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1. Introduction. We shall show that there exists a chain, order isomorphic to the
chain of real numbers, of semigroup varieties closed for the Bruck extension. The least
semigroup variety closed for the Bruck extension will be obtained as the union of varieties
in an infinite chain of semigroup varieties.

For any semigroup S, let ' be the semigroup S if S has an identity element and
otherwise, S' will be the semigroup S with an identity element adjoined. The set of
natural numbers will be denoted by N. On N X §' X N we can define a multiplication by
putting

(m,s,q+n—-p) if n>p,

(m,s,n)(p,1,9) =17 (m,st,q) if n=p,
m+p—n,t,q) if p>n

We thus obtain a semigroup which we denote by B(S), and which is called the Bruck
extension of S. It is easy to see that

S— B(S), s—(0,5,0)

is an embedding and that B(S) is simple (see e.g. § 8.5 of [3]).

A subvariety V of the variety S of all semigroups is closed for the Bruck extension if
for every S € V we have that B(S) e V. In particular, if V is closed for the Bruck
extension, then each S € V can be embedded in a simple semigroup of V. Let L(S) be the
lattice of all semigroup varieties and BL(S) the set of all varieties closed for the Bruck
extension. In [8] it is shown that BL(S) is a complete sublattice of L(S). In this paper we
shall further investigate BL(S) and the way BL(S) is embedded in L(S). We shall show
that BL(S) contains a chain which is isomorphic to the chain of real numbers. Moreover,
if Ve BL(S) and V # 8, then we shall show that there exists an infinite ascending chain in
BL(S) with least element V.

Since BL(S) is a complete sublattice of L(S) and § € BL(S), it follows that for every
V € L(S) there exists a smallest semigroup variety BV which contains V and which is
closed for the Bruck extension. It is easy to see that B:L(S)— L(S), B— BV is a closure
mapping (in the sense of [2]) and therefore B is a complete v-homomorphism of L(S)
onto BL(S). If S is any semigroup, then define B"(S), n € N, inductively by

BY(S)=35, B"*!(S) = B(B"(S)).
For any n =0, let ¢, be the embedding )

@.:B"(S)— B"'(S), a—(0,a,0).
and let B“(S) be the direct limit of the directed family (B"(S), ¢u)nen. Thus,
B“(S) = < U B"(S)) / 6 where @ is the equivalence relation generated by the set of

neN
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pairs (a,aq,), n € N, a € B"(S). Then a result of [5] states that, given the variety Var $
generated by the semigroup §, then B Var § = Var B“(S) = | Var B"(S). Clearly
neN

Var S < Var B(S) S Var BA(S)<... = VarB"(S)S...S B Var$.

We shall show that in general these inclusions are strict. In particular, if 7 is a
one-element semigroup and T = Var T is the trivial variety, then BT is the least element
of BL(S) and the inclusions in

T< Var B(T)< Var B(T)<...c VarB"(T)<...c BT

will be shown to be strict. Here B"(T) is the Munn semigroup (in the sense of [6]) of a
dually well-ordered chain of order type (w")* and BT = Var B“(T), where B“(T) is the
Munn semigroup of a dually well-ordered chain of order type (w“)* Therefore each of
these semigroups is bisimple (see also § 8.5 of [3]). The semigroup B(T) is also called the
bicyclic semigroup and the variety generated by B(T) has been studied in several papers:
we refer to [4] for further references.

2. Chains in BL(S). As in [5] we denote the elements of the bicyclic semigroup
B(T) by (m,n), m,n € N, and we introduce the relations = and 1 on B(T) by
(m,n)a(p,q)&n>p,
(m,n)c(p,q)on<p.

We let X be a countably infinite set of variables and X*[X *] be the set of [nonempty]
words over the alphabet X. The equality on X will be denoted by =.
The following useful result was proved in [5].

ResuLt 1. Let u=u(x,x,) anfl v =v(x,,X,) be words involving the two variables x,
and x, only. If for @ = (m,n) and b = (p,q) of B(T) we have

u(@,byaab and wu(a,b)aba (1)
or
abcv(a,b) and bicv(a,b), )]
then for any semigroup S, s, t € S', and a=(m,s,n) and b=(p,t,q) in B(S), we have
that
u(a, b)abv(a, b) = u(a, b)bav(a, b). (3)

For any &,/ =2 we put for x,,x; € X,
ak,IExlxéxlxlexlxlth
bk,/Exlxgxlxlexlxlle,

and for u,v e X* we then have

a (1, v) = uvtuuvv'u,
by /(u, v) = uvkuvuuv'u.

