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Invariant scalar-flat Kähler metrics on line
bundles over generalized flag varieties
Qi Yao
Abstract. Let G be a simply connected semisimple compact Lie group, let X be a simply connected
compact Kähler manifold homogeneous under G, and let L be a negative holomorphic line bundle
over X. We prove that all G-invariant Kähler metrics on the total space of L arise from the Calabi
ansatz. Using this, we show that there exists a unique G-invariant scalar-flat Kähler metric in
each G-invariant Kähler class of L. The G-invariant scalar-flat Kähler metrics are automatically
asymptotically conical.

1 Introduction

During the past few decades, many works arise on the explicit construction of scalar-
flat Kähler metrics on noncompact manifolds, usually with certain symmetry condi-
tions. The prototypical example goes back to a seminal work by E. Calabi [10], who
constructed complete Ricci-flat metrics on the canonical bundle of CPn . In complex
dimension two, Calabi’s construction produces the Eguchi–Hanson instanton [17]
on the total space of O(−2). As a generalization of Eguchi–Hanson, LeBrun [25]
constructed a family of ALE scalar-flat Kähler metrics in the total space of O(−n)
with U(2) symmetry. Some other works arise to construct families of Ricci-flat Kähler
metrics on open manifolds, in some sense, extending the Calabi’s construction, for
instance, Stenzel [34], Dancer–Wang [15], and Wang [38].

There are some essential existence theorems for complete Ricci-flat Kähler metrics
on open manifolds. Following Yau’s solution of the Calabi conjecture [40], the analytic
approach to the construction of complete Calabi–Yau metrics on noncompact mani-
folds was initiated by the seminal works of Tian–Yau [36, 37]. The work by Conlon–
Hein [13] establishes the existence results for AC Ricci-flat Kähler metrics. Recently,
initiated by Li [28], many nontrivial Calabi–Yau metrics has been constructed in
C

n with Euclidean volume growth by Conlon–Rochon [14], Székelyhidi [35], and
Apostolov–Cifarelli [3].
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2 Q. Yao

For the scalar-flat case, LeBrun [26] adapted the Gibbons–Hawking ansatz in
hyperbolic model to construct scalar-flat Kähler metrics with S1 symmetry. Joyce
[23] extended LeBrun’s hyperbolic ansatz to toric manifolds and Calderbank–Singer
[11] applied Joyce’s construction to toric resolutions of C

2/Γ with cyclic quotient
singularities and constructed a family of T2-invariant ALE scalar-flat Kähler metrics.
Based on Donaldson’s reformulation of Joyce construction in [16], Abreu–Sena–
Dias [1] constructed complete scalar-flat toric Kähler metrics on symplectic toric
4-manifolds which are asymptotic to generalized Taub-NUT metrics.

Lock–Viaclovsky [29] constructed scalar-flat Kähler metrics on the minimal reso-
lutions ofC2/Γ, where Γ is a finite subgroup of U(2) with no reflections. The existence
of ALE scalar-flat Kähler metrics in small deformations of resolutions ofC2/Γ also has
been investigated by Honda [19, 20], Lock–Viaclovsky [29], and Han–Viaclovsky [18].

In the cases of complex toric surface, the uniqueness of ALE scalar-flat Kähler
metrics have been obtained by Sena–Dias [32], together with work by Wright [39].
However, the general uniqueness of ALE scalar-flat Kähler metric still remains com-
pletely open (unlike in the compact case [5, 12], or in the case with cusps [4] or with
conical singularities [27]). This paper is concerned with a generalization of LeBrun’s
existence results to a class of spaces with strong symmetry in all dimensions and proves
the uniqueness of scalar-flat Kähler metrics in each Kähler class on these spaces under
a symmetry assumption.

A compact homogeneous Kähler manifold is a compact Kähler manifold (X , ω) on
which the identity component of the bi-holomorphic isometry group acts transitively.
The classification of this type of spaces has been known for a long time. By [6], every
compact, simply connected homogeneous Kähler manifold is isomorphic, in the sense
of homogeneous complex manifolds, to an orbit of the adjoint representation of some
compact semisimple Lie group endowed with a canonical complex structure. Then,
the classification of compact homogeneous Kähler manifolds reduces to classifying the
orbit space of adjoint representation. In general, each compact homogeneous Kähler
manifold is the product of a flat complex torus and a compact simply connected
homogeneous Kähler manifold. In this paper, we are only interested in the compact
homogeneous Kähler manifolds without torus part, which we call generalized flag
varieties.

Theorem A Let X be a generalized flag variety, and let L be a negative homogeneous
line bundle over X with p ∶ L → X, the natural projection. Then, all invariant Kähler
metrics ω on L can be written as

ω = p∗ωX + dd c φ(r2),

where ωX is an invariant Kähler form on X and φ(r) ∈ C∞(R≥0).

Based on Theorem A, we have identified the G-invariant Kähler metrics in a
given Kähler class on L with a class of single variable function. To determine the
complete scalar-flat Kähler metrics in a given Kähler class, the method of momentum
construction developed in Hwang–Singer [22] is applied, which reduces the problem
to solving a second-order ODE. In conclusion, we have the following theorem.
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Invariant scalar-flat Kähler metrics on line bundles over generalized flag varieties 3

Theorem B Let X be a generalized flag variety, and let L be a negative homogeneous
line bundle over X. Then, in each Kähler class on L, there exists a unique G-invariant
scalar-flat Kähler metric. In particular, this metric is an asymptotically conical Kähler
metric.

