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Abstract

Biles has called a subring A4 of the ring C(X) a Wallman ring on X whenever
Z(A), the zero sets of function belonging to A4, forms a normal base on X
in the sense of Frink (1964). In the following, we are concerned with the
uniform topology of C(X). We formulate and prove some generalizations
of the Stone-~Weierstrass theorem in this setting.

Subject classification (Amer. Math. Soc. (MOS) 1970): 54 C 30, 54 C 40,
54 C 50, )

1. Introduction

Wallman (1938) gave a method for associating a compact T; space w(F) with a
distributive lattice F; w(F) is the space of all F-ultrafilters and the topology of
w(F) has as a base for closed sets a lattice F* which is isomorphic to the lattice F.
Frink (1964) defined the concept of a normal base F on a Tychonoff space X and
he applied Wallman’s construction to obtain Hausdorff compactifications w(F)
of X. Throughout this paper, X will denote a Tychonoff space (= completely
regular + Hausdorff).

1.1. DerINITION. A collection F of closed subsets of X is called a lattice of
closed subsets of X provided that:

() 9, XeF; and

(2) if A,BeFthen AnBeFand AuBEF.

1.2. DEFINITION. A base F for the closed subsets of X is called a normal base
on X provided:

(1) Fis a lattice of closed subsets of X.

(2) F is disjunctive (that is, if A€ F and xe X~ A, then there exists BeF with
xeBand AnB=4¢).

(3) F is normal (that is, if 4, BeF with AnB =, then there exist C, DeF
with AnD=0, BnC=@ and CuD = X).

If Fis a normal base on X, then w(F) is the set of all F-ultrafilters which becomes
a space as follows: If A€F, let A* be the set of all F-ultrafilters having F as a
member. F* then denotes the set of all A* with A€ F. F* is a base for the closed
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sets of a topology on w(F). w(F) with this topology is always a Hausdorff compacti-
fication of X. Here X is embedded into w(F) by the map which sends each point
x€ X to the F-ultrafilter {4 € F|x€ A}.

Frink observed that the family Z(X) of all zero sets of continuous real valued
functions on X is a normal base on X which gives rise to a compactification
w(Z(X)) equivalent to the Stone-Cech compactification BX of X. He also observed
that if Y is any given compactification (all spaces are Hausdorff) of X, and if
E(X, Y) denotes the subset of C(X) consisting of those real-valued continuous
functions on X which are continuously extendible to all of ¥, then Z(E(X, Y)),
the zero sets of such functions, is a normal base on X, Biles (1970) later called a
subring 4 of C(X) a Wallman ring on X provided Z(A), the zero sets of functions
in A4, is a normal base on X. Bentley and Taylor (1975) studied relationships
between algebraic properties of a Wallman ring 4 and topological properties of
the compactification w(Z(4)) of X.

We adopt our notation and terminology from our two earlier papers; these are
mostly consistent with that of Gillman and Jerison (1960).

2. Generalizations of the Stone—-Weierstrass Theorem

We investigate the consequences of having a Wallman ring which is uniformly
closed; that is, closed in the uniform topology of C(X). Two theorems motivate
this work. One is Urysohn’s Extension Theorem which states: “A subspace .S of
X is C*-embedded in X if and only if any two completely separated sets in S are
completely separated in X.” The proof of this theorem as it appears in Gillman
and Jerison uses the uniform closeness of C*(X) to construct a function in C*(X)
whose restriction to S is a given function in C*(S). The other is the Stone-
Weierstrass Theorem for real-valued functions which states: “If Y is compact
and A is a closed subalgebra of C(Y) which separates points and contains a non-
zero constant function then 4 = C(Y).”

In generalizing the Stone-Weierstrass Theorem, we will consider a compacti-
fication Y of a space X and a Wallman ring 4 on X which is a closed subalgebra
of E(X, Y). This means each function f€ 4 is extendible to Y. Therefore in much
of what follows our Wallman rings will satisfy certain extendibility hypotheses.

We start by presenting a condition which implies that a Wallman ring A contains
only functions which are extendible to w(Z(4)).

2.1. DeriNiTioN (Isbell, 1958). A< C(X) is closed under composition if and
only if for'each fe 4 and ge C(R), gof€ A.

2.2. THEOREM. Let A< C(X) be closed under composition, then Z(4) = {f~*[B]: B
is closed in R and fe A}.
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PRrOOF. Let B be closed in R. B is a zero set of C(R) so there is a function
geC(R) such that B =Z(g). Let fe A, then f1[B] = Z(gof)eZ[A]. Conversely
if Fis a zero set of A, F = Z(f) for some fe A and F = f1[{0}].