The following lemma will be crucial for the proof of the main result in this section.
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LEMMA 2. Let S be any semigroup, let k,| =3 and u,v € X™. In an evaluation, where
the variables which occur in u or v are replaced by elements of B(S), let @ = (m,s,n) and
v={(p,t,q) be the elements of B(S) which correspond to u and v respectively. Then, if
m =n =p = q does not hold, a, [it, V) = b, (i1, V) is a true equality in B(S).

Proof. We consider the elements & = (m,n) and © = (p, g) of the bicyclic semigroup
B(T) which correspond to & and ¥, respectively. There are numerous cases to be
considered. Each of these cases then makes use of Result 1.

It suffices to show that for each case we have either

avcad'a, v cav'a, 4)
or
,  adfaaoa. (5)

[

av*kaaa
We now give a survey of all the cases and indicate which one of (4) or (5) applies:

(i) m>n,p<q,n>p,m—-n>q—-p:(4),
(i) m>”’P<q7n>P,m_nSCI“P5(5)a
@iy m>n,p<g,n=p,m-n>q—p:(4),
(ivy m>n,p<g,nsp,m—-n=q—p:(5),
(V) n<m=p=q:(4),
(vi) n<p=q<m:(4),
(vii) p=g<n<m:(4),
(viil) m>n,p>q,p>n,qg>m:(4),
(ix) m>n,p>q,p>n,qg=m:(4),
(x) m>n,p>gq,p=n:(4),
(xi) g<p=m=n:(4),
(xil) g=m=n<p:(4),
(xili) m=n<qg<p:(4),
(xiv) p<g=m=n:(5),
(xv) p=m=n<q:(5),
(xvi) m=n<p <gq:(5),
(xvil) m<n,p>q,n>p,n-m=<p—q:(4),
(xvi) m<n,p>g,n>p,n—m>p —q:(5),
xix) m<n,p>q,n=p,m-n=q-p:(4),
(xx) m<n,p>q,n=p,m-n<q-p:(5),
(xxiy m<n=p =q:(5),
(xxii) m=p =g <n:(5),
(xxiil) p=g<m<n:(5),
(xxiv) m<n,p<gq,q<m:(5),
(xxv) m<n,p<q,q=m,p <n:(5),
(xxvi) m<n,p<q,q=m,p =n:(5).

Only one case has been left out in the above, namely the case
(xxvil)) m=n,p=gq,

which can be treated as follows. If m =n>p =g, then a, (i1, v) = (m,s°, m) = b, ,(iz, V)
and if m =n <p =g, then a, (@, 0) = (p, """, q) = be /(u, V).
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The proof for each of the above cases follows from a routine computation. By way of
example we treat the case (xix), where m<n,p>q,n<p,m—-nz=gq —p.

If g =m, then

o =(m-+p=—-n,q), tid=(p,n+q—-m),
ava=m+Ilp—-(U-1)g—n,n+q—-m),
and since
g<q+lp-—q)-(n-m)y=m+ilp—(-1)q—n,

<n+g-m+l(p-q)—-((-Dn-m)=m+lp—-(-1)q—n,

3
+
S
|
3

4, o cad'n and a (i, v) = be,(it, v) by Result 1. If g <m, then
agv=(m+p—n,q), da=(p+m-—gq,n),
av'i =2m +1Ip —lg —n,n),
where
g<m<m+Il(p—q)—(n—m)=2m+Ip—Ilq—n,
n<n+lp—-q)—-2(n—m)=2m+Ip —lg —n,

la an

thus 49 cad'a, da cad'a, and so ay,(it, v) = by, (i, U) by Result 1.
The following theorem generalizes a result of [5].

THEOREM 3. For any semigroup S and k, | =3, e, f =1, the identity a, ,(x5,x5)=
bi,(x5, x%) holds in S if and only if this identity holds in B(S).