2 Geometry of compact homogeneous Kähler manifolds

In this section, we recall the geometry of compact homogeneous Kähler manifolds.
In Sections 2.1 and 2.2, we discuss the classification of simply connected compact
homogeneous Kähler manifolds and holomorphic line bundles over these manifolds.
Section 2.3 dedicates to classify all G-invariant Kähler forms on generalized flag
varieties.

Here, we introduce some basic notations (see [24] for more details). Let X be
a simply connected compact homogeneous Kähler manifold and G, the universal
covering of the compact semisimple Lie group acts on X. At a distinguished point
p ∈ X, let R be the isotropy group of p and S, the identity component of the center
of R. GC denotes the complexification of G. Let T be a fixed maximal torus of G.
The corresponding Lie algebra of S, T, R, G are denoted by s, t, r, g and sC, tC, rC,
gC, the complexification of Lie algebras. We write Δ to be the root system of gC with
respect to tC and Δ+, Π, the fixed positive root system and simple root system. For
each root α ∈ Δ, gα denotes the eigen-space of α. Since G is a compact semisimple Lie,
the negative Killing form, denoted by (⋅, ⋅), defines a G-invariant inner product in g.

2.1 Classification of compact homogeneous Kähler manifolds

According to [30], it was proved that the centralizer of S in G is R. So the maximal tori
containing S must be contained in R. In the following, we fix a maximal torus T with
S ⊂ T ⊂ R.

Notice that gC admits a root space decomposition,

g
C = t

C ⊕ ∑
α∈Δ+

(gα ⊕ g−α).

We introduce a normalized adapted basis {Xα , Yα} of each pair of root spaces gα ⊕
g−α , which satisfies the following:

(a) Let gα and g−α denote the complex eigen-spaces corresponding to the roots α and
−α. Then

Xα − iYα = Eα ∈ gα and Xα + iYα = E−α ∈ g−α .(2.1)

(b) Xα and Yα are normalized in the sense that,

[Xα , Yα] = −Hα ,(2.2)

where Hα satisfies β(Hα) = (β, α)/2i for each root β. Consider the inner product
induced by the negative Killing form. One can easily check that ∣Xα ∣2 = ∣Yα ∣2 =
1/2. This normalization will be applied in Section 3.1 to calculate the differential
of invariant 1-forms.
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4 Q. Yao

Then the compact real sub-algebra g can be decomposed as follows:

g = t⊕ ∑
α∈Δ+

R⟨Xα , Yα⟩.(2.3)

Next, we classify simply connected compact homogeneous Kähler manifolds by the
structure of root system. Consider a parabolic subgroup P of GC. Then P is determined
by a subset of the simple root system. Let (Δ+)′ ⊂ Δ+ be the subset of positive roots
generated by Π′. The corresponding Lie algebra p can be decomposed as

p = t
C ⊕ ∑

α∈Δ+
gα ⊕ ∑

α∈(Δ+)′
g−α = b⊕ ∑

α∈(Δ+)′
g−α ,(2.4)

where b is the Lie algebra of the Borel subgroup. The generalized flag variety with data
(G , Π, Π′) is defined to be the complex manifold X = GC/P.

Assuming that X = GC/P, we show that X is simply connected compact homoge-
neous Kähler manifold. Consider the maximal compact subgroup G of GC. Then G
acts transitively on X with stabilizer group R = G ∩ P. The Lie algebra of the stabilizer
group R is

r = t⊕ ∑
α∈(Δ+)′

R⟨Xα , Yα⟩.(2.5)

Then, topologically, X ≅ G/R, and its complex structure can also be described as
follows. Let

D+ ∶= Δ+/(Δ+)′ .(2.6)

Then D+ is a closed subset of the root system in the sense that for any α, β ∈ D+, if
α + β is a root, then α + β ∈ D+. The tangent space of X at a distinguished point p can
be identified with

Tp X = ∑
α∈D+

R⟨Xα , Yα⟩.(2.7)

We also call {Xα , Yα ∶ α ∈ D+} a normalized adapted basis of X. There exists a natural
R-invariant almost complex structure J on Tp X given by

J(Xα) = Yα , J(Yα) = −Xα .

Because J is R-invariant, it extends to a G-invariant almost complex structure on the
whole tangent bundle T X. The complexified tangent space at p splits into

T(1,0)
p X = ∑

α∈D+
gα , T(0,1)

p X = ∑
α∈D+

g−α .(2.8)

One can check that J is an integrable almost complex structure because D+ is closed
(see [7, Section 12]), and the complex manifold (X , J) is G-equivariantly biholomor-
phic to GC/P.

Generalized flag varieties are simply connected and the proof of this fact will be
given in Remark 2.2. There exist Kähler forms on (X , J), as discussed in Section 2.3.
Hence, each generalized flag variety is a simply connected compact homogeneous
Kähler manifold of G.
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Conversely, given a simply connected compact homogeneous Kähler manifold X
that admits a transitive holomorphic action by a simply connected compact semisim-
ple Lie group G with data (R, T , S) and a point p ∈ X as above, let Δ(t, r) denote the
root system of rC with respect to tC. This can be viewed as a subset of Δ. Define

D ∶= Δ/Δ(t, r).