We will need to use the Taimanov Theorem.

TaIMANOV THEOREM (Taimanov, 1952). Let X be dense in Y and let f: X—T be
a continuous map of X into a compact space T. Then f can be extended over Y if
and only if for any two subsets B, and B, which are closed in T and disjoint, we have

Cly(f B D Cly(f7B,]) = 2.

2.3. THEOREM. Let A be a Wallman ring on X such that A is closed under
composition and A< C*(X), then A< E(X, w(Z(A))).

Proor. Let fe 4 and let F be a compact subset of R such that f(X]<F. Let B,
and B, be disjoint closed subsets of F. Then f~[B,] and f~1[B,] are disjoint zero
sets of A4 and

Clyzean S BN Clyzean S Bel = O.
Therefore, by the Taimanov Theorem, f has an extension to w(Z[A4]).

To further our investigation we make the following definitions which generalize
the “completely separated” concept from Urysohn’s Extension Theorem.

2.4. DerINITION. Let F be a family of subsets of X and let L& C(X). Then L
discriminates F-sets if and only if F;, F,e F, F;n F, = & and a, b€ R implies there is
a function fe L such that f[F,]<{a} and f[F,]<{b}.

2.5. DerFNImiON. If L< C(X), then _
(1) L discriminates points of X if and only if L discriminates {{x}: x € X }-sets;
(2) L discriminates compact sets of X if and only if L discriminates

{K< X: K is compact}-sets.

2.6. THEOREM. Let L be a sublattice of C(X) which contains the real constants.
If L discrimiantes points of X, then L discriminates compact sets of X.

Proor. Let F, and F;, be disjoint compact subsets of X and let a,beR. If a = b,
then the constant function f = a yields f[F;] = {a} and f[F,] = {b}. Suppose a#b.
Let b>aq and set ¢ = b—a. For each x€F,, y€F, there is a function f,, €L such
that f,,(x) = a—e and £, (y) = b+e.

Let G,, = {ze X: f,(2)<a}. Then x€G,, and so F;< U,.p, G,y Since F; is
compact, there exist x;, ..., x, € Fy such that ;< {J;* G,.,. Let

g, =(@nf{f, :i=1,..,nPva.
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If zeF, then zeG,, for some i€{l,...,n} and f,,,(z) <a which implies g,(z) = a.
Therefore g, [Fy1<{a}.
Let H,={ze H: g,(2)>b}. f,,,(y) = b+efori=1,...,n, and so

(inf{f,,:i=1,..,m)()>b and g,()>b.

Therefore ye H,.

Now we let y vary. F,< U, H,. Since F, is compact, there are yy,...,y,€F
such that < U7, H, . Let h = (sup{g,:j=1,...,m)Ab. If zEF, then g,(z) = a
foreach y € F, and (sup{g,,: j = 1, ...,m})(z) = a which implies h(z) = a. Therefore
h[F]<{a}. If z€€F, then there exists k€{1, ...,m} such that ze H,, and so g, (2)>b
whichimplies that (sup{g,,: j = 1, ...,m}) (z) > b and finally that A(z) = b. Therefore
h[F;}<={b}. heL since L is a lattice and L contains the constant functions.

2.7, THEOREM. If F is a normal base on X, then E(X,w(F)) is a sublattice of
C(X) which contains all real constants.

ProoF. If £, g € E(X, w(F)), then there are ' and g’ € C(w(f)) such that f=f'| X
and g=g'|X. f'Ag’ and f'vg e CW(F)) so fag = (f'rg)| XeE(X,w(F)) and
fvg=(f'vg)| XeE(X,w(F)). Therefore E(X,w(F)) is a sublattice of C(X)).
Obviously the real constants are in E(X, w(F)).

Since E(X, w(F)) is a lattice, we can consider sublattices of E(X, w(F)). We find
that a sublattice of E(X,w(F)) which contains the real constants discriminates
F-sets if and only if the extensions of functions from this sublattice discriminate
points of w(F).

2.8. THEOREM. If F is a normal base on X, L is a sublattice of E(X, w(F)) which
contains the real constants, and H = {fe CW(F)): f| X€L}, then H discriminates
points of w(F) if and only if L discriminates F-sets.