Proof. Clearly, if a, (x$, x5) = b, ,(x¢, x5) holds in B(S), then this identity holds in S,
since § is a subsemigroup of B(S). Conversely, let us assume that a, (x$, x1) = b, (x5, x%)
holds in § and let & = (m,s,n), v =(p, ¢, q) be the elements of B(S) which result from an
evaluation where u = x{ and v = x4, respectively. We must show that a, (i, ¥) = b (i, V)
holds in B(S). By the preceding lemma, this equality holds unless maybe m =n=p =g4.
Let us look at the case where m=n=p=gq. If x, is replaced by a e B(S), then
iu=a‘=(m,s,m), whence a=(m,g,m) and s =g° for some g e S. Similarly, x, is
replaced by b € B(S), where b = (m, h,m) and t = h' for some h € S. Therefore

a (it, v) = (m, a, ,(g°, h'), m)
= (m, by ,(g°, h'), m)
= b, (u, v).
Therefore a, (x¢, x5) = b, (x5, x£) holds in B(S).

In [5}, it was already noted that the identities of the statement of Theorem 3 hold in
B“(T); therefore the least element BT = Var B“(T) of the lattice BL(S) is certainly
properly contained in S.

For any Ac{(k,l,e,f) |k, =3,e,f =1} we let V, be the variety determined by the
identities of the form a, ,(x$, x5) = by (x5, x4), (k, 1, e,f) € A.

CoROLLARY 4. For any A<{(k,l,e,f)| k,1=3,e,f =1}, V, belongs to BL(S).
As in [7] the order type of the chain of real numbers is denoted by A. Then A is also
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the order type of the chain of real numbers ]0, 1[. Each real number 0 <n <1 has a
unique nonterminating decimal representation in which there is no infinite succession of
zeros; similarly, every real number 0<n <1 can be written in a unique way as

n=73 i,27% with i, =0 or i, =1 for all k=1 and such that for every /=1 there exists
k=1

Jj>1 with i; = 1. With this notation we put, for every j=1, I(n,j) =27, + 272, +. . .+
2% + 1. Clearly, if 0<n,n’ <1, then n <n' if and only if I(n, k) <I(n’, k) for some k=1,
and if this is the case, then /(n,j) <I(n',j) for all j = k.

THEOREM S. ‘BL(S) contains a chain of order type A.

Proof. Let p,,p»,... be the infinite strictly increasing sequence of prime numbers,
with p, =5. For a real number 0<n <1, let A, ={(3,3,1,2'""p; | j = 1}. We shall show
that the mapping

¢:10,1[— BL(S), n—V,, (6)

is an order isomorphism of ]0,1[ onto a subchain of BL(S). Clearly, by Corollary 4,
V,, € BL(S) for every 0<n <1.
Let n =n’. Then l(n,j)<I(n',j) for every j = 1. The variety V, is determined by the
identities of the form
as3(x1, xg/w),,,. = b3 a(xy, xgl‘l'J‘pj), j=1, (7
whereas V,, . is determined by the identities of the form
as 3(x1, x%(,fﬂp") = b;3(x1, xézl(nli)pj), j=1l (8)

2’ y=i(n )

If for some j=1 we have I(n,j) <lI(n',j), then the substitution in (7) of x, by x;
yields the identity (8). Therefore, if n=n’ then the identities in (8) follow from the
corresponding identities (7), so V, €V, . Therefore the mapping of (6) is order
preserving.

We next show that ¢ is a injection. Let us suppose that n <n'. Then for some k =1,
I(n,k)<l(n', k). We show that the identity

kg (k)
a33(x1, X3 ") = bys(xy, x5 %) 9)
does not follow from the defining identities (8) for V, .. Here
zlm.k)pk 2[1:1‘1\‘)3,)1‘

zl(n.k) — 2I(n.k)3 Py
az5(x;,x;  P)=xx;0 PR XX X1 X3 X1,

and of course by3(x;, x3"7%) # a3 3(x;, X3 "*P+). Assume that the identity (9) holds in V,,,..
Then there exists I >1, ty,. .., U, Uyyo o Uy YVise o« s Vs Zis- - - » & € X * such that

pULES N _ zl(n‘k)p_
ass(x,,x3  PY=yu iz, y,v,z,=b3‘3(x1,x2 “),

YT = Yinlin iy forall=i=l,

and such that for all i, u; # v, and u; = v, is a substitution instance of one of the defining
identities (8) of V, . In particular,