The invariant complex structure J on X determines the set of positive roots D+ as
follows. Since the complexified tangent space of X is identified with

TC

p X = ∑
γ∈D

gγ ,

the R-invariance of J implies that J preserves each root space. Then D+ is defined to be

D+ ∶= {γ ∈ D ∶ Jv = iv for all v ∈ gγ}.

The closedness of D+ follows from the integrability of J. In addition, we can choose a
simple root system Π′ in Δ(t, r). Then D+ and the positive roots, Δ+(t, r), generated
by Π′ determine a positive root system Δ+(t, r) in Δ(t, g), i.e.,

Δ+(t, g) = D+ ∪ Δ+(t, r).

The set Π′ can be extended to a simple root system, Π, of Δ(t, g) such that Π
generates the positive roots Δ+(t, g). More details on root systems can be found in
[7, Sections 13.6 and 13.7]. Based on this discussion, the Lie algebra r can be written in
terms of the simple root set Π′ as in (2.5). Thus, X can be identified with the generalized
flag variety associated with the data (G , Π, Π′).

The notion of a generalized flag variety is actually independent of the choice of a
simple root system. By [2, Section 5.13], the different simple root systems are identified
by the action of the Weyl group, and then the associated generalized flag varieties are
isomorphic via conjugation by an element of G. Hence, without loss of generality, we
can fix a simple root system Π at the beginning, and then each generalized flag variety
of G is classified in terms of a subset of Π.

In conclusion, we have proved the following theorem, which should be well-known
to experts.

Theorem 2.1 Let X be a compact Kähler manifold. Assume that X is homogeneous
under a simply connected compact semisimple Lie group G. Fix a system of simple roots
Π of gC. Then X is G-equivariantly biholomorphic to the generalized flag variety of type
Π′ for some subset Π′ ⊂ Π, i.e.,

X ≅ GC/P, where P is the parabolic subgroup of GC determined by Π′ .

Remark 2.2 In fact, all homogeneous manifolds discussed in this paper are simply
connected. More precisely, let X be a compact Kähler manifold homogeneous under
a simply connected semisimple compact Lie group G. Then X is simply connected.
This fact follows quickly from the fiber bundle R ↪ G → X. Let X = G/R, and let S
be the connected center of R. According to the statement (∗), R is the union of all
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the maximal tori containing S, which implies that R is connected. The fiber bundle
structure R ↪ G → X induces a long exact sequence of homotopy groups

. . . → π1(G) → π1(X) → π0(R) → . . . ,

and this tells us that π1(X) = 0.
According to [8, Satz I], each compact homogeneous Kähler manifold is the

product of a flat complex torus and a simply connected compact homogeneous Kähler
manifold. Furthermore, the connected component of the identity of the automor-
phism group of X is a semisimple Lie group [8, Satz 4]. In conclusion, Theorem 2.1
classifies all compact homogeneous Kähler manifolds without torus part.

2.2 Classification of holomorphic line bundles

Consider a holomorphic line bundle L over X, with π ∶ L → X. The holomorphic line
bundle is said to be GC-homogeneous (or in many articles GC-linearizable) if there
exists a GC-action on L such that the projection π is GC-equivariant and the action
is linear on fibers. In particular, we can construct GC-homogeneous line bundle as
follows.

Given a one-dimensional holomorphic representation χ ∶ P → C
∗, a

GC-equivariant holomorphic line bundle Lχ over X = GC/P can be constructed
as follows:

Lχ = GC ×χ C = (GC ×C)/∼,(2.9)

where (gh, v) ∼ (g , χ(h)v) for all g ∈ GC, h ∈ P, v ∈ C. This admits a natural
GC-action given by

g ⋅ [(l , v)] = [(gl , v)](2.10)

for all g ∈ GC, l ∈ GC, v ∈ C. Conversely, given a GC-equivariant holomorphic line
bundle L over X, the stabilizer group P at the distinguished point p ∈ X acts on the fiber
Lp , inducing a holomorphic character χ ∶ P → C

∗ such that L ≅ Lχ . In conclusion,
there is a one-to-one correspondence between the GC-homogeneous line bundles over
X and the characters of P.

Let L be an arbitrary holomorphic line bundle over X. We claim that L is a
GC-homogeneous line bundle. To prove this claim, we need to borrow some results
from algebraic geometry. Referring to [21, Section 21.3], X is a projective variety.
According to a well-known result from GAGA [33], holomorphic line bundles over
a projective variety are algebraic; in other words, the line bundle L is algebraic over X.
Moreover, since GC is a simply connected semisimple Lie group, by [31, Proposition 1],
the Picard group of GC is trivial. According to the key fact that Pic GC = 0, we can
construct a character χ ∶ P → C

∗ such that L ≅ Lχ (see [31, Theorem 4 or Section 5]
for details). Thus, we have the following proposition:

Proposition 2.3 All holomorphic line bundles over X are GC-homogeneous.

Fixing a simple root system Π of G, let X ≅ GC/P, where the parabolic subgroup P
is determined by a subset of simple roots Π′ ⊂ Π as in (2.4). Let Π = {α1 , . . . , αn} be
ordered in such a way that α i ∈ Π′ if and only if i = k + 1, . . . , n. Let {ω1 , . . . , ωn} be
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the set of fundamental weights corresponding to Π, which are defined by

2(ω i , α j)
(α j , α j)

= δ i j (1 ≤ i , j ≤ n).

