned}
$$

where $S(\epsilon, a, m)$ denotes a polynomial in ϵ, a, and m, not necessarily the same at each occurrence, which contains m to at most the first power.

From this representation of X it is clear that there exists a number $N_{2}=N_{2}(\alpha, \beta)$ such that when $m \geqq N_{2}$ the function X, as a polynomial in s, has positive coefficients and so is positive. Hence, since $s=n-m$ and the coefficient of s^{4} is (strictly) positive, there also exists a number $N_{3}=N_{3}(\alpha, \beta)$ such that $X \geqq 0$ when $m \leqq N_{2}$ and $n \geqq N_{3}$. Thus $X \geqq 0$ when $n \geqq N_{3}$. Next

$$
\begin{aligned}
& Y=32\left[\{-a(a+1)(1-2 a)+2(1-a) \epsilon\}(n+m)^{2}\right. \\
& +T(\epsilon, a, n+m ; 1)](m-2)^{2}+32[\{-a(a+1) n \\
& \left.\quad+\epsilon n+2 a \epsilon-3 \epsilon-2 a^{3}+a^{2}+3 a\right\}(n+m)^{3} \\
& +T(\epsilon, a, n+m ; 2)](m-2)+32\left[\epsilon(n+2 a-3)(n+m)^{3}\right. \\
& \quad+T(\epsilon, a, n+m ; 2)]
\end{aligned}
$$

where $T(\epsilon, a, n+m ; k)$ denotes a polynomial in ϵ, a and $n+m$, not necessarily the same at each occurrence, which contains $n+m$ to at most the k th power.

Since $n \geqq m \geqq 2$ and $-\frac{1}{3}<a<0$, it follows from this representation of Y that there is a number $N_{4}=N_{4}(\alpha, \beta)$ such that each term in brackets is positive when $n \geqq N_{4}$, and so $Y \geqq 0$ when $n \geqq N_{4}$. The proof is complete once we put $N=\max \left(N_{1}, N_{3}, N_{4}\right)$.

Appendix. We shall show here that if $\beta>\alpha>-1$, then (1.4) does not hold. Setting $x=-1$ in (1.2) and using

$$
P_{n}^{(\alpha, \beta)}(-1)=(-1)^{n}\binom{n+\beta}{n}
$$

we obtain

$$
u^{2}(n ; \alpha, \beta)=\sum_{k=0}^{2 n}(-1)^{k} g(k, n, n ; \alpha, \beta) u(k ; \alpha, \beta)
$$

where

$$
u(n ; \alpha, \beta)=\binom{n+\beta}{n}\binom{n+\alpha}{n}^{-1}
$$

If (1.4) held for some (α, β) with $\beta>\alpha$, then, since $u(k ; \alpha, \beta)$ is an increasing function of k when $\beta>\alpha$, we would have

$$
u^{2}(n ; \alpha, \beta) \leqq G u(2 n ; \alpha, \beta)
$$

But by Stirling's formula this inequality cannot be true for all n. This contradiction proves that (1.4) cannot hold whenever $\beta>\alpha$.

With this result and Theorem 2, we have answered Question 2 for all (α, β) except those belonging to the small set

$$
Z=\left\{(\alpha, \beta):-\frac{1}{2} \leqq \alpha<-\frac{1}{3},-1<\beta<-\frac{1}{2},(\alpha, \beta) \notin W\right\} .
$$

Added in proof. In a joint paper with R. Askey (in preparation) it will be shown that (1.4) also holds for the set Z.

References

1. R. Askey and I. I. Hirschman, Jr., Weighted quadratic norms and ultraspherical polynomials. I, Trans. Amer. Math. Soc. 91 (1959), 294-313.
2. R. Askey and S. Wainger, A dual convolution structure for Jacobi polynomials, pp. 25-36 in Orthogonal expansions and their continuous analogues, Proc. Conf., Edwardsville, Illinois, 1967 (Southern Illinois Univ. Press, Carbondale, Illinois, 1968).
3. A. Erdélyi, Higher transcendental functions, Vol. 2 (McGraw-Hill, New York, 1953).
4. G. Gasper, Linearization of the product of Jacobi polynomials. I, Can. J. Math. 22 (1970), 171-175.
5. I. I. Hirschman, Jr., Harmonic analysis and ultraspherical polynomials, Symposium on Harmonic Analysis and Related Integral Transforms, Cornell University, 1956.
6. E. A. Hylleraas, Linearization of products of Jacobi polynomials, Math. Scand. 10 (1962), 189-200.
7. G. Szegö, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., Vol. 23 (Amer. Math. Soc., Providence, R.I., 1967).

University of Toronto, Toronto, Ontario

[^0]: Received March 17, 1969. This research was supported by the National Research Council of Canada under grant number A-4048.