— 2104y . 20"y
uy=azs(a,a; ") or u =bss(a,a ")

for some ay,a; € {x,,x,}". If x, occurs in a,, then, since /(n’,j)=1 and p; =5, x, occurs
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more than 5 times in u,, which is impossible since x; occurs precisely 5 times in y,u,z,.
Thus a, = x3 for some s=1. If x, does not occur in a,, then a, =x5 for some t=1 and
1, = v,, which is contrary to u; # v; for all i. Thus x, occurs in a,. Since there are precisely
5 disjoint occurrences of a, as a subword in u,, and precisely 5 occurrences of x; in y,u,zy,
we have that x, occurs precisely once in a,. Further, since x, is the first and the last letter
of yuwz, we have a,=x,, whereas y and z are empty. Thus
as3(x;, 2" = uy = as5(x,, x327), whence 2/%)p, =52'"Vp. Since p; and p, are
prime numbers, both greater than 2, we have p, =p;, thus k =j. Therefore /(n, k)=
I(n', k), a contradiction. Hence the identity (9) holds in V, but not in V, . We conclude
that V,,_is strictly contained in V, ,, and the mapping ¢ is an order isomorphism of ]0, 1{
onto a subchain of BL(S).

In [5] we showed the following

ResuLT 6. If V is a semigroup variety which is closed for the Bruck extension, and V
is not the variety S of all semigroups, then V is contained in a semigroup variety which is
not closed for the Bruck extension.

The following result is interesting in its own right. For any u € X, /(1) will denote
the length of u, i.e. the number of letters from X which occur in u.

THEOREM 7. If V is a proper subvariety of S, then BV is a proper subvariety of S.

Proof. Since V is a proper subvariety of S there exists a nontrivial identity u = v in
two variables which is satisfied in V (see Theorem 9.10 of [3]). If /(u)##/(v), then
X' = x!®) s satisfied in V, thus with u'=x{ %" and v'=x{®xX u'=v" is a
nontrivial identity in two variables which is satisfied in V and such that I(u’) = {(v').
Therefore, without loss of generality, we can assume that there exists a nontrivial identity,
u = v in the two variables x,, x,, which is satisfied in V and such that /(u) = I(v).

Clearly, since u =v is a nontrivial identity, so is u(ass, bs3) = v(as 3, b33). We show
by induction on k =0, that this identity is satisfied in B*(S) for S € V, where B°(S) =S.
Of course this statement holds if k = 0. Assume that the identity u(as s, bs3) = v(as 3, b33)
is satisfied in B*(S) for every S € V and k = 0. Let us evaluate the two variables x; and x,
which occur in this identity by the elements a =(m,s,n), b=(p,t,q) e B**'(S),
respectively, where s,1 € B¥(S), S € V. If m =n = p = g does not hold, then by Lemma 2,
ass(a,b)=bszs(a,b) holds in B*T'(S) and since I(u)=1(v), u(ass(a,b),bss(a,b))=
v(ass(a, b), bs5(a, b)) holds in B**'(S). Otherwise, m =n =p =q and using the induc-
tion hypothesis

u(a3.3(a, b)’ b3.3(aa b)) = (m’ u(a3.3(sa t)7 b3‘3(S, t))? m)
= (m’ v(a_m(s, t)’ b3.3(57 t))7 m)
= v(a3_3(a, b)? b3,3(ay b))
Therefore the identity u(ass, bss) =v(ass, bss) is satisfied in B¥*'(S) for every S e V.
Using induction and the fact that for every S e V, B“(S) is the direct limit of the B"(S),
n =0, we then have that this identity is satisfied by B“(S) for every § € V. In particular, if
S is free on X in V, then V=VarS§ and BV = Var B“(S). Therefore u(as;3,b;3)=

v(as 3, b3 3) is a nontrivial identity satisfied in BYV. This implies that BV is a variety which
is properly contained in S.
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Result 6 and Theorem 7 thus imply

THEOREM 8. If V#S8 and V € BL(S), then in BL(S) there exists an infinite chain with
least element V.

