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ABSTRACT. The genesis of some types of patterned ground, including hummocks,
frost boils and sorted stone circles, has been attributed to differential frost heave (DFH).
However, a theoretical model that adequately describes DFH has yet to be developed and
validated. In this paper, we present a mathematical model for the initiation of DFH, and
discuss how variations in physical (i.e. soil/vegetation properties) and environmental (i.e.
ground/air temperatures) properties affect its occurrence and length scale. Using the
Fowler and Krantz multidimensional frost-heave equations, a linear stability analysis
anda quasi-steady-state real-time analysis are performed. Results indicate that the follow-
ing conditions positively affect the spontaneous initiation of DFH: silty soil, smallYoung’s
modulus, small non-uniform surface heat transfer or cold uniform surface temperatures,
and small freezing depths. The initiating mechanism for DFH is multidimensional heat
transfer within the freezing soil. Numerical integration of the linear growth rates indi-
cates that expression of surface patterns canbecome evidenton the10^100 year time-scale.

1. NOTATION

Cp Heat capacity
CT² Constant in the perturbed temperature-gradient

solution
CT± Constant in the perturbed temperature-gradient

solution
d0 Length scale corresponding to the maximum depth

of freezing
E Young’s modulus
e1;2 Group of constants in the definition of N 0
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g Gravitational constant
Gf ;i Temperature gradient at zf

h Dimensional heat-transfer coefficient
H Dimensionless heat-transfer coefficient
h1 Thickness of the frozen region zs ¡ zf… †
k Overall thermal conductivity
k0 Unfrozen soil hydraulic conductivity
kf;u Thermal conductivity of frozen/unfrozen soil
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L Heat of fusion for water

N
P ¡ p1

¼

p Exponent in the soil characteristic function
P Total pressure
Pb Pressure due to bending
p1 Pressure in the far field (e.g. basal plane)
q Exponent in the soil characteristic function
t Time
T Temperature
T0 Dimensionless reference temperature in Newton’s

law-of-cooling boundary condition
Tair Dimensionless air temperature
Tb Temperature at the basal reference plane, zb

Tf;u Temperature of the frozen/unfrozen soil
Ts Temperature at the ground surface
¢T Temperature scale typical for the freezing process
Vf Freezing front velocity
vi Ice velocity
w Deflection of the plate mid-plane in thin-plate theory
Wl Unfrozen water fraction of the total soil porosity at

the lowest ice lens
W 0

l Derivative of the unfrozen water content in the
downward direction at zl

x; y Horizontal space coordinates
z Vertical space coordinate
zb Basal plane, permafrost table in the field
zf Location of the freezing front
zl Location of the lowest ice lens
zs Location of the ground surface
¬ Dimensionless wavenumber in the x direction
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³ ´

® Exponent for hydraulic-conductivity function
¡ Exponential growth rate according to linear theory
² Perturbation in the freezing front location
¶ Wavelength of the perturbations
¶G Constant in the Gilpin thermal regelation theory

·
¶GL»w

ku

¸ Poisson’s ratio
»f Frozen soil density
»i;w Ice/water mass density
¼ Pressure scale of 1bar
¿ Unfrozen soil porosity
À Unfrozen-water fraction of the void space ˆ Wl=¿
Á Ratio of ²=±
± Perturbation in the ground-surface location

2. INTRODUCTION

Frost heave refers to the uplifting of the ground surface owing
to freezing of water within the soil. Its typical magnitude
exceeds that owing to the mere expansion of water upon
freezing (¹9%)because of freezing additional water drawn
upward from the unfrozen soil below the freezing front.The
process of drawing water through a soil matrix towards a
freezing domain is known as cryostatic suction. Primary frost
heave is characterized by a sharp interface between a frozen
region and an unfrozen region. In contrast, secondary frost
heave (SFH) is characterized by a thin, partially frozen
region separating the completely frozen region from the
unfrozen region. Within this region, termed the frozen fringe,
discrete ice lenses can form if there is sufficient ice present to
support the overburden pressure.The theory of primary frost
heave cannot account for the formation of multiple, discrete
ice lenses. Miller (1980) states that ice-lens formation prob-
ably only occurs by the primary heave mechanism in highly
colloidal soils with negligible soil particle-to-particle contact.

Frost heave that is laterally non-uniform is referred to as
differential frost heave. Differential frost heave (DFH) requires
that the freezing be both significant and slow. Adequate
upward water flow by cryostatic suction requires either
saturated soil conditions or a very high water table because
unsaturated soil conditions can suppress the heaving pro-
cess. Suppression occurs due to insufficient interstitial ice,
which is required to support the overburden pressure and
allow for ice-lens formation (Miller,1977).

The DFH process is not fully understood. The complex
interactions that occur in freezing soil have not been fully
determined or described and there are as yet no predictive
models for this phenomenon. However, secondary frost heave,
which is often associated with DFH, has received a certain
amount of attention from the scientific community. Several
mathematical models and empirical correlations have been
developed to describe one-dimensional SFH. Most of the
mathematical models represent variations and refinements
of the original one-dimensional SFH model of O’Neill and
Miller (1985). A set of describing equations for three-dimen-
sional SFH based on the O’Neill and Miller model has been
developed by Fowler and Krantz (1994). Here these equa-
tions are used as a basis for investigating the DFH process.

DFH has been cited as a possible cause for some forms of
patterned ground by Taber (1929) and Washburn (1980)

among others. Patterned ground refers to surface features made
prominent by the segregation of stones, ordered variations
in ground cover or color, or regular topography. Since pat-
terned ground is a manifestation of self-organization in nat-
ure, its formation is a question of fundamental significance.
In this paper, we present a mathematical model for a mech-
anism by which DFH can occur and may cause the initia-
tion of some types of patterned ground. Using this model, a
limited parameter space of environmental (i.e. tempera-
ture, snow cover) and physical (i.e. soil porosity, hydraulic
conductivity) conditions is defined within which DFH can
initiate spontaneously.

3. PRIOR STUDIES

Semi-empirical models correlate observable characteristics
of the SFH process with the relevant soil properties and
climatic variables. The more prevalent models include the
segregation potential (SP) model of Konrad and Morgenstern
(1980,1981,1982) and that of Chen andWang (1991). Typically,
semi-empirical models are calibrated at a limited number of
sites under unique conditions. Since these unique conditions
are accounted for by using empirical constants, it can be dif-
ficult to generalize the models for use with varying environ-
mental conditions and field sites. Semi-empirical models are
easy to use, computationally simple, and provide fairly
accurate predictions of SFH (Hayhoe and Balchin, 1990;
Konrad and others, 1998). However, they provide limited
insight into the underlying physics and cannot predict DFH.