Here, the inner product is the bilinear form induced by the Killing form of g. The
lattice generated by {ω1 , . . . , ωn}, i.e., all vectors of the form ∑n i∈Z n i ω i , is called the
lattice of algebraically integral weights. Since G is a simply connected semisimple Lie
group, the analytically integral weights coincide with the algebraically integral weights
(see [24, Chapter IV.7]). Thus, each algebraically integral weight induces a character
of the maximal torus T. Recall that s, s∗ denote the Lie algebra of S and its dual space,
respectively. More precisely,

s = {H ∈ t ∶ α(H) = 0, ∀α ∈ Δ(t, r)}, s
∗ = {β ∈ t∗ ∶ (α, β) = 0, ∀α ∈ Δ(t, r)}.

Then (sC)∗ = C⟨ω1 , . . . , ωk⟩ and the intersection of the weight lattice with (sC)∗ is
Z⟨ω1 , . . . , ωk⟩. We call the elements of this sublattice integral weights on X. Given such
an element λ, there exists an associated character χλ ∶ SC → C

∗ defined by

χλ(exp v) = exp λ(v)(2.11)

for all v ∈ sC ⊂ tC. The character χλ can be extended to P in the following way. The Lie
subalgebra p can be decomposed as follows:

p = s
C ⊕ ∑

β∈D+
gβ

��������������������������������������������������������
p1

⊕ ∑
α∈Π′

C⟨Hα⟩ ⊕ ∑
α∈Π′

(gα ⊕ g−α)

���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
p2

= s
C ⊕ n ⊕ p2 ,

where p1 is the solvable part of p, n is the nilpotent part of p1, and p2 is the semisimple
part of p. Each integral weight λ on X can be extended to a complex Lie algebra
homomorphism σ ∶ p → C by defining the extension to be 0 on both n and p2. Then
the corresponding holomorphic character χσ extends χλ from SC to P. By abuse of
notation, we will denote this extension by χλ . The following proposition shows that
all characters of P arise by extension in this way.

Proposition 2.4 For all holomorphic characters χ ∶ P → C
∗, there exists an integral

weight λ on X such that χ = χλ .

Proof The character χ ∶ P → C
∗ induces a Lie algebra homomorphism σ ∶ p → C. It

suffices to prove that σ is trivial if restricted to n and p2. Notice that p1 is a solvable Lie
algebra and n = [p1 , p1]. The restriction of σ to n must be trivial as C is an abelian Lie
algebra. Since p2 is a semisimple Lie algebra, for each root α ∈ D+, there exist Xα ∈ gα ,
X−α ∈ g−α and Hα = [Xα , X−α] such that

lα ∶= C⟨Hα , Xα , X−α⟩ ≅ sl(2,C).

By the representation theory of sl(2,C), the only possible one-dimensional represen-
tation of lα is trivial. Since the restriction of σ to each lα is trivial, we conclude that
σ ∣p2 = 0. ∎
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Summarizing, we have now proved that every integral weight λ ∈ Z⟨ω1 , . . . , ωk⟩
induces a character, χλ ∶ P → C

∗, hence a homogeneous line bundle Lλ . Conversely,
every holomorphic line bundle L is of the form L ≅ Lλ for some λ ∈ Z⟨ω1 , . . . , ωk⟩.
Recall that an integral weight λ on X is called dominant if λ = ∑k

i=1 n i ω i with n i > 0.
By the Highest Weight Theorem, for each dominant integral weight λ, there exists a
unique finite-dimensional irreducible complex representation V(λ) of G with highest
weight λ. The Bott–Borel–Weil Theorem [9, Section 7] states that the space of global
sections of Lλ is isomorphic to V(λ) as a G-module. Also by the Bott–Borel–Weil
Theorem, the global sections of Lλ induce an embedding X ↪ P(V(λ)∗), so Lλ is
very ample. In conclusion, we have the following.

Theorem 2.5 The Picard group of the compact homogeneous Kähler manifold X can
be identified with the sublattice Z⟨ω1 , . . . , ωk⟩ of the lattice of integral weights. Under
this identification, ample line bundles correspond to dominant integral weights, and are
automatically very ample.

Proof Given the previous discussion, we only need to prove that if Lλ is ample, then
the weight λ is dominant. We will calculate the curvature form of Lλ in (3.9). The
curvature form is positive if and only if (λ, α) > 0 for all α ∈ D+, which implies that λ
is dominant. ∎

2.3 Invariant closed (1,1)-forms on X

In this section, we classify the G-invariant closed (1, 1)-forms on X, which is needed
for the proof of Theorem B.

Throughout this section, let X be a compact homogeneous Kähler manifold with
respect to (G , R). Fixing a distinguished point p ∈ X, let {Xα , Yα ∶ α ∈ D+} be a
normal adapted basis of Tp X as defined in (2.1) and (2.2). Then, we write {ηα , ξα ∶
α ∈ D+} for the dual basis of T∗p X.