Proor. Assume H discriminates points of X. Let F;, and F,eF such that
FnF,=0, and let a,beR. Cl,z F, and Cl,x) F, are disjoint, compact subsets
of w(F). By Theorem 2.6, H discriminates compact sets of w(F), so there exists a
function g € H such that

(gl X) [Rl=glClypm Fl<{a} and (g|X)[F]<g[Clym Fol<{b}.
g| XeL and so L discriminates F-sets.

Now assume L discriminates F-sets. Let x,yew(F) such that x#y and let
a,beR. There exist F; and F, in F such that xeCl, F,, yeCl,mF, and
F,nF, = @. Then there exists feL such that f[F,]<{a} and f[F,]<{b}. Also, there
is a function geH such that g|X =/ Then g(x)eCl,m(fIF)<{a} and
g() € Clym(f D < {b}.

We are interested in subsets of C(X) which discriminate their own zero sets so
we make the following definition.
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2.9. DEFINITION. Let A be a subset of C(X), then A is discriminating if and only if
the following condition is satisfied: F, F,€Z(4), F;nF, = @ and a,be R implies
there is a function f€ 4 such that f[F;]<{a} and f[F,]<{g}.

2.10. THEOREM. Let A be a subset of C(X), then A is discriminating if and only if
A discriminates Z(A)-sets.

2.11. THEOREM. If A is an inverse closed Wallman ring on X which contains all the
real constants, then A is discriminating.

Proor. Let F; and F,€Z(A) such that F,nF, =@, and let a,bcR. There are
functions f; and f; € A such that F; = Z(f)) and F, = Z(f;). Let

g=0G-a}(fi+/D]+a.
Then ge 4, g[F;]<{a} and g[F,]<{b}.

If we consider what happens when E(X, Y) is discrimintaing we obtain the
following theorem.

2.12. THEOREM. Let Y be a compactification of X, then YXw(Z[E(X, Y)]) if
and only if E(X, Y) is discriminating.

ProoOF. Assume Y2 w(Z(E(X, Y))). Let H;, H,e Z(E(X, Y))suchthat H n H, = O,
and let a,be R. Y is a normal space and Cly H, n Cly H, = @, so there is a function
feC(Y) such that f[Cly HyJ={a} and f[Cly Hy]J<)b}. Let g=f|X. Then
gEE(X, Y), glH,]<{a} and g[H,] < {b}.

Assume E(X, Y) is discriminating. Let H; and H, be disjoint closed subsets of X.
If Cly H, nCly H, = O, then there is a function € C(Y) such that #[Cly H;]< {0}
and h[Cly H,J<{1}. Let g = h|X. Then ge E(X, Y), H,<Z(g) and Hy,=Z(g>1).
Therefore Y<w(Z(E(X, Y))).

If Clyzigx,vipHi0Clyzipx,rip Ho =D then there are Fy,F,eZ(E(X,Y))
such that H;<F,, H,=F, and F,nF, =@. Since E(X, Y) is discriminating there
is a function ge E(X, Y) such that g[F;]<{0} and g[F,]<{1}. There is a function
he C(X) such that #| X = g. Then h[F,]<{0} and A[F,]<{1}. Therefore

Cly FnCly /i, =90 and w(Z(E(X,Y))<Y.
2.13. CoroLLARY. C*(X) is discriminating.
Proor. C*(X) = E(X,BX) and BX = w(Z(X)).

2.14. THEOREM. If A< C(X) and S< X, then {f|S: f€ A} is discriminating if and
only if A discriminates {S 0 H: HeZ(A))}-sets.
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Proof. Let {f|S:feA} be discriminating. Let H; and H,eZ[A] such that
SnH,nH,=¢, and let a,bcR. SnH; and SnH, are disjoint zero sets of
{f|S:feA}, so there is a function geA such that (g|S)[H,nS]<{a} and
(g]S) [Hyn S1<{b} so A discriminates {Sn H: HeZ[A]}-sets.

Let A discriminate {Sn H: HeZ[A]}-sets. Let F, and F, be disjoint zero sets of
{f|S:feA} and let a,beR. There are zero sets H; and H,cZ(A) such that
F,=H,nS and F, = H,n .S and there is a function f€ 4 such that f[H;nS]<{a}
and f[H,n S]<={b}. Therefore (f|S)[F;]<{a} and (f|S)[F]={b} so {f]S: fe4}
is discriminating.

Since “discriminating” is a generalization of the “completely separated” concept
from Urysohn’s Extension Theorem and Z(A)-embedding is a generalization of
C*-embedding, it is logical that there be some relationship between the two
concepts. In the following theorems we investigate this relationship.