3. Subvarieties of BT. The variety BT = Var B“(T) is the least element of BL(S).
Therefore, if V< Var B, then BV = BT. Thus for instance, since the variety B of bands
is contained in the variety generated by the bicyclic semigroup B(T) [4], we have
BB = BT. From [5] we have that Var B(T) is properly contained in BT. We shall show
that Var B"(T) is properly contained in BT for each n € N. In [5], we already showed that
a,,=b,, is satisfied in B(T) but not in B*(T). Therefore the variety generated by the
bicyclic semigroup B(T) is certainly properly contained in the least element BT of BL(S).
We first have

LeMMA 9. Let @ = (m,n) and b = (p, q) be such that either both n —m and q — p are
positive, or both are negative. Then for every semigroup S, s, t e S' and a=(m,s,n),
b=(p,t,q) in B(S) we have that a,(a,b) = b,,(a, b).

Proof. We shall assume that n — m and g — p are both positive. The case where both
n—m and g — p are negative can be treated in a similar way. In view of Result 1, it
suffices to show that @b% —4b and db%4 2ba. We can consider two cases.

Case 1. p=n. Then g>p=n>m and 4b=(m+p—n,q), ba=(p,n+q—m),
db%i =(m+p—n,n+2q—p-m). Since

n+2qg-p-m>2q—-p>p>m+p—n
we have 4b24 04b and ab%a 1 ba.

Case 2. p<n. Then 4b =(m,q +n —p) and db% = (f,n +e) for some e, f =0. If
g=m, then ba=(p+m—gq,n) where p+m—qg<m<n. If g>m, then bd = (p,n +
m — q). Thus again 46%4 24b and db%d 2 ba.

The main theorem of this section is then as follows.
THeoReM 10. For any n =1, Var B"(T) is a proper subvariety of Var B"*'(T).

Proof. The above statement follows from the above mentioned result from [5] for
the case n =1. For n =2 we shall now construct an identity u, = v, which is satisfied in
B"(T) but not in B"*'(T). We put for a given n =2,

(n) =
Wi =X X2 oo  XpyXpsi,

WEIHZ) SEXX X3 Xy Xyt

(n).=
Waun = XpXiXo oo o Xyt X 41y

) (n)
Wy SEWui.. . Wy

n = " (1)y,,(n) (n)
Wf.—)l,z - wn,an,lwn.B LR wn,m

— n (n) (n) (n)
WE,"_)L,,_| - wfl,l)l—lwﬂl,l L] Wn'.n—an,m
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and inductively, for 2=k =n,

Wg'/)(zwwlkwwl 1- W2"+)1k WK k1
Thus
wil =witwiiwid,  wil=wiiwiiwil
Finally,
U, =a, 2(W2 1 W(") v, = bZ.Z(WfZ.l s W%”:z))-

We prove by induction that for all n=2, u,, v, is satisfied in B"(T) but not in
B"*!(T). We first consider the case n = 2. Then wi) = x,x,x3, w3 =x,x,x;. Let ay, a3, a5
be any elements of BYT), a=a,a,ay=(m,s,n) and b=a,a,a;=(p,t,q) for some
d=(m,n),b=(p,q),s,teB(T). Since

o:B(T)=>Z,(k,r,)—>1—k
is a homomorphism of B*(T) onto the additive group of the integers Z, which is
commutative,
n—m=ao =(a,a,a;)0 = (a,a,a;)o =bo =q —p.

Then n —m #0 if and only if ¢ —p # 0 and in this case we can apply Lemma 9 to obtain
a, 2(a b) =b,,(a,b). Otherwise m=n and p =gq. Then if m>p, we have a,,(a,b)=
(m,s>,m) = b, ,(a,b), whereas if m <p, then a,,(a,b)=(p,t’,p) =b,,(a, b) If m=
n=n=p=gq, then a,,(a,b)=(m,a,,(s,t),m)=(m,b,s(s,1),m)=b,,(a,b), since

a,, = b, is satisfied in B(T) by [1]. Therefore u, = v, is satisfied in B*(T). Substitution
for x,, x; and x; by the elements