The results that we will discuss here mainly come from [6, Chapter 8]. A slight
difference is that we rewrite the results in more explicit way. Recall that tangent vectors
at p can be identified with infinitesimal transformation at p by elements in g. If A ∈ g,
we define VA as a vector field on X by

VA(x) = d
dt

∣
t=0

exp(tA)(x), for all x ∈ X .

We call VA the fundamental vector field related to A. Then, by quick calculation, the
Lie bracket of two fundamental vector fields is also fundamental as

[VA, VB] = −V[A,B] .(2.12)

The reason we introduce fundamental vector fields is to test invariant 2-forms on X.
Recall that the negative Killing form defines a G-invariant metric (⋅, ⋅) on g. Fixing
an element S ∈ s, we can define a 2-form, ωS(VA, VB) = (S , [A, B]). According to
the standard calculation (see [6, Proposition 8.66]), ωS is a G-invariant, closed, real
(1, 1)-form. It is observed that the only nonvanishing terms are

ωS(Xα , Yα) = (S , [Xα , Yα]) = (S ,−Hα) =
i
2

α(S).(2.13)
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Invariant scalar-flat Kähler metrics on line bundles over generalized flag varieties 9

The observation (2.13) indicates that we can write down ωS explicitly in terms of the
covector basis {ηα , ξα ∶ α ∈ D+} at p ∈ X. Precisely,

ωS = ∑
α∈D+

CS(α)ηα ∧ ξα , CS(α) = i
2

α(S),(2.14)

where CS can be viewed as a linear function of s∗ (generated by elements in D+).
Given a G-invariant closed real (1, 1)-form, ω, in the following, we prove that ω can

be written as in (2.14) related to some S. Since ω is G-invariant, for each A, B, N ∈ g,

0 = (LVN ω)(VA, VB) = VN(ω(VA, VB)) − ω([VN , VA], VB) − ω(VA, [VN , VB]).

In particular, by taking N to be an element in t and A, B to be elements of {Xα , Yα ,
α ∈ D+}, noting that VN(ω(VA, VB)) = 0, we have:
• For two different roots in D+, α, β, ω(Xα , Xβ) = ω(Xα , Yβ) = ω(Yα , Yβ) = 0.
• The only nonvanishing case are ω(Xα , Yα) = Cα , α ∈ D+.
It suffices to show that Cα , a function defined in D+, can extend linearly to s∗. Since
2-form ω and inner product in g can be extended linearly to complex field, consider
the following complex vectors:

U = Xα − iYα , V = Xβ − iYβ , W = Xα+β + iYα+β ,(2.15)

where α, β, α + β ∈ D+ and Xα ,β ,α+β , Yα ,β ,α+β are taking from the normal adapted
basis as in (2.1) and (2.2). Viewing U, V, W as elements in g⊗C, the G-invariant inner
product satisfies

(W , [U , V]) = ([W , U], V).

Therefore, it is easy to check U , V , W satisfies the following:

[U , V] = λW , [V , W] = λU , [W , U] = λV .

By closedness and G-invariance of ω, we have

dω(U , V , W) = ω([U , V], W) + ω([V , W], U) + ω([W , U], V)
= − λ(ω(W , W) + ω(U , U) + ω(V , V)) = 0.(2.16)

Inserting (2.15) into (2.16), we have

ω(Xα+β , Yα+β) = ω(Xα , Yα) + ω(Xβ , Yβ),

hence, Cα+β = Cα + Cβ (∗). Noticing that C● defines a function on D+, the condition
(∗) implies that C● can be extended to a linear function on s∗ as D+ generates s∗. In
other words, there exists an element S ∈ s such that

Cα = i
2

α(S).

In conclusion, we have the following proposition.

Proposition 2.6 For any S ∈ s, the 2-form ωS given by (2.14) is a G-invariant closed
real (1, 1)-form. Conversely, any G-invariant closed real (1, 1)-form, ω, can be related
to a unique S ∈ s, i.e., ω = ωS . The form ωS is positive if and only if CS(α) = i

2 α(S) is
positive for all α ∈ D+.
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Proposition 2.6 implies a bijection from s to the space of G-invariant closed
real (1, 1)-forms on X, S → ωS . There is a special element of the G-invariant closed
real (1, 1)-forms, Kähler–Einstein form, and the related element in s is given by
SKE = 2∑α∈D+ Hα . So we can write ωKE explicitly at the distinguished point p ∈ X
with respect to the normal adapted basis. Indeed, set δ be the sum of all positive roots
in D+, then

ωKE = 1
2 ∑

α∈D+
(α, δ)ηα ∧ ξα .(2.17)

3 Invariant ddC-lemmas on homogeneous line bundles

This section is dedicated to the proof of Theorem A. Section 3.1 discusses invariant
1-forms on the unit circle bundle, M, of a homogeneous line bundle L over a compact
homogeneous Kähler manifold X. Section 3.2 calculates the differentials of the invari-
ant 1-forms given in Section 3.1. Assuming that L is negative, Section 3.3 proves an
invariant ddC -lemma, and we also show that this ddC -lemma can be false if L is not
negative. Finally, Section 3.4 combines these results to prove Theorem A.

3.1 Invariant 1-forms on M

Let X be a homogeneous compact Kähler manifold as before, and L = Lλ , a homoge-
neous line bundle over X corresponding an integral weight λ. Given the data (X , L),
in this subsection, we will determine all left-invariant 1-forms on the unit circle bundle
M of X.