2.15. THEOREM. Let A< C(X) be discriminating, let S— X and let S be Z(A)-
embedded in X, then {f|S: f€ A} is discriminating.

PrOOF. Let F; and F, be disjoint zero sets of {f|S: fe A} and let a,be R. Then
there are functions g;, and g,€A4 such that F; =Z(g)nS and F,=Z(g)nS.
Since S is Z[4]-embedded in X, there are functions f; and f€A such that
FR=Z(f)nS, F{L=Z(f)nS and Z(f)nZ(fy) =. Since A is discriminating,
there is a function A€ 4 such that g[Z(f)]l<{a} and A(Z(f)]<{b}. Therefore
(k| S) [F)<{a} and (h|S) [Fy]<{b}. Hence {f|S: fe 4} is discriminating.

2.16. THEOREM. Let A be a subring of C(X) which contains a non-zero constant
Junction a and let S< X be such that {f|S: f€ A} is discriminating, then S is Z[A}-
embedded in X.

PrOOF. Let f; and fye A such that Z(f)nZ(fP)n S is empty. Then there is a
function ged such that (g|S)[Z(f)nS]<={0} and (g|S)[Z(f)nSI={a}. Let
h=g—a, then he A, Z(f)n S<Z(g), Z(f) n S<Z(h) and Z(g)nZ(h) = &. There-
fore S is Z[Al]-embedded in X.

2.17. CorOLLARY. Let A be a subring of C(X) such that A is discriminating and A
contains a nonzero constant function. If SC X, then X is Z(A)-embedded in X if and
only if {f|S: f€ A} is discriminating.

A closed sublattice of E(X,w(F)) which discriminates F-sets actually equals
E(X,w(F)). To prove this we will use the following lemma as stated by Simmons
(1963), p. 158.

2.18. LEMMA. Let X be a compact space, and let L be a closed sublattice of C(X)
with the following property: if x and y are distinct points of X and a and b are any
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two real numbers, then there exists a function fin L such that f(x) = a and f(y) = b.
Then L = C(X).

2.19. THEOREM. If Fis a normal base on X and L is a closed sublattice of E(X, w(F))
such that L discriminates F-sets, then L = E(X, w(F)).

ProoF. Let H = {fe CW(F)): f|XeL}.
(1) H is closed. Let f,, € H, and g = lim,, f,,. Then
geCW(F)) and g|X=1im,(f,|X)eL.

(2) H is a sublattice of Cw(F)). Let f,ge H. (fvg)| X = (f|X)v(g| X)€L and
(fr8)| X = (f| X)A(g]| X) L. Therefore fvg and fAgeH.

Q) If x,yew(F), xs#y and a,beR, then there is a function fe H such that
J(x) = a and f(y) = b. There exist F; and F, € F such that xeCl, 5 F;, y€Clym Fy
and F,nF,=(. Then there exists geL such that g[F]<{a} and g[F]<{b}.
Lc E(X,w(F)) so there is a function f in C(w(F)) such that g=f|X. Then

Sx)eClgfIR] = ClgglF1={a} and f(y) e ClpfFo] < {b}.
Therefore by the previous lemma H = C(w(F)). If f€ E(X, w(F)), then there is a
function g in C(w(F)) such that g| X = f. g€ H so f€ L. Therefore L = E(X, w(F)).

Simmons (1963), p. 159 also has a proof of the lemma which states:
2.20. LeMMA. Every closed subring of C(X) is a closed sublattice.
Therefore Theorem 2.19 could also have been stated as follows:

2.21. THEOREM. Let F be a normal base on X. Let A be a closed subring of
E(X, w(F)) which discriminates F-sets, then A = E(X, w(F)).

Conversely, if A = E(X, w(F)), then A discriminates F-sets.

2.22. THEOREM. Let F be a normal base on X, then E(X,w(F)) discriminates
F-sets.

PROOF. Let F,,F,€F such that F,FnF,= and let a,beR. Clyz F, and
Cl,m F, are disjoint closed subsets of the normal space w(F); so by Urysohn’s
Lemma there is a function 2 e C(w(F)) such that

h[Clym Fil={a} and A[Clyz F]<{b}.
If g = h| X, then g€ E(X,w(F)), g[F;]1<{a} and g[F,]<{b}. Therefore E(X,w(F))
discriminates F-sets.

