
Can. J. Math., Vol. XXII, No. 3,1970, pp. 582-593 

LINEARIZATION OF THE PRODUCT OF JACOBI 
POLYNOMIALS. II 

GEORGE GASPER 

1. Introduction. Let [3, p. 170, (16)] 

(1.1) Pn^\x) = (W + a ) F ( - W , W + a + 0 + l ; a + l ; ( l - x ) / 2 ) 

denote the Jacobi polynomial of order (a, ft), a, ft > — 1, and let g(k, m,n\a, ft) 
be denned by 

(1.2) Rn
(a*\x)Rm

M) (x) = £ g(k,m,n;a,p)R^\x), 
k— | n—m | 

where Rn
{a^(x) = Pn<"&(x)/Pn<°M(l). It is well known [1; 2; 4; 5; 6] that 

the harmonic analysis of Jacobi polynomials depends, at crucial points, on 
the answers to the following two questions. 

Question 1. For which (a, ft) do we have 

(1.3) g(k, m, n; a, ft) ^ 0, k, m, n = 0, 1, . . . ? 

Question 2. For which (a, ft) do we have 

(i.4) E !«(*.*». »;«. 0)| =SG, 

where G depends only on (a, /3)? 

Notice that (1.3) implies (1.4); in fact, since Rn
(a^(l) = 1, (1.2) and 

(1.3) yield 
X) \g(k,m, n',a, ft)\ = 1. 

In [4] we mentioned several applications of (1.3) and (1.4), and we proved 
that if a ^ ft and a + ft + 1 ̂  0, then (1.3) holds. Our aim in this paper is 
to give the answer (Theorem 1) to Question 1 and a partial answer (Theorem 2) 
to Question 2. 

THEOREM 1. Let a > — 1, ft > — l,a = a + ft + l,b=a — ft, and 

V = {(a, ft): a è ft, a (a + 5) (a + 3)2 ^ (a2 - 7a - 24)b2}. 

If (a, ft) Ç F, /&e« (1.3) &tf/Gfo. However, if (a, ft) g F, ̂ ew //zere exisJ positive 
integers k, m, and n such that g(k, m, n;a, ft) < 0. In particular: 
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LINEARIZATION. II 583 

(i) If a ^ 13 and (a, 0) g V, then g(2, 2, 2; a, 0) < 0; 
(ii) If 13 > a, then g(n — rn + 1, ni, n;a, f3) < 0, w = m = 1. 

THEOREM 2. Le/ a and b be defined as in Theorem 1 and let 

W = {(a,P):a ^ 0, 2b* > -a(a + 3)} U { ( - J , - J ) } . 

7/ (a, j(3) G W, then (1.4) ZwWs. However, if —1 < a < —\, then g(0, n, n; a, /3) 
w wo/ bounded and so (1.4) daes wo/ hold. 

Observe that 

{(a,P):a^0> -l,a + 0 + 1 ^ 0} C V C W. 

For — 1 < /3 = — J, the set W is bounded on the left by the curve 

(1.5) b = w(a) = [-a(a + 3)/2]*, - | g a = 0. 

By considering ze/(a) we find that (1.5) determines a path in the (a, /3)-plane 
which starts at ( — -|, —1) and approaches the line a + /3 + 1 = 0 tangentially 
from the left, meeting it at ( —|, —§). 

Similarly, for —1 < 0 = —\, the set F is bounded on the left by a curve 
which starts at (( — 11 + (73)*)/8, —1) and approaches the line a + 0 + 1 = 0 
tangentially, meeting it at ( —§, — | ) . Therefore 

VC {(<*,£): a > i ( —11 + (73)*) = - 0 . 3 0 6 9 . . . } , 
(1.6) 

WC{(a,p):a> - | } . 

Before proving Theorems 1 and 2 we present some applications, the most 
important of which is the following convolution structure. 