Fully predictive models are derived from the fundamen-
tal transport and thermodynamic equations. In theory, they
require only soil properties and boundary conditions in
order to be solved. Based on ideas due to Gilpin (1980) and
Hopke (1980), Miller (1977,1978) proposed a detailed model
for SFH. This model was later simplified by Fowler (1989),
extended to include DFH by Fowler and Krantz (1994) and
extended further to include the effects of solutes and com-
pressible soils by Noon (1996). Nakano (1990, 1999) intro-
duced a model called M1 for frost heave using a similar
approach. Fully predictive models do not require calibra-
tion and can be applied to anywhere the relevant soil prop-
erties and thermal conditions are known.These models also
provide insight into the underlying physics involved. These
attributes facilitate model improvements and extensions.
Due to the complexity of some models, they can be compu-
tationally difficult and inconvenient to use.

Except under asymptotic conditions, these models must
be solved numerically. One-dimensional, numerical solu-
tions to the model by Miller (1977,1978) have been presented
by O’Neill and Miller (1982,1985), Black and Miller (1985),
Fowler and Noon (1993), Black (1995) and Krantz and
Adams (1996). In several instances, numerical results agree
favorably with laboratory results such as those of Konrad
(1989). The predictive capability of the M1 model has also
been demonstrated (Nakano andTakeda,1991,1994).

Lewis (1993) and Lewis and others (1993) were the first
to use a linear stability analysis (LSA) in an attempt to pre-
dict the occurrence of DFH. Using the model equations de-
veloped by Fowler and Krantz (1994), they found that DFH
occurs spontaneously under a wide range of environmental
conditions. Lewis (1993) included the necessary rheology by
modeling the frozen region as an elastic material and using
thin-plate theory. However, this `̀ elastic condition’’ was
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incorrectly integrated into the analysis, giving unconven-
tional results that predicted a single unstable wavenumber.

Independently, Noon (1996) and Fowler and Noon (1997)
reported results for a LSA using the Fowler and Krantz
model with a purely viscous rheology. Noon’s results indi-
cated that one-dimensional heave is linearly unstable using
two different ground-surface temperature conditions: con-
stant temperature and snow cover. However, the constant-
temperature results are not physical due to unrealistic
parameter choices. The remaining condition necessary for
instability, the presence of snow cover, appears too restric-
tive. Patterned ground is observed both in the presence and
in the absence of snow cover (Williams and Smith, 1989).
Furthermore, since only a single soil was investigated, the
influence of soil type on the predictions is difficult to evalu-
ate. In lightof these points, further investigation of the linear
stability of DFH (this study) was warranted.

4.THE DFH MODEL

The model for SFH that we use in this paper is that due to
Fowler and Krantz (1994), which is a modified version of the
O’Neill and Miller model.We chose to use this model because
it contains all the necessary physics to describe DFH while
maintaininga numerically tractable form (Fowler and Noon,
1993). Most importantly, this model properly takes into account
thermal regelation in the partially frozen region termed the
frozen fringe. Thermal regelation within the fringe allows for
differential heaving. The original O’Neill and Miller (1982,
1985) model used a rigid-ice approximationthat assumes all
the ice within the frozen fringe and lowest ice lens moves as
a uniform body with a constant velocity. In order for differ-
ential heave to occur, this cannot be the case. Fowler and
Krantz (1994) demonstrate that thermal regelation within
the fringe allows for DFH. Readers should refer to Fowler
and Krantz (1994) and Krantz and Adams (1996) for details.

4.1. Physical description

The physical system in which frost heaving occurs is shown
in Figure 1. Top-down freezing occurs over a time-scale of
weeks to months.The upper, frozen region is separated from
the lower, unfrozen region by the frozen fringe, a partially
frozen transition region containing ice, liquid water and

soil. The thickness of the frozen fringe in seasonally frozen
ground is on the order of 1^10 mm. The frozen region is
characterized by regular bands of pure ice called ice lenses.
It is the existence of ice lenses that gives rise to surface heave
greater than the 9% associated with the volume change of
water upon freezing (Washburn,1980). In typical field situ-
ations where frost heave occurs, permafrost underlies the
unfrozen region (Williams and Smith,1989).

Because the frozen fringe is relatively thin, it can be
reduced mathematically to aplane across which jump bound-
ary conditions are applied (Fowler and Krantz, 1994). This
plane is located at zf in Figure 1. Freezing of saturated soils is
fairly slow, as can be inferred from the large Stefan number
(St ² LC¡1

p ¢T¡1) associated with this process. Because the
time-scale for freezing is much longer than that for heat con-
duction, the temperature distributions in the unfrozen and
frozen regions are quasi-steady state. The thermal gradients
in the unfrozen and frozen region are obtained by solving for
the temperature distributions in each region.

Because ice lenses occur in a discrete manner, the frost-
heave process is inherently a discontinuous process. How-
ever, Fowler and Krantz (1994) demonstrate using scaling
arguments that the time-scales for equilibration of the pres-
sure and temperature profiles within the frozen fringe are
much shorter than the time-scale for the freezing process.
Thus, the entire frost-heave process can be modeled as
semi-continuous where some parameters are evaluated at
the base of the warmest (lowest) ice lens, zl.

For one-dimensional frost heave, the surfaces zs and zf

are parallel planes. The frozen region including ice lenses
moves upwards relative to zb but does not deform. In this
instance, the rheology of the frozen material is irrelevant.
In DFH, however the frozen region deforms as it moves,
and the rheology of the material must be specified so the
mechanical problem can be solved in conjunction with the
thermal and frost-heave problems.

4.2.Thermal problem

Due to the large Stefan number for freezing soil, the
thermal problems in both the frozen and unfrozen regions
above and below the frozen fringe, respectively, are greatly
simplified. The two-dimensional, steady-state temperature
distributions in both regions are obtained from the solution
to the Laplace equation:

r2Tu ˆ 0 zb < z < zf …1†
r2Tf ˆ 0 zf < z < zs : …2†

The boundary condition at the ground surface is Newton’s
law of cooling. For both problems, the boundary condition
at zf specifies the temperature as the standard temperature
and pressure (STP) freezing point of water. For this paper,
the temperature at zb will also be specified.

@Tf

@n
ˆ ¡H…Tf ¡ Tair† at z ˆ zs …3†

Tf ˆ 0 at z ˆ zf …4†
Tu ˆ 0 at z ˆ zf …5†
Tu ˆ Tb at z ˆ zb ; …6†

where H is a heat-transfer coefficient, Tair is the dimensionless
air temperature at the ground surface and Tb is the dimension-
less temperature of the underlying permafrost. In the absence
of significant solutes, Tb ˆ0, corresponding to 0³C.