Recall the G-action on L defined by restricting the GC-action of (2.10) to G ⊂ GC.
For each homogeneous line bundle L, there is a natural G-invariant Hermitian metric
h induced by the standard Hermitian metric in C. In particular, according to con-
struction of homogeneous line bundle in (2.9), let q0 = (g , z) ∈ Lλ for (g , z) ∈ GC ×C,
then h(q0 , q0) = ∣z∣2. The Hermitian metric h induces a radian function r on L. Then,
G acts transitively on each level set of r, an S1 bundle of X, denoted as M(r). Away
from zero level set, there is a canonical invariant vector field, ∂/∂r on L pointing in
radius direction. We shall find the set of all invariant vector fields on each level set
M(r). Notice that, in general, left-invariant vector fields on G are not well-defined over
M(r), as the left action by the stabilizer group on the tangent space at one point can be
nontrivial. Let M = M(1) and let TM be the space of all global G-invariant vector fields
over M. TM contains at least one element, X0 = J(∂/∂r), generating a circle action on
each fiber. The other elements of TM strongly depend on the base manifold X and the
integral weight λ. According to (2.7), the tangent space at a distinguished point p ∈ X
can be identified with a subspace of g. Then, we can choose a normal adapted basis
{Xα , Yα}α∈D+ as in (2.1) and (2.2).

Based on the choice of {Hα , Xα , Yα} as in (2.1) and (2.2), one can easily check the
following Lie algebra structure:

[Hα , Xα] = − ∣α∣2
2

Yα , [Hα , Yα] =
∣α∣2

2
Xα , [Xα , Yα] = −Hα .
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Invariant scalar-flat Kähler metrics on line bundles over generalized flag varieties 11

Let q be a distinguished point in M with π(q) = p, then the tangent space at q can
be identified with R⟨Xα , Yα , α ∈ D+⟩ ⊕RX0 in the following sense. Consider the
G-equivariant bundle projections,

with π̃(e) = q ∈ M. At the distinguished point q ∈ M with π(q) = p ∈ X, assume that
the stabilizer group at p ∈ X is R and the stabilizer group at q ∈ M is R0. By G-action
on L, g ∈ R0 if and only if,

g(q) = g(e , θ) = (e , χλ(g)θ),

which implies that R0 = ker χλ ∶ R → S1 ⊂ C
∗ These projections induce the mapping

on tangent spaces π̃∗ ∶ g → Tq M by

N ∈ g ↦ d
dt

∣
t=0

π̃ ○ exp(tN).(3.1)

Similarly, we can define the mapping π∗ ∶ g → Tp X. By abusing notation, we write
Xα , Yα instead of π̃∗(Xα), π̃∗(Yα) and π∗(Xα), π∗(Yα) as Xα , Yα . Notice that the
left-invariant vector fields on G can be identified with g. To determine the space of
invariant vector fields,TM , on M1, we observe that for any R0-invariant vector v ∈ Tq M
and g1(q) = g2(q), then g1 = g2r with r ∈ R0 and

(g1)∗(v) = (g2r)∗(v) = (g2)∗r∗(v) = (g2)∗(v).

So each R0-invariant vector of Tq M determines a left-invariant vector fields on M.
There is an one-to-one correspondence between TM and the R0-invariant space of
Tq M. In particular, in the case that X = G/T with T a maximal torus of G, we have
the following proposition.

Proposition 3.1 Let X be a compact Kähler manifold homogeneous under G with
stabilizer group R, and let Δ be the root system of (t, g). D+ is defined as in (2.6). Let M
be the unit level of homogeneous line bundle determined by an integral weight λ ≠ 0. At
a distinguished point q ∈ M, the tangent space Tq M is generated by {Xα , Yα}α∈D+ and
X0. Then, there are the following two possibilities for the space of the left-invariant vector
fields on M:

(a) TM ≅ R⟨X0⟩.
(b) TM ≅ R⟨X0 , Xα , Yα⟩, for some α ∈ D+.

The case (b) happens if and only if λ is proportional to α and α + β, α − β are not in Δ,
for any nontrivial β ∈ Δ(t, r). In particular, if the stabilizer group is a maximal torus,
then the case (b) happens if and only if λ is proportional to α.

Proof of Proposition 3.1 Let R0 be the stabilizer group at q ∈ M. Notice that R0
is the kernel of character χλ ∶ R → S1 ⊂ C related to the weight λ. Let V ∈ Tq M be
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an invariant vector. According to decomposition (2.7) of Tq M, the vector V can be
written as

V = ∑
α∈D+

Vα , Vα ∈ R⟨Xα , Yα⟩ and Vα ≠ 0.

Notice that R0 preserves eachR⟨Xα , Yα⟩. If a vector Vα = aXα + bYα ∈ E±α is invariant
under R0 action, then, since J is R0 invariant, which means that J(aXα + bYα) =
aYα − bXα is also R0 invariant. Therefore, all vectors in the space generated by
⟨aXα + bYα ,−bXα + aYα⟩ = ⟨Xα , Yα⟩ = R⟨Xα , Yα⟩ are R0 invariant. So we only need
to determine the set of all α ∈ Δ+ such that Xα , Yα are invariant under R0 = ker χλ .

