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KRASNOSEL’SKII THEOREMS FOR NON-SEPARATING
COMPACT SETS

BY
N. STAVRAKAS

ABSTRACT. Let ScR9 d=2, be compact and let E denote the
set (d —2)—extreme points of S. M. Breen has shown that if E is
countable and S#E, then S is planar. A new proof of this result is
given as well as a Krasnosl’skii theorem for (d —2) extreme points
which combines and generalizes previous results.

1. Introduction. If S < R¢ let E denote the set of (d —2)-extreme points of
S. In [1], M. Breen proved that if S is compact, E countable and S# E, then S
is planar. Section 2 of this paper gives a significantly shorter and more
straightforward proof of her result. In [1], two Krasnosel’skii type theorems
were proven. Section 3 of this paper gives a theorem which yields the latter two
results as corollaries and its proof requires much less machinery than is used in
[1]. Throughout, we employ the terminology of [1].

2. The cardinality of E. The following is Theorem 1 of [1] and we state it in
the contrapositive form.

THEOREM 1. Let S = R? be compact. If S# R? then S=E or card E =c.

Proof. Let H be a hyperplane with HNS#@. We claim ext(HNS)<E.
Suppose not. Then there exists x € ext(HN S) and a (d —1)-simplex D < § with
xerelint D. Then dim(DNH)=d—-2=1 and xerel int(D N H), a contradic-
tion.

We now prove the theorem in the case that S is connected. Without loss of
generality, we suppose S& R?™'. Then there exists a hyperplane H and an
open half-space H" of H such that SNH#@® and SNH*#@. Let xeSNH"
and y e SN H. Let ¥ be the family of hyperplanes given by {H, | z €[x, y], with
z € H, and H, parallel to H}. Since S is connected and a hyperplane separates
R? we must have H, NS#@ for all ze[x, y]. Since any two elements of ¥
have empty intersection and card # = ¢ we will be done if for any z €[x, y] we
have that H, N E# (. But the latter is true by the claim of the first paragraph,
and this completes the proof in the case that S is connected.
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To prove the general case, not that if S=E we are done, so suppose S# E.
Let x € S~ E. Then there exists a (d —1)-simplex D = S with x erelint D. Let
F be the flat generated by D and let C be the component of FN S containing
D. Now note relint C# @ and so C is a compact, connected set of topological
dimension k =d —1=2. Hence card rel bd C) =c. If rel bd C < E, we are done.
Thus, suppose there exists y € (relbd C)~E. Let G be a (d — 1)-simplex, with
GcS and yerelint G. Note G¢F, for otherwise we contradict that ye
rel bd C. Then G U C is a compact, connected subset of S with G U C¢ R, Let
Q be the component of S containing G U C. Note that Q¢ R* and that any
(d—2)-extreme point of Q is a (d—2)-extreme point of S. The proof is
completed by applying the connected case of the theorem to Q.

3. Helly-type results and (d —2)-extreme points. The following two results
are the main results of Section 3 of [1].

THEOREM 2. Let ScRY d=2, be a non-empty compact set having the
half-ray property. Suppose for some € >0 every f(d, k) or fewer points of E see
via S a common k-dimensional e-neighborhood, where f(d,0)=f(d, k)=d+1
and f(d, k)=2d for 1=k=d—1. Then S is starshaped and dim Ker S=k.

THEOREM 3. Let Sc R, d=2 be a non-empty compact set with ~S con-

nected. Suppose for some £€>0, every d+1 or fewer points of E see via S a
common d-dimensional -neighborhood. Then dim Ker S =d.

The main tool in the proofs of Theorems 2 and 3 is the Lemma of [2] but both
proofs required additional non-trivial lemmas. We will prove Theorem 4, from
which Theorems 2 and 3 follow as corollaries. The proof will use the Lemma of
[2] but will require no additional results.

THEOREM 4. Let S R? d=2, be a non-empty compact set with ~S con-
nected. Suppose for some € >0, every f(d, k) or fewer points of E see via S a
common k-dimensional e-neighborhood where f(d,0)=f(d,d)=d+1 and
f(d, k)=2d for 1=k=d—1. Then S is starshaped and dim Ker S=k.

Proof. Let % ={conv S, | x € E}. The hypotheses imply that every f(n, k)
members of # have a non-empty k-dimensional intersection. Note that # is a
uniformly bounded family of compact convex sets. Depending on the value of
k, Helly’s theorem or the Lemma of [2] gives that dim [ \gcy R=k. Let z€
MNreu R. To show zeKer S it suffices to prove that given any ye€ ~S, that
L(y, z)= ~S where L(y, z) si the closed half-line with vertex y not containing
z determined by the line containing y and z. Suppose the latter is false.
Without loss of generality we take z as 0., the origin, and suppose that ye ~S
with L(y, 0,) N S# (. Choose w with wé conv S. Since ~S is an open connected
set, it is polygonally connected. Since w € ~S, we may choose a polygonal arc
I = ~8S joining y and w. Let the vertices of | be x4, x5, ... x, with x; =w and
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x, =y. Since | = ~S there exists £ >0 with I, « ~S where I, is the ball about [
of radius £ in the Hausdorff metric. Since w € conv S, we have L(w, 0,) < ~S.
Let [ be the homeomorphic image of f on the interval [1, n]with f(i)=x;, 1 =i<
n. Let j=max{i|L(x,0,)NS =0} Let C(L(x;,0,),8) denote the closed half
cylinder centered about L(x;, 0,) of radius 8. Choose & so that §<g/2 and
C(L(x;,0,),8)NS=0. Let y=sup{a |ac[j,j+1] and C(L(f(a),0,),8)NS =
@}. Note j<y<j+1=n and BNS#®, where B=C(L(f(y), 0,),8). Since
B NS is compact we may choose g€ BN S with ||q||=sup{|r||| r€ BN S} where
| || is the Euclidean norm. Since & <g/2, q is not an element of d—2 dimen-
sional sphere centered about f(vy) at the “beginning” of B. Then there exists a
unique hyperplane G of support to B containing q. The definition of B implies
SNint B=§. Thus we have S, G"* where G is the closed half-space of G
not containing 0,. Thus conv S, = G*. We will be done if we can show qe E
because this will contradict the fact that we have z € (\grey R. Now suppose
that q¢ E. Then there exists a (d —1)-simplex D < S with gerelint D. Note
D < G, lest we contradict the definition of B. We then can produce q;€ DN B,
with ||q4]>|lqll, contradicting the definition of q.

In conclusion, we remark that the latter proof is an adaptation of an
argument of Goodey used in [3] to generalize a result in [4].
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