Combining the results of previous theorems we obtain the following necessary
and sufficient conditions for a subset of E(X, w(F)) to be all of E(X, w(F)).
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2.23. THEOREM. Let F be a normal base on X. Let L< E(X,w(F)). Then
L = E(X,w(F)) if and only if

(1) L is closed in C(X);

(2) L is a sublattice of C(X); and

(3) L discriminates F-sets.

Proor. If L = E(X, w(F)), L is closed since C(w(F)) is closed. L is a sublattice of
C(X) by Theorem 2.7. L discriminates F-sets by Theorem 2.22.

If L satisfies the three conditions then L = E(X, w(F)) by Theorem 2.19.

By Lemma 2.20, L is a closed sublattice of C(X) if and only if L is a closed
subring of C(X). Therefore Theorem 2.23 could also have been stated as follows.

2.24. THEOREM. Let F be a normal base on X. Let A< E(X,w(F)), then
A ="E(X, w(F)) if and only if

(1) A is closed in C(X);

(2) A is a subring of C(X); and

(3) A discriminates F-sets.

By Theorem 2.11 we know that an inverse closed Wallman ring 4 which contains
all the real constant functions discriminates Z(4)-sets. Therefore as a corollary to
Theorem 2.24 we have the following.

2.25. THEOREM. Let A be a Wallman ring on X such that A< E(X,w(Z(A4))). If A
is uniformly closed, and inverse closed then A = E(X, w(Z(A))).

ProoF. As was noted in Bentley and Taylor (1975), Corollary 3.4, an inverse
closed Wallman ring contains all the rationals. Therefore a Wallman ring which is
both inverse closed and uniformly closed contains all the real constants.

The next theorem generalizes the Stone-Weierstrass Theorem so we call it the
Stone-Weierstrass Theorem for Wallman lattices.

2.26. THEOREM. Let A be a subset of C(X) such that Z[A] is a normal base on X
and A< E(X,w(Z(A))). Let L be a sublattice of C(X) such that L is closed in A and
L discriminates Z[A)-sets. Then L = A.

Proor. Let H = Clgxyzonl- L<H and H is a closed sublattice of
E(X,w(Z(A))). Since L discriminates Z[A]-sets, H discriminates Z(A)-sets. There-
fore H = E(X,w(Z(A))). Lis closedin A so HnA=L. Also A<H,so HnA = A.
Therefore L = A.

Similarly we have the Stone—-Weierstrass Theorem for Wallman rings.
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2.27. THEOREM. Let A be a sublattice of C(X) such that Z(A) is a normal base on
X and A< E(X,w(Z(A))). Let L be closed in A, let L be a subring of C(X) which
contains the real constants, and let L discriminate Z(A)-sets. Then L = A.

Proor. The hypotheses of Theorem 2.27 include all the hypotheses of Theorem
2.26 except L being a sublattice of C(X). To show L is a sublattice of C(X), it
suffices to show | f|€L for each feL.

Let ¢ = sup{|f(x)|: x€ X} and let £>0. There is a polynomial p: [—1,¢]>R
such that p has real coefficients and ||r|—p(r)| <& for all re[—1,¢] (Weierstrass
Approximation Theorem). Then [|f](x)—p(f(x)|=|l/x)|-p(f(x))|<e for all
xeX.pofeL and |f|eA so|f|eCl, L = L. L is a sublattice of C(X).

If we let A<C*(X) be an algebra on X we find 4 = E(X, w(Z[A])) and also
obtain some interesting results involving (B, A)-embedding,.

2.28. DerFiNiTION (Hager, 1969). A4 is an algebra on X if and only if:
(1) A is a subring of C(X);

(2) A contains all real valued constant functions;

(3) A separates points and closed sets;

(4) A is closed under uniform convergence; and

(5) A is inverse closed.

We will show that every algebra on X is a Wallman subring of C(X). Lemma 2.20
established that every closed subring of C(X) is a closed sublattice of C(X) and
so we have the following result which was observed by Mréwka (1964).

2.29. THEOREM. If A is an algebra on X, then A is a lattice.
Biles (1970) established the following,

2.30. THEOREM. Let A be a subring of C(X) such that Z[A] is a base for the
closed sets of X and if f€ A, then |f|€ A. Then A is a Wallman ring on X.

If A is a lattice and fe 4, then |f|€ A. So |f|€ A for each fin an algebra 4.
Therefore we have proven that every algebra on X is a Wallman ring on X.