Fig. 1. Diagram of saturated soil undergoing top-down freezing.
The region between zl and zf is the frozen fringe. Ice lenses
occur in the frozen region, giving rise to frost heave.
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4.3. Mechanical problem

The choice of an elastic rheology can introduce several con-
ceptual and modeling difficulties. To address these difficul-
ties, we adopt several assumptions about the geometry of
the frozen region as well as its mechanical properties. The
frozen fringe is, mathematically, reduced to a plane across
which jump boundary conditions are applied (Fowler and
Krantz,1994).This plane is the lower boundary of the frozen
region, zf . However, because it will be perturbed and dis-
torted, albeit infinitesimally, and will no longer be a plane
in a strict mathematical context, we refer to it as an interface.

Figure 2 shows a schematic of the frozen fringe before
and after inception of DFH due to initiation of a new ice
lens. In fact, the location of the newly forming ice lens is
very close to the base of the lowest ice lens relative to the
thickness of the frozen fringe. There is a boundary layer in
the frozen fringe near the lowest ice lens wherein most of the
pressure drop causing upward permeation occurs. The new
ice lens will form within this boundary layer (Fowler and
Krantz,1994).

The dashed line labeled zf is the bottom of the frozen
fringe, defined as where the ice content is zero. At the incep-
tion of DFH, the location of zf can move either up or down.
Because of the quasi-steady-state assumption, any movement
of zf is relative to the stationary, one-dimensional boundary.
Although zf is always moving downwards on the time-scale
of freezing-front penetration, quasi-steady state must be
assumed in order to conduct the LSA. While this is an
abstraction from reality, it is an expedient and useful prac-
tice for LSA of systems with unsteady basic states (Fowler,
1997). Two possible locations for zf are shown in Figure 2
(right side): one for upward movement and one for down-
ward movement.Which of these two possible outcomes actu-
ally occurs is not prescribed in the model but is a result of the
LSA. However, linear theory does prescribe that zf is either
in phase or anti-phase with the ground-surface perturbation,
zs. Any relative displacement other than 0 or º is not
allowed.The location of zl in Figure 2 will be in phase with
the ground surface at zs since the lowest ice lens precludes
water migration above it. Thus, Figure 2 demonstrates how
zs and zf can be either in phase or anti-phase due to the for-
mation of a new ice lens.

Mechanically, when non-uniform ice-lens formation
begins, the frozen region will begin to deform and bend.
We model this as the bending of a thin, elastic plate, though
a viscous, viscoelastic or visco-plastic model might also be
used. Laboratory experiments by Tsytovich (1975) demon-
strate that frozen soil does behave elastically on short time-
scales.The necessity for including the rheology of the frozen
material in the model is to provide a `̀ resistive force’’ to
deformation of the frozen material. As will be demonstrated
later, when the rheology is neglected, a LSA predicts that
the most unstable mode has a wavelength approachingzero,
which is intuitively incorrect.

A conceptual difficulty is encountered when assuming an
elastic rheology in this problem since frozen material is being
accreted.This problem can be avoided if we neglect the addi-
tion of newly frozen material in the geometry of the elastic
material being bent.What this means physically is that when
a non-uniform ice lens begins to form, only the material span-
ning from the ground surface, zs to the lowest ice lens, zl, is
actuallybeing bent. In the sense of the elastic model, the new-
ly accreted material has an elastic modulus of zero. This

approach is convenient because it avoids some inherent com-
plexity, and there is considerable justification for its use.
Experimental data for Young’s modulus of frozen soil as a
function of temperature show that the modulus approaches
zero as the sub-freezing temperature approaches zero
(Tsytovich,1975, p.185). Large amounts of unfrozen water at
0³C are the cause of this `̀ weakness’’. Thus, we would expect
the newly accreted material to have a very low Young’s
modulus, so that neglecting it completely introduces only a
small error. In fact, as a first approximationthe entire frozen
region is assumed to have a constant Young’s modulus. This
approximation is crude since there is a non-zero temperature
gradient within the frozen region. In reality, the Young’s
modulus monotonically increases with decreasing tempera-
ture and has a maximum value at the ground surface where
it is coldest.

Due to the simplifications discussed above, the mechan-
ical model reduces to the bending of a thin, elastic plate with
a constant Young’s modulus. If the deformation is small
relative to the thickness of the plate, the deflection of the
plate’s mid-plane from equilibrium, w, canbe approximated
as (Brush and Almroth,1975):

Pb ˆ D r4
xyw …7†

D ² E h3
1

12…1 ¡ ¸2† …8†

r4
xyw ² w;xxxx ‡ w;xxyy ‡ w;yyyy …9†

where Pb is the pressure, E is Young’s modulus, h1 is the
frozen-region thickness and ¸ is Poisson’s ratio. In this
analysis, ¸ ˆ 0.5.

Boundary conditions for Equation (7) must be specified
in the x and y directions. Because the problem is unbounded
in these directions, periodic boundary conditions are used.
For the x direction,

w…x ˆ 0† ˆ 0 …10†
w;xx…x ˆ 0† ˆ 0 ¡! no torque …11†

w…x ˆ 0† ˆ w…x ˆ nº=2† ¡! periodicity …12†
w;xx…x ˆ 0† ˆ w;xx…x ˆ nº=2† ¡! periodicity : …13†

There is a corresponding set for the y direction (how-
ever, only the two-dimensional problem will be considered

Fig. 2. Diagram of the frozen fringe showing the initiation of
DFH. Relative dimensions are not to scale.The dashed line in
the left figure shows the location of zf which is defined where
the ice content is zero. A new ice lens forms within the water-
pressure boundary layer below the lowest ice lens. After initi-
ation of a new ice lens, the location of zf will move either
upwards or downwards relative to its previous position. The
twopossibilities are shown by z0

f and z00
f .The ice crystals labeled

`̀possible ice’’will exist for z0
f and not for z00

f.The new location of
zf is predicted by the LSAand is not prescribed in the model.
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here). The mechanical problem is coupled to the frost-heave
problem through the load pressure at zl. In the one-dimen-
sional basic state, the frozen region is planar and there is no
bending (Pb ˆ 0). In the two-dimensional state, the non-
zero Pb is a function of x. The load pressure is the sum of
the weightof the overlying soil andthe pressure due to bend-
ing.

P ˆ »fgh1 ‡ Pb …14†

4.4. Non-dimensionalized frost-heave equations

The Fowler and Krantz frost-heave equations are two
coupled vector equations that describe the velocity of both
the upward-moving ice at the top of the lowest ice lens, vi,
and the downward-moving freezing front, Vf . Specifically,
the equations are:

Vf ˆ
»£

1 ‡ ¯ ¡
¡
¿ ¡ Wl

¢
·

¤ kf

ku

³ ´
Gi ¡

¡
1 ‡ ~­

¢
Gf

.