Consider (a, 0) fixed and let g(k, m, n) = g(k, m, n; a, 0), 

y(k, m,n) = J Rk
(a^(x)Rm

(a^(x)Rn^\x)(l - x)a(l + x)' dx, 

h(n) = ( J' [Rn^\x)]\l - x)a(l + xfdxj l 

_ (2n + a + p + l)T(n + a+ l)T(n + a + ft + 1) 
2 a + w r ( n + l ) r ( a + l ) r ( a + l ) r ( » + j8 + 1) " 

Then g(&, w, w) = 7(ft, m, n)h(k). If F(w) is defined for n — 0, 1, . . . , then 
we say that F(n) belongs to the class b{a,fi) whenever its norm 

11*11 = £ \F(n)\h(n) 

is finite. For Fi(n), F2(n) 6 &(a,ft we define their convolution Fi * F2by 

(F1*F2)(n) = £ É F1(k)F2(m)y(k,m,n)h(kMrn). 
k=0 m=0 
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For F(n) £ b(a'0) we define its transform F*(x) by 

oo 

F~{x) = X) ^(«)i?„(a^(x)A(w), - 1 g x g l, 

and so the inversion formula is 

F(n) = J ^ ( x ) ^ ( a ' ^ ( x ) ( l - x) a(l + x ) ^ . 

Then, as in [5] for the ultraspherical case a = (3, Theorems 1 and 2 yield 
Corollary 1 and the usual Banach algebra proof of the Wiener-Lévy theorem 
yields Corollary 2. 

COROLLARY 1. If (a, 0) Ç W and Fj(n) G ¥a^\j = 1, 2, 3, *Aew 

(F!*F2)(n) e &(a,/3) 

(i) H^i • F2|| g GII^H II^H, 
(ii) Fi * F2 = F2 * T^i, 

(iii) ^ I * (F 2 * F3) = (T7! * F2) * -^3, 

(iv) (^1*^2)» = Ff(x)F2*(x)t 

where G depends only on (a, /3). If (a, 0) a/s0 belongs to V, then (i) Atf/Js ?£̂ 7/z 
G = 1. 

COROLLARY 2. Suppose that (a, 0) Ç PF, 

oo oo 

/ (*) = Z a(»)i^ (" , / n(*), D | a ( » ) | < oo, 
71=0 7i=0 

aw J 0 is a function holomorphic on an open set containing the range of f. Then 

oo oo 

*(/(*)) = E K«)i?n("'fi(x) Wrfft £ |6(»)| < 00. 
rc=0 n=0 

Closely connected with the above convolution structure is the generalized 
translation operator for which we now have the following result. 

COROLLARY 3. Suppose that f(x) is integrable on ( — 1,1) with respect to 
(1 — x)*(l + xY and let 

F(n) = j f(x)Rn
(a'p\x)(l - x)a(l + x)*dx, 

F(n, m) = J f(x)Rn
{a^(x)Rm

(^\x)(l - x)a(l + x)fi dx. 

If («i i#) G ^ 2Âerc /̂ze operator which takes F(n) into F(n, m), the generalized 
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translate of F(n), is a positive operator in the sense that if F(n) ^ 0, n = 0 , 1 , . . . , 
then F(n, m) ^ 0, n, m = 0, 1, . . . . 

By setting 

£, («,/3) ( >. 

Ore W — p (a,p)/ -J \ > 

F * = { ( « , « : (ft a) 6 7}, 

TF*= {(a,/5):(0,a)<E TF}, 

and using Pn
(a^(x) = ( — l)wPn

(^'a)( — x), one obtains analogous results with 
Rn<°>fi(x), V, and, W replaced by S„(a•">(*), 7*, and IF*, respectively. 

2. Proof of Theorem 1. Our main tool in [4] was a recurrence formula for 
a positive multiple of gk = g(k, ?n, n) = g(k, m, n; a, fi). In order to work 
directly with gA, we first obtain its recurrence formula. 

