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1. INTRODUCTION 

In a non-inertial reference frame, of which the motion is given,the 
differential equations describing the rotation of a planet around its 
center of mass can be derived either under the form of Euler type equa­
tions, or from certain relations between angular velocity vectors or 
even angles. Unfortunately these equations are not well adapted to an 
analytical integration. Nevertheless, with some simplifications, Ward 
(1973), and Christensen (1977), by considering the motion of the spin 
axis in a non-inertial reference frame attached to the moving orbital 
plane, have found very large periodic variations in the obliquity of 
the Mars planet over a period of the order 1.2 10+5 years, which would 
be of great importance to the climatic history of the planet. 
These oscillations cannot be attributed to the relative motion with res­
pect to the orbit, but actually they follow geometrically from a reso­
nance-type phenomenon which occurs basically in an inertial space. 

On these basis and for the purpose of making a comprehensive investiga­
tion of the precession and nutations of the Mars planet, we have choosen 
to conduct it in an inertial system of coordinates axis (R). 

2. METHOD 

We have used the Euler dynamical equations with usual notations. Assu­
ming that r remains constant, the method of variation of parameters 
leads to solve the differential systems : 

f = J (L cos st + M sin st) ,.v 
g = J (L sin st - M cos st) 

(j) = [f sin (<p + st) - g cos (<P + st)]/ sin 0 ^ N 
0 = f cos (<p+ st) + g sin (*>+ st) * 
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._, T A + B . 1 / C-A . C-B \ r 
wlth J = TTT and s = 2 < — + — ) 
L and M can be derived from the expansion of the gravitational potential 
energy U of the present bodies (Borderies, 1977)under the form : 

L = [ Y (U) + X (U) ] /2i, M - [ Y (U) - X (U) ] /2 

properties 
2 with i = - 1, and where the operators X and Y satisfy the following 

X < ) = <1 -»•♦,) E ^ 1 

Y < ) = <1 +.•+,) E ^ < 

E, is a Euler function. lm 
These properties allow us to explicit completely the systems (1) and 
(2) in the most general case. In particular this has been done when the 
acting bodies, assumed to be punctual, were the Sun, Jupiter and the 
Earth. In the case of solar torques, a model (6,6) of harmonic coeffi­
cients has been considered for Mars. For nutations due to Jupiter and 
the Earth we have limited ourselves to C~ . The systems (1) and (2) are 
solved analytically by successive approximations. To zero order and 
with the secular part of U we obtain the precession. For the approxima­
tion to first order we take 0 constant 9 (p and <P linear, and mean orbi­
tal elements among which I and Q have been derived from Brouwer and 
Van Woerkom (1951). For the next approximation, the main periodic 
variations are brought in the right hand side members of the equations. 

3. INFLUENCE OF THE SUN 

The precession rate produced by solar torques and then the nutations due 
to the direct effect of the Sun combined with the secular motions of 
Mars orbit have been computed by the above-mentionned method, and for 
any couple of gravity coefficients (C- , , S- , ) . With the current value 
of 0 and a mean value for I, it is found that 0= - 711". per century. 

As it was expected, potential coefficients other than C? produce nuta­
tions of much smaller amplitudes and tesseral harmonics cause short-
periodic oscillations. 

The noteworthy result is the resonant nutation with the coefficient 
C2 and the argument Q - (j> , which is explained by the fact that the 
small factor Q-fy occurs in the denominator of the expressions of the 
amplitudes. This sets the problem of the mean value 60 of 0. 
As yet we have not made this determination. However we have computed 
the nutations of Mars for several values of 60 , ranging from 20° to 30° 
and with a mean value lo of I. The obtained amplitudes for the resonant 
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nutations are listed in table 1. 
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' o 

20° 
22° 
24° 
26° 
28° 
30° 

B l 

8° 3 9 ' 
7° 19 ' 
6° 1 1 ' 
5° 12 ' 
4° 2 0 ' 
3° 3 4 ' 

4 9 " 
4 3 " 
19" 

9" 
2 9 " 
5 9 " 

A l 

- 3° 3 8 ' 
- 3° 3 2 ' 
- 3° 2 6 ' 
- 3° 19 ' 
- 3° 1 3 ' 
- 3° 6 ' 

5 " 
19" 
12" 
4 6 " 

5 " 
1 1 " 

Table 1 - Amplitudes A and B. of the resonant 
nutation on 0 and <j) respectively 
for several values of 0o 

For the next approximation, the main variations of 6 , (j> and 
I are brought in the right-hand side members of the equations 
which are then expanded as Taylor series to first order around 
mean values. 

The nutations resulting from coupling with the variations 
A 6 = A cos V0 and A <l> = B sin V0 , and depending on 

C2 , are snown in Table 2. The very important motion in lon­
gitude with argument tt ~ ̂  is the effect of the large varia­
tion of 6 on the node of Mars equator with respect to the 
xy - plane of (R). The largest terms correspond to the argu­
ments Q -<l>9 2 Q - 2<p and 3 D - 3 (fr . As expected, it is 
found that the other nutations have small amplitudes. 