Let r0 = ker λ, it’s easy to see that r0 is the Lie algebra of the stabilizer group R0. Let
T0 = R0 ∩ T associated with Lie algebra t0 = r0 ∩ t. Since Xα , Yα is T0 invariant,

[H0 , Xα] = 0 = [H0 , Yα], for all H0 ∈ t0 .(3.2)

Noting that

[H0 , Xα] = −iα(H0)Yα , [H0 , Yα] = iα(H0)Xα .

Hence, we have ker α = t0 = ker λ∣t, hence λ is proportional to α.
Let Z ∈ r0, then Xα , Yα are R0 invariant if and only if

π̃∗[Z , Xα] = π̃∗[Z , Yα] = 0.

Notice that r0 = t0 ⊕∑β∈Δ+(t,r)R⟨Xβ , Yβ⟩, where t0 is kernel of λ restricted in t. Then,
Xα and Yα is R0-invariant is equivalent to (3.2) and

π̃∗[Zβ , Xα] = π̃∗[Zβ , Yα] = 0, for all Zβ ∈ R⟨Xβ , Yβ⟩, β ∈ Δ+(t, r). (∗∗)

According to [24, Theorem 6.6] and the definition of π̃∗, (∗∗) is equivalent to
α + β, α − β ∉ D+ ∪ (−D+). Indeed, α + β and α − β are not roots. Assume that

α + β = γ ∈ Δ(t, r),

then, α = γ − β ∈ Δ(t, r). But α ∈ D+, which leads to a contradiction. ∎

Example 3.2 Let X = SU(3)/T2. Recall the basic notions of semisimple Lie group
SU(3). The Lie algebra su(3) is the set of trace zero skew-Hermitian matrices of order
3. A Cartan sub-algebra t is the Lie algebra of diagonal matrices in su(3). The set of
positive roots with respect to t consists of three elements {α, β, γ}, and the normal
adapted basis is given by Xα ,β ,γ , Yα ,β ,γ .

Consider a distinguished point q ∈ M with tangent space generated by
{X0 , Xα ,β ,γ , Yα ,β ,γ}. Now, we only focus on the subspace V ⊂ Tq M generated
by {Xα ,β ,γ , Yα ,β ,γ}. To simplify the notation in calculation, we introduce
a complex coordinate system in V ; precisely, zα = Xα + iYα . Let σi denote
the ith element of diagonal matrices. Then, α, β, γ can be expressed as,
α = σ1 − σ2 , β = σ1 − σ3 , γ = σ2 − σ3 . Hence, let {α, γ} be the simple root
system of SU(3) and β = α + γ. The fundamental weights are given as follows:

ω1 =
2
3

σ1 −
1
3

σ2 −
1
3

σ3 , ω2 = 1
3

σ1 +
1
3

σ2 −
2
3

σ3 .
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Invariant scalar-flat Kähler metrics on line bundles over generalized flag varieties 13

Let O(p, q) denote the line bundle corresponding to the integral weight λ = pω1 +
qω2. In the case of (p, q) ≠ 0. Noting that kernel of λ = pω1 + qω2 is R⟨qt1 − (p +
q)t2⟩. Then, the S1 action is given by T p,q

θ = diag(e iqθ , e−i(p+q)θ , e i pθ) and if we
represent the action on complex coordinate system (zα , zβ , zγ), we have

T p,q
θ (zα , zβ , zγ) = (e−i(p+2q)θ zα , e i(p−q)θ zβ , e i(2p+q)θ zγ).

In conclusion, we have the following cases:

Conditions on (p, q) Invariant vector fields over M
p = −2q X0 , Xα , Yα

p = q X0 , Xβ , Yβ
2p = −q X0 , Xγ , Yγ
Others X0

Notice that

α = 2ω1 − ω2 , β = ω1 + ω2 , γ = −ω1 + 2ω2 .

The integral weights in the above table, −2nω1 + nω2, nω1 + nω2, −nω1 + 2nω2 are
proportional to α, β, γ, respectively, in agreement with Proposition 3.1.

The left-invariant 1-forms on M can be viewed as the dual space of left-invariant
vector fields. More precisely, if we apply the previous notion of adapted basis at Tq M,
given by {X0 , Xα , Yα ; α ∈ D+}, we write the dual basis of T∗q M as {η0 , ηα , ξα ; α ∈ D+}.
According to Proposition 3.1, the space of left-invariant vector fields is in one-to-one
correspondence with the space generated by {X0} or {X0 , Xα , Yα} for some α ∈ D+.
Consider the subset, {η0} or {η0 , ηα , ξα} of the dual basis, whose elements are R0
invariant. Therefore, {η0} or {η0 , ηα , ξα} generates the space of G-invariant 1-forms
over M.

3.2 The differentials of left-invariant 1-forms on M

According to Proposition 3.1, the left-invariant 1-forms are generated by {η0} or
{η0 , ξα , ηα}. We only consider the second case in this subsection.