In [6] Hylleraas let 

yn(z) = F ( - » f * + />; q; z), p + 1 > q > 0, 

and derived a recurrence formula for ck = c(k, m, n), where ck is defined by 

ynym = Z) *̂y* 
k=n—m 

and it is assumed that n ^ m. Setting p = a + f5 -\- 1, q = a + 1, and 
3 = (1 - x)/2, we find from (1.1) and (1.2) that yn(z) = Rn^"^(x) and 
Ck = gi = g{k, m, n). We also set a = a + /3 + 1, b = a — /3, 5 = w — w, 
and £ = 5 + j . Observe that 2 (a + 1) = a + 6 + 1 > 0, 2(0 + 1) = 
a - & + 1 > 0, a > - 1 , 5 ^ 0, and that b è 0 if and only if a ^ 0. The 
recurrence formula [6, (4.13)] for ck yields 

r 2 n (j + 1 ) ( 2 J + j + l)(2n + j + o + 1) 
^•L) (2s + 2j + a + 1) 

(2m - j + a - l)(2s + 2j + a - b + 1) 
X (25 + 2j + a + 2) g s + m 

J (j + 1) (25 + j + 1) (2m - j) (2n + j + 2a) 
L (2s + 2j + a + 1) 

j(25 + j) (2m - j + 1) (2» + j + 2a - 1)1 
(25 + 2j + a - l ) J g s + j 

(2m - j + l)(j + a - l)(2s + j + a - 1) 
"^ (25 + 2j + a - 2) 

(2« + j + 2a - 1)(25 + 2j + a + 6 - 1) 
X (25 + 2j + a - 1) g s + y - 1 
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and the formulas [6, (3.3) and (3.8)] for cn+m and £„_„» yield 

/2n + a+ $\(2m + a + p\/n + m + a\ 
n / \ m / \ n + m / 

(2.2) 

(2.3) gn-

2n+ 2m +a + p\ n + a\(m + a\ 
\ n + m ) \ n ) \ m ) 

(n\(2m + a + f$\(n + p\ 
\m/\ m / \ m / 

(2rn\(2n + a + 13 + l V m + a\ 
\m / \ 2m ) \ m / 

Clearly gn+m > 0 and gn-m > 0. Setting j = 0 and then j = 1 in (2.1) and 
using gs-i = 0, we obtain: 

,OA, ±bm(n + a)(2s + a + 2)  
(ZA) gs+i = " (2n + a + l)(2m + a - l)(2s + a - b + l ) * s 

and 

ro*\ (* + l)(2n + a + 2) (2m + a - 2) (2s + a - b + 3) 
U ^ j (25 + a + 3) (2s + a + 4) g s + 2 

= Cm(n + a)(aA + b2B)gs, 
where 

4 = 4 (m, », a) = (2n + a + 1) (2m + a - 1) (2s + a + 3) (2s + a + l ) 2 , 

5 = B(m,n,a) = 4(2s + a + 2)[(s + l)(2w - 1) (2n + 2a + 1) (2s + a + 1) 

- w ( » + a) (2s + l)(2s + a + 3)] 
-a(2n + a + l)(2m + a - l)(2s + a + 3), 

C = C(m, n, a, b) 

= [(2» + a + 1) (2m + a - 1) (2s + a + 1) (2s + a + 3) 

X (2s + a - b + l ) ] - i . 

Note that A > 0 and C > 0 when » ^ w è 1. Since gs > 0, it follows from 
(2.4) that if 0 > a, then gs+1 = g(n — m -\- 1, m, n) < 0, n ^ m ^ 1, while 
if a ^ j8, then gs+i = g(w — m + 1, m, ») ^ 0, n ^ m ^ 1. Hence, because 
gw_m > 0 and gn+m > 0, we have g(k, m, n) ^ 0 when a ^ ft and w è w = 1. 
When w = w = 2 we have 

a^ + &2£ = (a + iy[a(a + 5)(a + 3)2 - (a2 - 7a - 24)62], 

so that by (2.5), gs+2 = g(2, 2, 2) ^ 0 if and only if 

a(a + 5) (a + 3)2 ^ (a2 - 7a - 24)&2. 