bl = (07 (O’ (Oa 1)’ 1)3 1),
b2 = (O» (17 (0’ 1)3 O)s 1)7
b3 = (2’ (0’ (O’ O)a 0), 0)9
respectively, of B*(T) then gives
b1b2b3 = (Oa (07 (O’ 1)3 1)3 0)3
b2b1b3'= (07 (13 (0’ 1)’ 0)’ 0)7
uy(by, by, b3) = ay2(b,bybs, byb bs) = (0,(1,(0, 4),1),0),
Uy(by, by, bs) = b, 2(b 1 bybs, byby b)) = (0, (1, (0, 6), 1), 0),
and so u, = v, is not satisfied in B*(T).
We shall now assume that n =2 and that for all 2<k <n, u, = v, is satisfied in
B*(T) but not in B¥*'(T). We shall show that u,,, =v,., is satisfied in B"*'(T) but not
in B"**(T). We shall evaluate the variables x,,. .., x,., which occur in u,,, =v,,, by

elements a,,...,a,.,, respectively, of B"*(T). The element of B"*'(T) which corres-
ponds to w;*" in this evaluation we denote by w¥;*" for each j and . Again

U:B"H(T)_)Z? (p’taq)_)q -p
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is a homomorphism onto the additive group Z, and so

wWrtlo = (a, ... ape2)o = (80,0, . . . Gpea)o = Wi o (10)

for every 1 =j=<n + 1. Using induction we can now easily show that
(n +1)!
2

Therefore, if w{}o #0, then a (WS, wis D) = bW, wlh™) follows from
Lemma 9. Thus u,,H(al, ey lny2) = U@y, . .., a,4,) 0 this case. We now consider the
case where w{"\')o = 0. Using (10) we can suppose that

(n+1)

1 —(n+1
Wi Vo = Wl (Wivio).

n+1 n+ti
W$,+| l) (ml,shml) w$|+lr)|+l (mn+17sn+17mn+l)7

with s; e B'(T) for 1=j=n+1. Then
Wit = (m, w ey, . .y tasr), m), 1<j=n,
where m = max{m,,...,m,.,} and s, =, if m;=m and 1=¢, if m; <m. Using induction
we can then easily show that
Wi = (m, Wity .. tery)ym) =12

Using the induction hypothesis we then have that

Up1(@1y . -y Bpi) = 2 2B, WEETD)

=(m, azg (WSt o s tast), WSty - -y Ensr))y M)
=(m,u,(ty,... th41),m)
=(m,u,(ty,. .. tyr), m)
= (m, by, (W¢ 1’(t,, o tast), WYt e Esy)), M)
= bz,z(W2.1+1)y Wg'.'zﬂ))

Vpi(@1s .o 5 Gya2).

We conclude that u,,,| = v,+; holds in B*"'(T).

We now set out to show that u,,, = v, does not hold in B"**(T). By the induction
hypothesis u, =v, does not hold in B"*'(T). Thus, there exist s,,...,5,+, € B"*(T)
such that u,(s;,...,$,+1) # v.(51,. . . ,$4+1)- We now consider the elements

a = (0,51, 1)3 ey = (Ovsn-H, 1)’an+2 = (n + 196, O)

of B"*}(T), where e denotes the identity element of B"*'(T). Let the element of
B"**(T) which results from w{;™" by substituting the variables x,,...,x,., by
ay,...,a,., respectively, be denoted by wii*P for all j, I Then

+1) _
W(z'{rl l) (O, Sty 0)7

1
wfln-:l r)1+1 (0 Sn+1y 0)7

Wit = (0, w1, - - »Sn41), 0),

w}]n'-:—l) = (0 w(,:r)r(sl, e ’sn+l)’ 0)’
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and using induction we obtain
Wy = (0, WSty 3 8041), 0), j=1,2

Hence

— —(n+1) (n+1)
un+1(al’ e aan+2) - a2.2(w2,l ’ w2,2 )

= (07 aZ,Z(Wg,rl)(sla crey S,,+1, W(Z',l2)(slv v >sn+l))7 0)
= (03 un(sl, crrs sn+l)? 0)
#* (0’ U,,(Sl, e ,S,,+|), 0)
= (Oa bZ.Z(Wg,Il)(sl, R 7sn+l), Wg.lZ)(sl, LR asn+l))7 0)
= b2.2(w—5,.’l+1)> W&'fzﬂ))
= vn+l(a19 EEE ] an+2)

and ., = v,+; does not hold in B"*?(T).
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