2.31. THEOREM. Every algebra on X is a Wallman subring of C(X).

In fact, if A< C*(X) is an algebra on X, then 4 is the Wallman ring E(X, w(Z(A4))).
To prove this we will use the following theorem which is due to Isbell (1958).

2.32. THEOREM. If A is an algebra on X, then A is closed under composition.

2.33. THEOREM. If A< C*(X) is an algebra on X, then A = E(X,w(Z(A))).
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PrOOF. 4 is a Wallman ring which is closed under composition so by Theorem
2.3, A< E(X,w(Z(A))). By Theorem 2.11, A4 discriminates Z(A4)-sets. Therefore the
hypotheses of Theorem 2.24 are satisfied and 4 = E(X, w(Z(A))).

From this we are able to show that if 4 is an algebra of bounded functions on X
and B is an algebra of bounded functions on S, where S< X, then S is (B, 4)-
embedded in X if and only if B = {f|S: fe 4}.

2.34. THEOREM. Let A be an algebra on X such that A< C*(X). Let S X.
Let B be an algebra on S such that BS C*(S). Then S is (B, A)-embedded in X if
and only if B={f|S: fe 4}.

ProoF. 4 = E(X,w(Z(A))) and B := E(S,w(Z(B))). Let S be (B, A)-embedded
in X. If fed, then there is a function geC(w(Z(4))) such that f=g|X. If
h = g[ Clyzean S» thensince Cl 7 4y) S= w(Z(B)) thereis a function i € C(w(Z(B)))
such that 4|S = #’|S = f|S. Therefore f|S€B and {f|S: fed}<B.

If fe B, then there is a function g€ C(w(Z(B))) such that f=g|S, and conse-
quently a function 2 € C(Cl,,z( 4y S) such that 2| S = f. Since Cl,,z(4) S is compact,
it is C*-embedded in w(Z(A4)) and h has a continuous extension /4’ to w(Z(A)).
Then 4’| X€ A, and (K| X)| S =f, so B<{f|S: fe 4}.

Conversely, if B ={f|S: fe 4}, then by Theorem 2.39 of Bentley and Taylor
(1978), S is Z(A)-embedded in X and by Theorem 2.40 of Bentley and Taylor
(1978), S is (B, A)-embedded in X.

The next two theorems are corollaries to this theorem.

2.35. THEOREM. If A is a sublattice of C(X), Z(A) is a normal base on X, A is
discriminating, A< E(X,w(Z(A))), S< X, S is Z(A)-embedded in X, B< C(S), Z(B)
is a normal base on S, B< E(S,w(Z[B))) and {f|S: fe A} is closed in B, then S is
(B, A)-embedded in X if and only if B = {f|S: fe 4}.

PrOOF. Let L = {f|S: fe 4}. L is a sublattice of C(S) and L is closed in B. Since
S is Z(A)-embedded in X, A~ oL, by Corollary 2.37 of Bentley and Taylor (1978).
If S is (B, A)-embedded in X, then by Theorem 2.23 of Bentley and Taylor (1978),
A~ g B. Therefore L~ B. Since A is discriminating and S is Z(A)-embedded in X,
L is discriminating. Therefore L discriminates Z(B)-sets. Now we have satisfied
the hypotheses of Theorem 2.26 so L = B.

Conversely, if L = B, then since {f|S: fe A}~ x A, B~ g A. So by Theorem 2.23
of Bentley and Taylor (1978), S is (B, A)-embedded in X.

2.36. TaeoreM. If A< C(X), Z(A) is a normal base on X, A< E(X,w(Z(4))),
S< X, S is Z(A)-embedded in X, B is closed in {f|S: f€ A}, B is a sublattice of C(S)
and B is discriminating, then S is (B, A)-embedded in X if and only if B = {f|S: fe A}.
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PROOF. Let S be (B, A)-embedded in X. Let H = {f|S: fe 4}. Z(H) is a normal
base on S, by Theorem 2.34 of Bentley and Taylor (1978). Since S is (B, 4)-
embedded in X, A~ gB. But H~ gA so H~ B. he H implies % has an extension
to a function in A, hence to a function in C(W(Z(A4))). But Cl,,z( 4y S=WZ(H)),
so A has an extension to a function in C(W(Z(H))). Therefore H< E(S, w(Z(H))).
B discriminates Z(B)-sets, consequently Z(H)-sets. Now by Theorem 2.26, H = B.

If B={f|S: feA}, then B~ gA. So, by Theorem 2.23 of Bentley and Taylor
(1978), S is (B, A)-embedded in X.
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