Consequently, in view of the definition of V, we have reduced the proof to 
showing that if (a, j3) Ç F, » ^ m ^ 2, and » ^ 3, then 

(2.6) gs+j+i = g ( j + j + l , w , « ) è 0, j = 1,2, . . . , 2 m - 2. 
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In proving this we may assume that a < 0, for we have already considered 
the case a ^ 0 in [4]. Set J — j — 1 and write the coefficient of gs+j in (2.1) 
in the form 

, „ - u , bF(J)  
(2.7) coet(gs+j) - (2s + 2J + a + 1){2s + 2J + a + 3 ) , 
where 

F(J) = (J + 2)(2s + J + 2)(2m - J - l)(2s + 2m + J + 2a + 1) 

X(2s + 2J+a + 1) - ( / + l)(2s + J + l)(2m - J ) 

X (2s + 2m + J + 2a) (2s + 2J + a + 3) 

= - 6 / 4 - 12[2s + a + 2]J3 + 2[ -16s 2 + 4(m - 4a - 9)s 

+4:m(m + a) - Sa2 - 19a - 17]J2 + 2[-8s* + 4(2m - 3a - 8)s2 

+ 2{2m(2m + 3a + 2) - 2a2 - 17a - 17} <> + 4m(m + a)(a + 2) 

- 7 a 2 - 19a - 10]/ + [16(m - l)s3 + 8{2m + (3a + 1) 

+ 3} (m - l)s2 + 4{2m(a + 2) + 2a2 + 3(3a + 1) + 2J (m - l)s 

+ (3m - 2) (4a2 + 11a + 3) + {2(3a + l)(2m - 1) + a + 1} (m - 2)] 

= aJA + a3/3 + a2J
2 + axJ + a0. 

Since, from (1.6), 3a + 1 > 0 and 4a2 + 11a + 3 > 0, it is clear that 
a4 < 0, a3 < 0, a0 > 0, and 

ai - 2sa2 = 2 [24s3 + 20 (a + 2)s2 

+ 2{2(m - 1) + 2(a + l)(m + 1) + a2}s + a2(4m - 7) 
+ {4(m2 - 4) + 8(m - 2) + 13} (a + 1) + 4m(m - 2) + 9] > 0. 

Hence, F (J) has only one variation of sign, and so by Descartes' rule there 
exists a positive integer J0 = Jo(m, n, a) such that 

F(J) ^ 0, / = 0, 1, . . . , / o - 1, 

and F (J) < 0, J = Jo, Jo + 1, . . . . Thus by (2.7), 

coef (gs+,) ^ 0, j = 1, 2, . . . , J0, 

and coef(g5+;) ^ 0, j = J0 + 1, /o + 2, . . . . I n (2.1) we have 

coef (gs+j+i) > 0> j = 1, 2, . . . , 2m - 2, 

and coef (gs+j-i) > 0, j = 2, 3, . . . , 2m. But coef(g5 + m) < 0 for 7 = 2m — 1 
and coef(gs+j,_i) < 0 for j = 1 since a < 0. This presents difficulties not 
encountered in the case a ^ 0. Nevertheless, if we could prove (2.6) for 
j = 1, 2m — 3, 2m — 2, then the general case would easily follow. For, with 
(2.6) for j = 1, 2m — 3, 2m — 2 and our previous observations, we would 
have 

gs+j ^ 0, j = 0, 1, 2, 2m - 2, 2m - 1, 2m, 

and so by successive applications of (2.1) with j = 2, 3 . . . , min(J0, 2m — 4) 
and (if Jo < 2m — 4) j = 2m — 2, 2m — 3, . . . , Jo + 1 we would obtain 
(2.6). Consequently, it suffices to prove (2.6) for j = 1, 2m — 3, 2m — 2. 
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Let us first consider the case j = 1; i.e., gs+2 ^ 0. Put 

D{p) = (a2 - 7a - 24)4 + (a + 5) (a + 3)2£. 