(xlf/1 

YEARS) 

16.86 

8.43 

5.62 

Ay 

Ae 

Ae 

FIRST ITERATION 

5° 3' 58" 

- 3 ° 18' 47" 

3' 6" 

- 1' 32" 

vo 

4< 

-

-

SECOND ITERATION 

- n - l f 

' 40' 21" 
27" 

18' ]3" 
5' 49" 

5" 
2" 

vo » 2fi-2y 

2" 
- 4" 

1'5" 
0 

6" 

- r 

Table 2 - Amplitudes Aw, and AQ of the nutations with 
arguments fi-</i, 2 f i - 2 ^ 3 D - 3 ^ T is the period. 
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The long periodic behaviour of Mars orbit inclination can be known 
from the theory of the secular variations of the orbital elements of 
the principal planets by Brouwer and Van Woerkom (1951). In this theory 
secular variations of the orbital plane of a planet are expressed as : 

(3) P = s in I s i n fi = V 1 N. s in (- s f . t + e . ) 

Q = s i n I cos Q = } N. cos (- s1 t + e ) (4) 
Tl J J J 
J - 1 

Where I and Q are referred to the ecliptic and equinox of 1950.0 . 
A Fourier analysis of the function I (t) has been achieved and has 
shown that the larger variations can be fairly well represented by 5 
superimposed sinusoids of which we have determined the amplitudes 
and phases by a least-squares process. The obtained values are given in 
Table 3. For mean value of I we have found Io = 3°.57 

K 

1 
2 
3 
H 
5 

HK 
(ARC SECOND/ 

YEAR) 

18.744 
8.100 
6.990 
2.221 
1.110 

\ 
(DEGREES) 

0.67 
0.39 
0.21 
0.17 
1.66 

(DEGREES) 

32 
170 
307 
259 
221 

Table 3. Frequencies (h, ) and corresponding amplitudes (M, ) 
and phase constants (d.) for the inclination 
of Mars 
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An oscillation Al = M cos v of the inclination (with v = ht + c) 
results in nutations depending on C and given in table h. The largest 
amplitudes are obtained with the arguments Q- <l> - v , Q - <\> + v , 
2 Q - 2 (jf - v , 2 O - 2 </> + v and v . They are listed in this order 
for each value of h. 

H 
(ARC SECOND/ 

YEARS) 

18.744 

8.100 

6.990 

2.221 

1.110 

T 

(x If/1 YEARS) 

4.90 
11.72 
3.80 

38.44 
6.91 

8.21 
312.95 

5.52 
17.82 
16.00 

8.83 
186.17 

5.80 
15.46 
18.54 

13.08 
23.71 
7.37 
9.85 

58.36 

14.73 
19.71 
7.86 
9.09 

116.73 

-

-
-

-5° 

-

1° 

-

-
1° 
r 

-3° 

"̂  

8'15" 
19' 43" 

16"-
2'39" 
5'43" 

8' 3" 
6' 34" 

13" 
43" 

7'42" 

5' 19" 
52' 13" 

9" 
23" 

5'30" 

5' 35" 
10' 8" 

8" 
10" 

12' 15" 

1' 26" 
22' 10" 
1'21" 
1' 53" 

59' 13" 

A* 

- 5' 24" 
12' 54" 

8" 
1' 19" 

0 

- 5' 16" 
3° 20' 29" 

7" 
21" 
0 

- 3' 29" 
- 1° 13' 23" 

4" 
11" 
0 

- 3' 39" 
- 6' 37" 

4" 
5" 
0 

- 40' 10" 
- 53' 44" 

40" 
46" 
0 

Table 4 - Nutations inferred from periodic variations 
of I 

The expressions for nutations depending on C~ and arising from the 
torque exerted on Mars by another planet have also been developped by 
the method of variation of parameters. These nutations have been compu­
ted in the case of the Earth and Jupiter. The dominant effects come 
from the latter planet though the amplitude remains very small 
(A</> = l".l , A 0 = 0"7 for the largest, with period 1.2 106 years) 
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0 1 2 3 4 
TIME (»10»«6 TEARS) 

Fig. 1 Variations in the obliquity of Mars 

4. CONCLUSION 

Finally, we have plotted on fig.l the behaviour of the obliquity e 
with respect to the moving orbital plane of Mars. The periodic varia­
tions of e look much more complex than those exhibited by Ward, due 
to the larger number of terms we took into account and to our more 
rigourous approach. Nevertheless, a term with an amplitude of around 
10° and period of 1.2 10^ years also exists in our results and we defi-
nitly think that such a phenomenon has now to be studied for its big 
impact on the planet climatic evolution. 
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