¯Wl ‡ ¿ ‡ ~­
¡
¿ ¡ Wl

¢
¡ ·

¡
¿ ¡ Wl

¢
Wl

¼
…15†

vi ˆ ¡ ¬fk
kf

ku

³ ´
Gi ¡ WlVf

µ ¶
; …16†

where Gi and Gf are the thermal gradients in the unfrozen
and frozen regions, respectively, ¿ is the soil porosity, Wl is
the unfrozen-water volume fraction at the top of the frozen
fringe (base of the lowest ice lens), and kf and ku are the
frozen and unfrozen thermal conductivities, respectively.
Vectors are denoted in bold, and the coordinate system is
oriented with z pointing up as shown in Figure 1. The value
of Wl is determined using the lens-initiation criterion (Fowler
and Krantz,1994) that involves the characteristic function.

N

¿
ˆ 1 ¡ Wl

¿

³ ´
fl ˆ

1 ¡ Wl

¿

± ²p‡1

Wl

¿

± ²q : …17†

The solution to the one-dimensional problem is fairly
straightforward.The steady-state, one-dimensional Laplace
equation for temperature is solved to determine the relevant
temperature gradients Gi and Gf. Work by Fowler and
Noon (1993) and Krantz and Adams (1996) has shown that
this model predicts the one-dimensional frost-heave beha-
vior observed in the laboratory quite well.

5. LINEAR STABILITYANALYSIS

LSA is performed here to determine under what circum-
stances the one-dimensional solution to the SFH equations
(15) and (16) is unstable to infinitesimal perturbations. The
conditions under which the one-dimensional solution is un-
stable will provide insight into the mechanisms responsible
for DFH. This in turn will help explain the evolution of
some types of patterned ground that are due to DFH.

The LSA performed here follows standard linear sta-
bility theory (Drazin and Reid, 1981). A complete detailed
analysis is available in Peterson (1999). Equations (15) and
(16) are perturbed around the one-dimensional basic state
solution and linearized. Because the equations are linear in
the perturbed variables, the solution to these perturbed
variables will take the general form:

X0 ˆ bX…z; t† ei¬x ‡ i­ y ; …18†
where ¬ and ­ are the wavenumbers of the disturbance in

the x and y directions, respectively. Because one-dimen-
sional frost heave occurs in the z direction, perturbations
in both the x and y directions cause a three-dimensional
shape to evolve. Initially, however, only the propensity for
a two-dimensional instability will be investigated by setting
­ ˆ 0. The functional form of bX in Equation (18) depends
on whether the problem is steady-state or transient.
Although the frost-heave process is inherently transient, it
will be treated as quasi-steady-state. If the instabilities grow
very rapidly relative to the basic state, this assumption is jus-
tified. A successful example using this technique for alloy
solidification is presented in Fowler (1997). In this instance,
assuming quasi-steady state yields results somewhat close to
experimental observations. Thus, the solution to the per-
turbed variables takes the general form:

X0 ˆ X0…z† ei¬x e¡t ; …19†

where ¡ is an exponential growth coefficient.
The perturbed temperature distribution is determined

in terms of the basic-state temperature distribution. First,
the solution to Equation (2) subject to boundary conditions
(3) and (4) yields the unperturbed temperature in the frozen
region:

Tf ˆ H Tair
z ¡ zf

1 ‡ H zs ¡ zf… † : …20†

Solution of Equation (1) subject to boundary conditions (5)
and (6) is trivial when Tb ˆ 0.

Tu ˆ 0 …21†

The frost-heave equations (15) and (16) require the
thermal gradient at zf. Steady state is also assumed in the
perturbed region in anticipation that the time-scale for per-
turbation growth is greater than the time-scale for heat con-
duction. Starting with the two-dimensional form of
Equation (2), the temperature is perturbed and the differen-
tiation carried out. Boundary conditions are applied at per-
turbed locations, where the Taylor series is truncated after
the linear term. The perturbed temperature field is solved
and then differentiated again to yield:

@T 0
f

@z

­­­­
zˆzf

² G0
i ˆ CT²² ‡ CT±± ; …22†

where

CT² ˆ ¡¬Gi
e2¬zf ‡ e2¬zs… †
e2¬zf ¡ e2¬zs

…23†

CT± ˆ 2¬GiH

¬ ‡ H

e¬…zf ‡zs†

e2¬zf ¡ e2¬zs
: …24†

The thermal gradient below the freezing front is
assumed to be zero in this analysis. This condition is repre-
sentative of active-layer freezing above permafrost. Thus,
Gf ˆ G0

f ˆ 0.
The perturbed mechanical problem begins by perturb-

ing the pressure condition, Equation (14). The pressure is
non-dimensionalized with the pressure scale ¼.

N ‡ N 0 ˆ P …z† ‡ P 0…z; x†
¼

ˆ »fgh1 ‡ Pb

¼
…25†

The linearized form of N 0 is:

N 0 ˆ e1² ¡ e2± ; …26†
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where

e1 ˆ ¡»fgh1

¼
…27†

e2 ˆ
¡»fgh1 ‡ E

9 h1
3
¬4

± ²

¼
: …28†

h1 is the thickness of the frozen region and E is Young’s
modulus.

The frost-heave equations (16) and (15) are complicated
functions of the temperature gradients and the pressure at
the top of the frozen fringe. Each potentially varying param-
eter must be perturbed (e.g. replacing ~­ with ~­ ‡ ~­ 0). Thus,
the following parameters are perturbed: ­ , fl, Gi, Gf, N, Vf,
vi, Wl, zf and zs.

The perturbed variables are substituted into Equations
(15) and (16), and the equations linearized. Two equations
result that describe the perturbed ice and freezing-front
velocities in terms of perturbed quantities:

G0
i

kf

ku

³ ´
1 ‡ ¯ ¡ ¿ ¡ W l

¡ ¢
·

£ ¤
¡ 1 ‡ ~­

± ²
G0

f ¡ ~­ 0Gf

ˆ V 0
f ¯W l ‡ ¿ ‡ ~­ ¿ ¡ W l

¡ ¢
¡ · ¿ ¡ W l

¡ ¢
W l

h i

‡ V f ¯W 0
l ¡ ~­ W 0

l ‡ ~­ 0 ¿¡W l

¡ ¢
¡ · ¿¡ W l

¡ ¢
W 0

l ‡ ·W lW
0
l

h i

…29†

and

1 ‡ ~­
± ²

v0
i ‡ ~­ 0vi ˆ ¡·¿

kf

ku

³ ´
G0

i ¡ W lV
0
f ¡ W 0

l V f

µ ¶

‡ ·
kf

ku

³ ´
W 0

l Gi ‡ kf

ku
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The perturbed temperature gradients and pressure were
determined in the previous sections. The remaining per-
turbed variables can be cast in terms of N 0 by use of their
definitions. Then using Equation (26), the two equations
are only functions of ² and ±.This process is straightforward
but algebraically complicated (Peterson,1999).