If D(a) = 0> then by the definition of V, we have 

(a + 5) (a + 3)2[aA + b2B] è è 2^(a) ^ 0, 

which implies that gs+2 à 0. We obtain D(a) ^ 0, — | < a < 0, by demon
strating that 

(2.8) £ > ( - ! ) à 0, Z y ( - i ) â 0, £ " ( a ) ^ 0, - J ^ a ^ 0, 

where the primes indicate differentiations with respect to a. A long computation 
yields 

D(a) = 4{[(2m - 1)5 + 3m - 6]a6 + [(10m - 5)s2 + (2m2 + 43m - 58)s 

+3m 2 + 24m - 60]a5 + [(16m - 8)s3 + (8m2 + 156m - 188)s2 

+ (40m2 + 222m - 436)s + 24m2 + 72m - 240]a4 + [(8m - 4)s4 

+ (8m2 + 212m - 252)s3 + (116m2 + 622m - 1096)s2 

+ (198m2 + 470m - 1342)* + 72m2 + 102m - 492]a3 

+ [(96m - 120)s4 + (96m2 + 680m - 1120)s3 

+ (424m2 + 954m - 2482)s2 + (398m2 + 454m - 2023)s 
+ 102m2 + 69m - 546]a2 + [(256m - 380)s4 

+ (256m2 + 724m - 1668)^3 + (556m2 + 592m - 2451)s2 

+ (352m2 + 183m - 1480)s + 69m2 + 18m - 312]a 

+ [(168m - 264)s4 + (168m2 + 240m - 792)s3 

+ (240m2 + 114m - 882)s2 + (114m2 + 18m - 420)s + 18m2 - 72]} 

= 4{d6a
6 + dba

5 + . . . + dia + do}. 

Each dk is positive since m à 2. Therefore 

D\ï) - êf{~~db ~~dz + Ui "9di + 27do] 

= J^ {[2512(m - 2) + 960]/ + [2512(m2 - 4) 

+ 1792m + 568]/ + [2632 (m - 2)2 + 10508 (m - 2) 

+ 2388]? + [904(m - 2)2 + 3304(m - 2) + 303]s 

+ 96(m - 2)2 + 303(m - 2)} ^ 0, 
D \ 1/ - êr{~d* " édé + 9d* ~ 18d2 + 27Jl} 

= J^ {[5256(m - 2) + 2376]/ + [5256 (tn2 - 4) 

+ 9152 (m - 2) + 12216]/ + [8392 (m2 - 4) + 3786m 

+ 2955]/ + [3962 (m2 - 4) + 109m + 1969]s 
+ 579(m - 2)2 + 2187(m - 2)} ^ 0, 
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and, for — J ^ a ^ 0, 

D"(p) ^ 4 { - ^ 5 - 2J3 + 2rf2| 

= 4{[176(m - 2) + 120]s4 + [176m2 + 936(m - 2) 

+ 136]s3 + [616 (m - 2)2 + 3118(m - 2) + 1005]s2 

+ [398(m - 2)2 + 1517(w - 2) + 138]* + 57(m - 2)2 

+ 138(m - 2)} ^ 0. 

This yields (2.8) and hence (2.6) for j = 1. 
Now we consider the cases j = 2m — 2 and j = 2m — 3 of (2.6). Setting 

j = 2m and then j = 2m — 1 in (2.1) and using gs+2m+i = 0, we obtain 

, . 4fr»m(2» + 2tn + a — 2)  
U 9 ) g*+m-i ~ (2n + 2m + a + b - l)(2n + a - l)(2?n + a - 1) gn+m 

and 

, 9 i m (2w + 2m + a + b - 3)(» + m + a - 1) 
1 ] (2» + 2m + a - 4) 

w (2» + a - 2) (2m + a - 2) . . , v . , 2rN 
X (2» + 2m + a - 3) ^ " 2 = Mnm^aK + 6 « & + " 

where 

K = Z(m, », a) = (2n + 2m + a - 3) (2» + a - 1) 

X (2m + a - 1) (2» + 2m + a - l ) 2 , 

L = L(w, », a) = 4(2» + 2m + a - 2)[(2» - l)(2m - 1) 

X (n + m + a - 1) (2» + 2m + a - 1) 

- » m ( 2 » + 2m + 2a - 1)(2» + 2m + a - 3)] 

- a ( 2 » + a - l)(2m + a - 1)(2» + 2m + a - 3), 

Af = Jkf (w, », a, b) 

= [(2» + a - 1)(2m + a - 1)(2» + 2m + a + b - 1) 

X (2» + 2m + a - 3)(2» + 2m + a - l ) ]" 1 . 

Note that K > 0 and M > 0 for » à m ^ 1. From (2.9), gw+m_i ^ 0 which 
is (2.6) for j = 2m — 2. For the remaining case j = 2m — 3 of (2.6), we 
observe by an argument similar to the one which precedes (2.8) that it is 
enough to prove 

(2.11) £ ( - £ ) > 0, £ ' ( - ! ) > 0, E"(a) > 0, 4 ^ ^ 0 , 

where 

E(a) = (a2 - 7a - 24)X + (a + 5)(a + 3)2L, 
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n ^ m è 2, and n ^ 3. Let t = n + m — 5. Then / ^ 0 and 

E(a) = 4{[(2m - 1)/ - 2m2 + 10m - 9]a6 + [(10m - 5)/2 

+ ( -10m 2 + 117m - 92)/ - 67m2 + 335m - 315]a5 

+ [(16m - 8)/3 + ( -16m 2 + 336m - 272)/2 

+ (-256m2 + 2166m - 2036)/ - 886m2 + 4430m - 4356]a4 

+ [(8m - 4)/4 + ( - 8 m 2 + 332m - 308)/3 

+ (-292m2 + 3898m - 4036)/2 + (-2438m2 + 18018m - 18934)/ 
-5828m2 + 29140m - 29898]a3 + [(96m - 120)/4 

+ ( -96m 2 + 2264m - 2800)/3 + (-1784m2 + 19350m - 23062)/2 

+ (-10430m2 + 71710m - 81123)/ - 19560m2 

+ 97800m - 104013]a2 + [(256m - 380)/4 

+ (-256m2 + 5068m - 6988)/3 + (-3788m2 + 37492m - 47895)/2 

+ (-18552m2 + 122865m - 145134)/ - 30105m2 

+ 150525m - 164187]a + [(168m - 264)/4 

+ (-168m2 + 3120m - 4488)/3 + (-2280m2 + 21714m - 28602)/2 

+ (-10314m2 + 67122m - 81000)/ - 15552m2 + 77760m - 86022]} 
= 4{e6a

6 + eba
5 + . . . + exa + e0}. 

Each ek is positive when n ^ m ^ 2 and n ^ 3. This can be seen by appro
priately rewriting each ek as a sum of positive terms of the form n{m — 2)/3, 
m{n — 3)/3, m{n — m)t, n(m — 2), etc. To illustrate one such arrangement 
we write 

ei = [{190n(m - 2) + 66m(rc - 3)}/3 + {2544w(m - 2) 
+ lS2m(n - m) + SS0m(n - 3)}/2 + {11228w(m - 2) + n 
+ 1538m(n - m) + 4248m(n - 3)}/ + 16430?* (m - 2) + n 

+9633m (w - 3) + 2021m(n - m) + 6145m + 108], 

from which its positivity is obvious. Due to the positivity of each ek we have 

^ ( - f ) è ^ {-e5 - ez + Se2 - Qei + 27e0} 

= ^ {[2032^(m - 2) + 480m(n - 3)]/3 + [23028w(m - 2) 

+ 2624min - m) + 4252m(n - 3)]/2 + [88032n(m - 2) 

+ 20180m(rc - m) + 11960m(» - 3)]/ + 112409^(m - 2) 