The perturbed velocities are determined using the kine-
matic condition. The kinematic condition at the freezing
front is slightly complicated because the flux of material
through the boundary zf must be accounted for. However,
because the accreted material is neglected in the elastic
model, both conditions are straightforward:

v0
i ˆ @±

@t
ˆ ¡± …31†

V 0
f ˆ @²

@t
ˆ ¡± : …32†

Solution of the perturbed frost-heave equation is now
possible. Equations (29) and (30) can be expressed in terms
of ¡, ¬, ², ± and parameters that are constant for the specific
case being analyzed. An eigenvalue problem for the growth
coefficient ¡ as a function of ¬ results.

A…¬†¡2 ‡ B…¬†¡ ‡ C…¬† ˆ 0 …33†

The algebraically cumbersome expressions for A, B and
C can be seen in Peterson (1999). An explicit expression for
the two roots of ¡ is easily obtained.

6. LINEARIZED MODEL PREDICTIONS

This section presents the predictions obtained from the LSA.
It was shown in section 4 that there are many parameters
that arise from the frost-heave model.These are divided into
three groups: soil parameters, environmental conditions and
physical constants.We define a reference set that comprises a
set of environmental conditions about which we will vary
some parameters and analyze their effect on the stability of
one-dimensional frost heave. These conditions were chosen
to be representative of areas where DFH is observed. There
are an additional six parameters that describe the particular
soil being analyzed: p, q, ¿, k0, ® and »s. The first two come
from the characteristic function that relates the difference in ice
and water pressures to the amount of unfrozen water. The
values of p and q are determined empirically by fitting the
characteristic function to experimental data. In this paper,
three different types of frost-susceptible soils are analyzed:
Chena Silt, Illite Clay and Calgary Silt. These soils were
chosen because values for all six parameters could be obtained
from previously published data (Horiguchi and Miller, 1983)
with curve fitting when necessary. Table 1 lists the values for
all six soil parameters for the three soils investigated.

The environmental conditions include the temperature
boundary conditions at the ground surface, zs, and at the
permafrost table, zb. The general Newton’s law-of-cooling
boundary condition is applied at the ground surface. The
effects of varying degrees of snow cover (including none)
and differing vegetative cover can be explored using this
boundary condition. For simplicity, the gradient in the
lower, unfrozen region is zero for this analysis.

The final environmental condition is the freezing depth,
h1. This parameter has a range in dimensional form of 0
! d0, where d0 is the depth of the active layer. It should be
apparent that the freezing depth is a function of time. As
freezing progresses, h1 increases.Thus, by specifying a value
for h1 in the reference set of parameters, the stability of one-
dimensional frost heave at a certain, frozen instant of time is
being analyzed. The value of h1 for the reference set was
chosen to correspond to a time early in the freezing process,
when it is believed DFH is most likely to be initiated. It will
be shown in section 6.7 that the mechanism for instability is
related to differential heat transfer. The temperature gradi-
ent in the frozen region is greatest early in the ground-freez-
ing process, so DFH is more likely to initiate at early times
in the freezing process. The quasi-steady-state assumption
allows for specification of h1.

The physical constants that arise in this problem are pri-
marily concerned with the properties of ice and liquid water.
These values are summarized inTable 2. Aconstant-tempera-
ture boundarycondition of ^10³C was chosen for the top sur-
face (Smith, 1985). This is accomplished in the thermal
problem by allowing H ! 1. Chena Silt was chosen as the

Table 1. Parameter values for frost-susceptible soils

p q ¿ k0 ® »s

m s^2 kg m^3

Chena Silt 1.48 0.66 0.48 1.22610^8 6.4 1378
Illite Clay 2.44 7.27 0.67 1.69610^9 10.0 875
Calgary Silt 2.00 6.58 0.45 2.50610^9 8.9 1529
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soil type because, as will be demonstrated, it has the greatest
range of unstable behavior. A depth of freezing of 10 cm, or
about 10% of the maximum depth of freezing, was also
chosen. There is no surface load because in field situations
the only overburden is the weight of the frozen soil. A
Young’s modulus of 5 MPa is used for the elastic modulus
(Andersland and Ladanyi,1994).

6.1. Effects of parameter variations

In the following subsections, the effects of varying different
parameters from their reference-set values are investigated.
The results are presented by plotting the dimensionless growth
rate, ¡, as a function of the dimensionless wavenumber, ¬ (see
Equation (19)).The scaling factors for these parameters are

¡s ˆ 1

‰tŠ
ˆ d2

0»wL

ku¢T
º 350¡1 days¡1 …34†

¬s ˆ 2º

¶d0
º 6

¶
meter¡1 : …35†

For comparison purposes, the results will be presented in
dimensionless form. The stability criterion, Equation (33), is
quadratic, and therefore there are two roots ¡‡, ¡¡, with
¡‡ > ¡¡. In this analysis, the lower root ¡¡ was always
negative. The positive value, ¡‡, is plotted for the reference
set using Chena Silt in Figure 3. In all cases, both roots are real
numbers for the range of ¬ values presented, and the principle
of exchange of stabilities is valid (Drazin and Reid,1991).

There are three values that are of most importance in
each plot: ¡max, ¬max and ¬ntl, indicated in Figure 3. The
maximum value of the growth rate, ¡max, and the corres-
ponding value of the wavenumber, ¬max, indicate which
mode grows fastest in the linearized model. Also, ¬max indi-
cates the lateral spacing of the most highly amplified, two-
dimensional mode through Equation (35).The neutrally stable
wavenumber, ¬ntl, indicates the maximum wavenumber for
which modes can be linearly unstable. These values are not
explicitly marked in subsequent figures, to reduce clutter.

6.2. Effect of soil type

The type of soil is the most influential parameter in the model
when determining the stability of one-dimensional frost
heave. It is important to note that only a small fractionof soils
exhibit frost heave (Williams and Smith, 1989). A delicate
balance between the hydraulic conductivity of the partially
frozen soil, particle size and its porosity is necessary for frost
heave to occur. Silts and silty clays meet these requirements
in general. Furthermore, DFH is not necessarily observed in
all frost-susceptible soils. Determining whether this obser-
vation is due to the specific soil or its environmental condi-
tions is a major objective of this analysis. Figure 4 plots the

growth rate as a function of wavenumber for the three soil
types specified inTable1.