+ n + 39284m(n - m) + 10767m(n - 3) + 3904(m - 2) 

+ 5156} > 0, 
E v i) - é{~Ce ~4ei + 9ez "18e2 + 27ei] 

= ^ {[4068n(m - 2) + 1188m(» - 3)]/3 + [50168^(m - 2) 

+ 4572m(n - m) + 13416m(n - 3)]/2 + [205803?* (m - 2) 

+ n + 37228m in - m) + 53823m(n - 3)]/ + 281320?*(m - 2) 
+ 63996m(n - m) + 100349min - 3) + 58387m + 736} > 0 
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and, for —| ^ a ^ 0, 

E"(a) ^ 4 { - e 5 - 2e3 + 2e2} 

= 4{[116w(ro - 2) + 60m(rc - 3)]*3 + [1912w(w - 2) 
+ 52m{n - m) + 968m(n - 3)]t2 + [9464rc(m - 2) 

+rc + 660m in - m) + 5190m(w - 3)]/ + 14836w(m - 2) 

+rc + 5 7 m 0 - m) + 12447m(w - 3) + 7955m + 440} > 0. 

This concludes the proof. 

3. Proof of Theorem 2. In order to indicate the origin of the set W and 
to give the main idea behind our proof, we begin by mentioning that W is 
also a best possible set in the sense that it is the answer to the following 
question. 

Question 3. Find each (a, P) for which there exists a number N = N(<x, P) 
such that 

(3.1) g(k, m, n; a, fi) *£ 0, n ^ N, n ^ m. 

Since (3.1) implies (1.4) and since the unboundedness of g(0, n, n; a, p) 
for — 1 < a < — J follows immediately by applying Stirling's formula to 
(2.3), we may confine ourselves to proving that the set W answers Question 3. 

Due to our observations in § 2 we may assume that n ^ m ^ 2, a ^ P, and 
a < 0. Then, from (2.5), g(s + 2, m, n) ^ 0 if and only if aA + b2B ^ 0. 
Since 

B(m, n, - 1 ) = 32(m - l)[s2 + (m + 1)5 + m]s2 ^ 0, 

B'(m, n, -1) = 4[16(m - l)s2 + (8m2 + 8m - 15)5 + 8m(m - l)]s ^ 0, 

and, for - 1 ^ a ^ 0, 

£"(m, n, a) = - 12a 2 + 6a[(8m - 12)s + Sm - 11] + (80m - 8S)s2 

+ (16m2 + 112m - 144)5 + 16m2 + 32m - 54 

^8[(10m - l l ) s 2 + (2m2 + 8m - 9) s + 2m(m - 1)] > 0, 

where primes indicate differentiations with respect to a, we have B > 0 for 
- K a ^ O . Hence b2 = — aA/B determines a curve which we denote by 
7(m, n). Since 

r —aA(n, n, a) _ a(a + 3) 
n^, B(n,n,a) "~ 2 

the curves 7(n, n) tend to the curve b2 — —a(a + 3)/2 as n —>oo. In addition, 
if b2 ^ — a (a + 3)/2, then by the positivity of B, we have 

2[aA(n, n, a) + b2B(n, n, a)] ^ 2aA(n, n, a) — a (a + 3)£(w, w, a) 

= 3a(a + l)3(a + 2)(a + 3) < 0, 
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i.e., g(2, n, n;a, 0) < 0 when b2 ^ — a (a + 3)/2 and a < 0. Consequently, 
(3.1) does not hold when (a, 0) g PP. 