All three soils are considered frost-susceptible. However,
for the reference set of parameter values, only Chena Silt has
a propensity for DFH (i.e. positive value of ¡‡). It should be
noted that these results do not indicate that Calgary Silt and
Illite Clay will never heave differentially. Other parameters can
have a significant effect on the stability predictions, and under
the correct conditions the soils may heave differentially.

The utility of a model such as this onehinges onwhether it
can predict observations made in the field. Unfortunately,
there is a limited number of soil types to analyze due to a
dearth of adequate characterization data including hydraulic
conductivity and sub-freezing temperature as functions of
unfrozen water content. In fact, the work by Horiguchi and
Miller (1983) is one of the few comprehensive datasets for
frost-susceptible soils available in the open literature. Fortu-
nately, the predictions shown in Figure 4 do agree with
observations made in the field. In almost all instances, hum-
mocks are observed in silty-clayey materials. The value of
¬max for Chena Silt is of the order unity. This wavenumber
corresponds to a dimensional wavelength on the order of
meters, which is also observed in the field (Williams and
Smith, 1989). The value of ¡max is several orders of magni-
tude less than unity, indicating that DFH will take (dimen-
sionally) several years to develop. It is commonly believed
that most types of patterned ground form onthe10 1̂00 year
time-scale (Mackay,1980; Hallet,1987).

Table 2. Physical constants for the LSA model

Parameter Symbol Value

Ice density »i 0.96103 kg m^3

Water density »w 1.06103 kg m^3

Heat of fusion L 3.06105 J kg^1

Ice thermal conductivity ki 2.2 W m^1 K^1

Water thermal conductivity kw 0.56W m^1K^1

Heat capacity Cp 2.0 kJ kg^1 K^1

Gravitational acceleration g 9.8 m s^2

Fig. 3. Plot of the positive root of the linear stability relation as
a function of the wavenumber for the reference set of parameter
values.The soil is Chena Silt.Wavenumbers greater than ¬ntl

are stable and ¬max is the wavenumber with the maximum
growth rate under these conditions.

Fig. 4.The linear growth coefficient for three soil types using
the reference set of parameter values.
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6.3. Effect of the elastic constant

In this and subsequent subsections, we investigate the effects of
parameter variations away from the reference set for Chena
Silt, which has the greatest propensity for DFH. Although
calculating the effect of the elastic constant on linear stability
is not difficult, interpreting the results canbe confusing due to
some of the assumptions made in the mechanical model.The
complication arises due to the difficulty in determining an
appropriate value for the Young’s modulus, E. While there
are several references that address the Young’s modulus for
frozen soils (Tsytovich, 1975; Puswewala and Rajapankse,
1993; Andersland and Landanyi, 1994; Yuanlin and others
1998), there is a large range of reported values. Andersland
and Ladanyi (1994) report that for frozen silts, sands and
clays, aYoung’s modulus of about 5 MPa is typical for the tem-
perature range of interest: ^10 ! 0³C. The effect of Young’s
modulus on the growth-rate predictions is shown in Figure 5.

As might be expected, the range of unstable modes
decreases with increasingYoung’s modulus. The value of ¬max

decreases, indicating that a `̀ stiffer’’ soil results in less closely
spaced patterning. Because ¡max decreases with increasing E,
it would also take longer for patterns to become expressed in
stiffer soils. It appears that increasing elasticity is a stabilizing
mechanism. As it becomes more difficult to `̀ bend’’ the frozen
region, the propensity for differential heave is reduced.

It is worth noting that only in the limit of E ! 1 does
the propensity for DFH at some value of ¬ disappear. Both
¬ntl and ¬max approach zero only when E ! 1. One major
cause for larger values of E for a particular soil would be
colder temperatures. However, colder temperatures also
affect the thermal regime in the frozen region.This effect is
explored separately in section 6.4 and 6.5.

6.4. Effect of the ground surface heat-transfer
coefficient

In all the previous results, we have assumed a constant tem-
perature of ^10³C at the ground surface. However, a con-
stant-temperature condition is unrealistic for prolonged
periods of time (i.e. 41^2 days). A lumped parameter
boundary condition with an overall heat-transfer coefficient
is more reasonable for long-term analysis.The constant-tem-
perature condition is obtained from the heat-transfer-coeffi-
cient condition by allowing H ! 1. Figure 6 plots ¡‡ as a
function of ¬ for three values of the dimensionless heat-
transfer coefficient. A dimensional value of the heat-transfer

coefficient, h, can be obtained by reversing the scaling
H ² h d0 k¡1

f .
It is readily apparent that the `̀ insulating’’ effect repre-

sented by smaller values of H causes a greater range of
unstable modes. Furthermore, as H decreases from 1 to 10,
¡max increases two orders of magnitude. Insulation obviously
has a destabilizing effect.

Both ¬max and the corresponding value of ¡max increase
as H decreases. There are several scenarios in the field in
which small values of H might be applicable. The most
obvious instance is that of increased ground cover in the form
of grasses, mosses and shrubs. It is noteworthy that the exten-
sive survey of earth hummocks byTarnocai and Zoltai (1978)
supports this prediction. In essentially all places where earth
hummocks are found, there is a moderate amount of organic
ground cover. The fact that the tops of hummocks are some-
times more barren than the trough regions is most likely the
result of changes in soil moisture after the hummock shape
has matured. It is reasonable to assume that the differential
height between the crest and the trough would cause water
drainage from the top that collects in the inter-hummock
spaces, thus propagating further organic growth in the
depressions.

6.5. Effect of ground-surface temperature

Snow cover, which is almost always present to some degree in
arctic and subarctic regions, also has an insulating effect.
However, snow is more likely to maintain a constant tem-
perature at the ground surface due to its ability to function
as a `̀ heat sink’’ because of the relatively large latent heat
associated with freezing. To analyze the effect of snow cover,
it is more useful to return to the constant-temperature bound-
ary condition and vary the value of Tair. Since H ! 1 for
the constant-temperature condition, the ground-surface tem-
perature is equivalent to Tair. A smaller (in magnitude) value
of Tair corresponds to a thicker and/or less thermally conduc-
tive snow layer. In fact, the only limitation in this case is
Tair < 0. The effect of the ground-surface temperature is
shown in Figure 7.

In Figure 7 it can be observed that as the ground-surface
temperature warms, ¡max decreases. Furthermore, in the
limit of Tair ! 0, the growthcoefficient for all unstablemodes
tends to zero. These results indicate that the occurrence of
DFH should be more prevalent in less snow-covered areas

Fig. 5. The lineargrowth coefficient, ¡‡, as a function of wave-
number, ¬, for three values of theYoung’s modulus, E.The soil
type is Chena Silt.

Fig. 6. The linear growth coefficient, ¡‡, as a function of
wavenumber, ¬, for three values of the dimensionless heat-
transfer coefficient H ² h d0 k¡1

f . The value of ¡max for
H ˆ 10 is two orders of magnitude greater than for a con-
stant-temperature boundary condition (H ! 1).
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than those where snow accumulates, and in fact this is
observed. A good example is the Toolik Lakes (Alaska,
U.S.A.) field site where D. A. Walker (personal communica-
tion, 2000) has observed that frost boils tend to be more
prevalent in the wind-blown areas. Frost boils are small
mounds of soil material, ¹1m in diameter, presumed to have
been formed by frost action (NSIDC, 1998). Ground-surface
temperature measurements in both regions confirm that sur-
face temperatures are indeed colder in the barren regions.

6.6. Effect of freezing depth

It is appropriate to investigate the effect of freezing depth,
h1 ² zs ¡ zf , on the stability theory predictions. The non-di-
mensionalizationestablishes that h1 is of the order one.When
ground freezing commences, h1 begins at zero and increases
(approximately with the square root of time (Fowler and
Noon, 1993)). By examining the behavior of ¬max and ¡max

for increasing values of h1, we are able to observe how the
stability of the system changes as ground freezing progresses.
Figure 8 shows the effect of freezing depth on the stability
analysis predictions. As one might expect, the largest range
of unstable modes occurs at the smallest values of the freezing
depth and slowly decreases as h1 increases. However, con-
trary to previous results where unstable modes existed for all
values of a parameter, stabilization occurs at a finite value of
h1. For the reference set of parameter values shown here, that
value is h1 º 0.23, which corresponds to a dimensional value
of 23 cm.

The fact that there is a critical value of the freezing
depth is important when attempting to gauge what wave-

number might commonly be most expressed in the field. In
the limit h1 ! 0, all wavenumbers have a positive growth
rate. As freezing progresses and h1 increases from zero, the
largest wavenumbers are `̀cut off ’’ (i.e. ¡‡ < 0) while the
smaller wavenumbers continue to grow, albeit at a slower
rate. As h1 continues to increase, more and more wave-
numbers are cut off. Eventually when h1 º 0.23, all wave-
numbers are cut off and no differential modes are unstable.
It can be seen in Figure 8 that very small wavenumbers
always have small positive growth rates until cut off. Large
wavenumbers have large growth rates but are cut off early.
Mid-range wavenumbers have moderate growth rates for
intermediate periods of time. Thus, mid-range wavenum-
bers might become most expressed in the field since they
have a moderate length of time to grow and moderate
growth rates for most of the time.

Although linear theory is not strictly valid once differen-
tial modes grow to a finite amplitude, it is insightful to see
what wavenumber the model predicts would become most
expressed during the entire period of freeze-up.This assump-
tion is not excessively crude since the dimensionless growth
rates are much less than unity in this case, and the perturba-
tions are going to grow relatively slowly. As a simple approxi-
mation, we define the normalized growth rate as follows:

_± ² 1

±

@±

@t
ˆ @ ln ±

@t
; …36†

where ± is the perturbation in the ground-surface location.
The magnitude of ± at time t0 is determined by integration:

ln ± ˆ
Z t0

0

_± dt …37†

±

±0
ˆ exp

Z t0

0

_± dt

Á !

; …38†

where ±0 is the magnitude of the originalperturbation at t ˆ 0.
Figure 9 shows the numeric results of integrating Equa-

tion (38) for several values of the wavenumber ¬, indicated
by the dots. The integration is performed until a time t0, at
which point all modes become stable (i.e. h1 º 0.23). The
most expressed wavenumber under these conditions is ¬ ˆ
2.3 which corresponds to a dimensional wavelength of 2.7 m.
This result is quite encouraging since the spacing of hum-
mocks is typically 1^3 m (Tarnocai and Zoltai, 1978).
Because all modes are stable for times greater than t0 (or

Fig. 7. The effect of warmer constant-temperature conditions on
the growth of differential modes for the reference set of param-
eter values.The growth rate, ¡ is plotted in dimensional form.

Fig. 8. The lineargrowth coefficient, ¡‡, as a function ofwave-
number, ¬, for three depths of freezing, h1.There are no positive
roots (¡‡; ¡¡ <0) at freezing depths greater than h1 º 0.23.

Fig. 9. Relative amplitude of the ground-surface perturbation,
±=±0, for several values of the wavenumber, ¬, at the time t0

when all modes become stable. Soil type is Chena Silt and
H ˆ 10. At t ˆ t0, h1 º 0.23.
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h1 > 0.23), a further increase in frost depth will result in all
modes decreasing in amplitude.

To determine the evolution of ±=±0 in time as h1 increases,
Equation (38) is integrated in time up to t0 for a given wave-
number. The results for ¬ ˆ 2.6 are shown in Figure 10.This
figure shows the evolution of ±=±0 as freezing progresses (i.e.
h1 increases). The normalized perturbation amplitude
reaches a maximum at h1 º 0.08 and then begins to decrease.
At h1 ˆ 0.2, ±=±0 º 2.65 as expected from Figure 9. The
amplitude returns to its initial value at h1 º 0.36 and con-
tinues to decrease as h1 increases further. These results indi-
cate that an initial perturbation of magnitude ±0 will have
increased in magnitude at the end of the freezing season for
active-layer depths 50.36 m.

There is no assumption in this derivation that the per-
turbation grows as exp‰¡ tŠ as linear theory requires. In this
sense, this is a real-time analysis. However, other assump-
tions have implications that must be examined. Perhaps
most importantly, all product terms in perturbed variables
are assumed small and neglected. Hence, this real-time
analysis is still only applicable when all perturbations are
relatively small in magnitude.

6.7. Mechanism for instability

It has been demonstrated above that there is a range of
modes that are unstable for most cases of interest. In fact, if
theYoung’s modulus is allowed to approach zero (E !0), all
modes are unstable for some soils while no modes are
unstable for other soils. In this limit, the bending resistance
of the frozen soil is essentially removed (see Equation (7)).
Figure 11 shows the LSA prediction for the reference set of
parameter values and Chena Silt except that E ˆ 0. It is evi-
dent that the elasticity of the frozen layer is providing the
stabilizing mechanism for DFH.