To show that (3.1) holds when (a, /3) G W, we first consider the function 
F (J) = a4/4 + . . . + a,\J + do defined in § 2. It is clear that we still have 
#4 < 0, a3 < 0, and a\ — 2sa2 > 0. Even though a0 can now take on negative 
values, it is positive provided that n is sufficiently large (depending only on 
(a, j3)). For it follows from 

a0 = 4[4(» + a + l ) (m - l)s2 + 2{n(a + 2) + a2 + 3a + 2} (m - l)s 

+ (3a + 1) (n + a + 1) (m - 1) + a2 + a] 

and 3a + 1 > 0 that there exists a number Ni = iVi(a) such that a0 > 0 
whenever w â Ni- Consequently, our remarks in § 2 concerning F(J) are still 
valid when n à iVi, and so it suffices to prove for each (a, /3) under considera
tion that aA + b2B ^ 0 and aK + b2L ^ 0 whenever n^ N = iV(a, 0) è ^ i -

Fix (a, jS) and choose € = e(a, ft) > 0 so small that 2b2 > e — a(a + 3). 
This is possible by the definition of W. Since (2.11) implies that E(a) > 0, 
— | < a < 0, it follows that we also have L > 0, — ̂  < a < 0. Thus, if 

X = 2aA + (e - a2 - 3a)£ ^ 0 
and 

F = 2aK + (e - «2 - 3a)L ^ 0, 

then aA + Z>2I? > 0 and aK + fr2£ > 0. We shall now show that there is a 
number N = N(a, p) è ^ i such that X ^ 0 and F è 0 for n è -W. To handle 
X we write 

X = 32[e(w - 1) - a(a + l ) (w - 2)]s4 + 32[em2 - a(a + l)m2 

+5(e , a, w)]53 + 32[€(a + 2)m2 - a{a + l)2m2 

+5(e , a, m)]s2 + 8[e(a + l ) (a + 5)m2 - a (a + l)3m2 

+5(e , a, ra)]s + 8e(a + \)2m2 + 5(e, a, ra), 

where 5(e, a, m) denotes a polynomial in e, a, and m, ?Z0/ necessarily the same 
at each occurrence, which contains m to at most the first power. 

From this representation of X it is clear that there exists a number 
N2 = N2(a, P) such that when m ^ N2 the function X, as a polynomial in 5, 
has positive coefficients and so is positive. Hence, since s = n — m and the 
coefficient of sA is (strictly) positive, there also exists a number Nz = Nz(a, /3) 
such that X ^ 0 when m ^ N2 and » ^ iV8. Thus 1 ^ 0 when » 2> Nz. Next 

F = 32[{-a (a + 1)(1 - 2a) + 2(1 - a)e}(n + m)2 

+ T(eya,n + m;l)](m - 2)2 + 32[{-a(a + \)n 

+ en + 2ae - 3e - 2a3 + a2 + 3a} (n + ra)3 

+ r(e, a, » + w;2)](w - 2) + 32[e(̂  + 2a - 3)(« + m) 3 

+ r(€, a, # + m; 2)], 

where T(e, a,n + m;k) denotes a polynomial in e, a and w + m, not necessarily 
the same at each occurrence, which contains n + m to at most the &th power. 
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Since n ^ m ^ 2 and — \ < a < 0, it follows from this representation of Y 
that there is a number iV4 = NA(a, f}) such that each term in brackets is 
positive when n ^ iV4, and so Y ^ 0 when n ^ iV4. The proof is complete 
once we put N = max(iVi, iV3, iV4). 

Appendix. We shall show here that if ft > a > — 1, then (1.4) does not hold. 
Setting x = —1 in (1.2) and using 

p„ c "« ) ( - i ) = <- i ) " ( f f + / 3 ) , 

we obtain 

In 

A;=0 

where 

If (1.4) held for some (a, /3) with /3 > a, then, since «(£;«, 0) is an increasing 
function of fe when /3 > a, we would have 

u2(n',a,p) ^ Gu(2n;a,p). 

But by Stirling's formula this inequality cannot be true for all n. This con
tradiction proves that (1.4) cannot hold whenever f$ > a. 

With this result and Theorem 2, we have answered Question 2 for all (a, /3) 
except those belonging to the small set 

Z = {(a,/3): - J ^a< - | , - 1 < 0 < - J , («, 0) g IF}. 

Added in proof. In a joint paper with R. Askey (in preparation) it will be 
shown that (1.4) also holds for the set Z. 
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