In order to help explain the mechanism that causes the
instability, Figure 12 shows a schematic of the in-phase per-
turbed surfaces. Also sketched are approximate isotherms
for the constant-temperature boundary condition at the
top surface. The large arrow pointing to the right shows the
net direction of differential heat flow that is occurring from
a crest region to a trough region. Before the perturbations
occur, heat transfer occurs only in the vertical direction.
However, once the system is perturbed, heat transfer can
occur in both the horizontal and vertical directions.

Solving Equation (33) for ²=± indicates that the magni-
tude of the bottom surface perturbation, ², is less than the

top surface perturbation, ±, albeit by a small difference.
However, linear stability theory predicts perturbations grow
exponentially.Thus, althoughthe difference between ² and ±
is small initially, that difference will grow exponentially fast
(at least until non-linear terms become significant). In fact, it
is difficult to speculate about what form the perturbations
will take once non-linear terms become significant. Figure
12 shows that the thickness has increased from the basic state
value underneath a crest, and decreased underneath a trough.
Because the temperatures at the boundaries zf and zs are fixed
at the basic-state values and the conduction path length has
changed, the temperature gradient at the bottom surface,
Gi, has also changed. Underneath a crest the gradient has
decreased in magnitude and, according to Equation (15), the
velocity of the freezing front will also decrease. Continuing
this line of reasoning, since the conduction path underneath
a trough has decreased, the gradient at zf has increased and
the velocity of the freezing front has correspondingly
increased. Since there is a positive feedback mechanism
occurringat this point, the perturbations will continue to grow.

In order to understand the increase in ¡ with increasing
wavenumber observed in Figure11, it is necessary to consid-
er the magnitude of differential heat flow shown in Figure
12. As the wavenumber increases, the magnitude of heat flux
from a crest region to a trough region increases. In order for
frost heave to occur, the latent heat of the incoming water at

Fig.10. Evolution of the normalized ground-surface perturbation
as a function of the freezing depth, h1. Fig. 11. Stability predictions for the fundamental case when

theYoung’s modulus is set to zero (E ˆ 0).

Fig.12. Schematic of the perturbed surfaces showing isotherms
and the direction of differential heat flow.The basic state sur-
faces zs and zf are shown by the dashed lines, and the per-
turbed surfaces are the thick solid lines.
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zl must be removed. Since there is differential flow from a
crest to a trough, additional heaving can occur underneath
the crest region. This also corresponds to less heave occur-
ring in the trough region.

6.8. Implications of the steady-state assumption

This analysis is based on the quasi-steady-state assumption
that perturbations grow much faster than changes in the
basic state. However, predictions indicate that the growth
rate ¡ is actually less than unity in most cases, and thus per-
turbations grow slowly relative to changes in the basic state.
For some time-periodic problems with slow growth rates,
Floquet theory has been successfully applied when solving
the linear stability problem (Drazin and Reid, 1991, p.354).
However, the entire freeze^thaw cycle (or period) must be
modeled. This analysis has only addressed the frost-heave
process that occurs during freezing, which is only part of a
larger cycle. The thawing process involves solifluction, soil
consolidation, water percolation and evaporation, and pos-
sibly other processes.

The present analysis indicates that the frost-heave process
alone is capable of causing spontaneous pattern generation,
albeit on a 10^100 year time-scale. Combination of the frost-
heave model with a thaw model could possibly yield more
conclusive theoretical evidence that patterns are generated
by the processes discussed here. It may be that the mature
periglacialpatterns observed are actually the result of a com-
plex combination of all the processes mentioned above.

7. CONCLUSIONS

In this paper, we have demonstrated that the frost-heave
model due to Fowler and Krantz (1994) is linearly unstable
under a range of environmental conditions and for several
(but not all) soil types. Differential heat flow coupled with
the delicate balance between hydraulic conductivity and
cryostatic suction potential act as a destabilizing mechan-
ism for one-dimensional frost heave.When the upper frozen
region is modeled as a purely elastic material, the force
required to deform the frozen region acts as a stabilizing
mechanism to DFH. Previous stability analyses in the litera-
ture (Lewis and others, 1993; Fowler and Noon, 1997) have
failed to describe accurately the mechanisms at work that
can give rise to DFH. The analysis presented here has cor-
rected errors in how Lewis (1993) coupled the mechanical
problem to the frost-heave problem, and identified a source
of instability that was overlookedby Noon (1996) in the case
of a constant-temperature boundary condition.

The mechanisms responsible for DFH are dependent on
the instantaneous depth of freezing and can effectively be
shut off when depths of freezing exceed a critical value.
Numerical integration of the predicted growth rates as freez-
ing progresses beyondthis critical value indicates that there is
an intermediate-valued wavenumber that is most expressed.

The dimensionless growth rates predicted by the theory
presented here are small, ½1, indicating that pattern expres-
sion would take tens to hundreds of years to mature.This pre-
dicted length of time is similar to the scale reported by many
field observers (Washburn, 1980; Williams and Smith, 1989).
However, the mechanisms discussed here apply only to the
freezing process. Active-layer thaw is itself a unique process
and may possess additional mechanisms that could give rise
to patterning. One possibility is thebuoyancy-inducedsoil cir-

culation theory presented by Hallet and Waddington (1992).
Coupling the DFH model with Hallet and Waddington’s
model might provide a more complete explanation of pattern
formation and soil circulation by accounting for both the
freezing and thawing processes.

The use of thin-plate theory to describe the upper, frozen
region as a purely elastic material is restricted to the linear
region. Vertical displacements are assumed very small.
Furthermore, thin-plate theory assumes h1 ½ 2º¶, or that
the thickness of the region being deformed is much less than
the characteristic lateral dimension. This assumption is
obviously not valid for larger freezing depths. To describe
the evolution of DFH after initiation when these assumptions
break down, a more comprehensive elastic constitutive
relation needs to be implemented. Alternatively, a different
rheology can be used such as viscous, viscoelastic or visco-
plastic. These rheologies may in fact describe the long-term
evolution of DFH more accurately than a purely elastic one.

The steady-state assumption can only be used as a first
approximation and is obviously invalid near marginal sta-
bility. This drawback points to the necessity of solving the
non-linear equations as a time-evolution problem. While a
non-linear stability analysis can provide further informa-
tion about the observed planform and sub- or supercritical
stability, it must also use a frozen-time assumption. Current
stability theory cannot adequately account for the effects of
a changing basic state. Thus, a numerical solution of the
time-evolution problem is probably the most valuable con-
tinuation of this investigation.
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MS received 23 March 2000 and accepted in revised form 9 December 2002

Journal of Glaciology

80
https://doi.org/10.3189/172756503781830854 Published online by Cambridge University Press

https://doi.org/10.3189/172756503781830854