Let M be an S1 bundle associated with line bundle L. Notice that there is a natural
projection π̃ ∶ G → M. If we write Ω1, Ω2 as the space of smooth 1-forms and 2-forms,
respectively, then we have the following commutative graph:

(3.3)

Since the left-invariant vector fields are globally generated in G, with a natural
basis corresponding to {Hα , Xβ , Yβ ∶ α ∈ Π, β ∈ Δ} and its dual basis {hα , ηβ , ξβ ∶ α ∈
Π, β ∈ Δ}, then the pull back of ηα , ξα in Ω1(M) under π̃ are exactly ηα , ξα in
Ω1(G). And the pull-back of η0 is a certain combination of hα determined by weight
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λ. To calculate the differentials of left-invariant 1-forms, the technique is to apply
the Maurer–Cartan equations on G with respect to the natural basis, Since Maurer–
Cartan equations gives us the derivative of left-invariant 1-form on G, combining the
commutative graph (3.3), we have the derivative of left-invariant 1-form on M.

Proposition 3.3 Let X be the homogeneous space and M, the S1 bundle of X associated
with λ. Assuming that, at the distinguished point q ∈ M, the space of left-invariant
1-forms can be identified with the spaces generated by {η0 , ηα , ξα}, α ∈ D+. In this case,
λ is proportional to α, assuming that α = −l λ, then the derivative are given by

dη0 = − 1
2 ∑

α∈D+
(λ, α)ηα ∧ ξα ,(3.4)

dηα = −lη0 ∧ ξα −
Cα

β ,−γ

2 ∑
β ,γ∈D+
β−γ=α

(ηβ ∧ ηγ + ξβ ∧ ξγ)

−
Cα

β ,γ

2 ∑
β ,γ∈D+
β+γ=α

(ηβ ∧ ηγ − ξβ ∧ ξγ),(3.5)

dξα = lη0 ∧ ηα +
Cα

β ,−γ

2 ∑
β ,γ∈D+
β−γ=α

(ηβ ∧ ξγ − ξβ ∧ ηγ)

−
Cα

β ,γ

2 ∑
β ,γ∈D+
β+γ=α

(ηβ ∧ ξγ + ξβ ∧ ηγ),(3.6)

where the coefficients Cα
β ,−γ are the coefficients from Maurer–Cartan equation. Let Eα ,

Eβ , E−γ be the root vector of α, β, −γ satisfying (2.1), then

[Eβ , E−γ] = Cα
β ,−γ Eα .

Proof Let {ω1 , . . . , ωk} be fundamental integral weights on X and λ = ∑i n i ω i . By
the definition of fundamental weights and our setting of Hα i , we can evaluate Hα i

under λ:

λ(Hα i ) = ∑
j

n jω j(Hα i ) =
1

2i ∑j
n j(ω j , α i) = −i ∣α i ∣2

4 ∑
j

2n j(ω j , α i)
(α i , α i)

= −i ∣α i ∣2
4

n i .

By the definition of Lλ , at distinguished point q ∈ M with π̃(e) = q, we have

π̃∗(Hα i ) =
d
dt

∣
t=0

χλ(exp(tHα i )) =
d
dt

∣
t=0

exp(tλ(Hα i )) = − ∣α i ∣2
4

n i X0 .(3.7)

For each i,

π̃∗(η0)(Hα i ) = η0(π̃∗(Hα i )) = − ∣α i ∣2
4

n i η0(X0) = − ∣α i ∣2
4

n i .
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Since the previous calculation shows that ω i(Hα j) = −i∣α j ∣2δ i j/4, then the pullback
of η0 can be represented by π̃∗η0 = −iλ. To get the formula (3.4), notice that

π̃∗dη0(Xα , Yα) = dπ̃∗(η0)(Xα , Yα) = π̃∗η0([Xα , Yα]) = −iλ(Hα) = − 1
2
(λ, α).

To get the formulas (3.5) and (3.6), if we pull back both sides of formulas by π̃,

π̃∗(dηα)(Hα i , Yα) = −π̃∗ηα([Hα i , Yα]) = −(α, α i)
2

,

2(α, α i)
n i ∣α i ∣2

π̃∗(η0 ∧ ξα)(Hα i , Yα) = −i 2(α, α i)
n i ∣α i ∣2

∑
i

λ ∧ ξα(Hα i , Yα) = −(α i , α)
2

.

Since π̃∗ is injective, dηα admits the term 2(α, α i)
n i ∣α i ∣2

η0 ∧ ξα . We can show that the

coefficient is independent of the index i and related to the factor l. Notice that λ is
proportional to α, α = −l λ, then

2(α, α i)
n i ∣α i ∣2

= 2(−l λ, α i)
n i ∣α i ∣2

=
2(−l ∑ j n jω j , α i)

n i ∣α i ∣2
= −l .

To compute the remaining cross terms of dηα and dξα , we shall understand the
structure of Lie algebra. Notice that dηα has a nonvanishing 2-form related with root
β, γ only if (1) α = β + γ or (2) α = β − γ. Both in the case (1) and (2), we argue that
β, γ ∈ D+. For instance, in the case (1), assume that γ ∈ Δ(t, r)+, then we have β = α − γ
is a root, which contradicts the condition in Proposition 3.1.

In the case (1), notice that [Eβ , Eγ] = Cα
β ,γ Eα and [Eβ , Eγ] has no Eα terms.

Combining with the relation (2.1), we have

ηα([Xβ , Xγ]) = −ηα([Yβ , Yγ]) =
Cα

β ,γ

2
,

ξα([Xβ , Yγ]) = ξα([Yβ , Xγ]) =
Cα

β ,γ

2
.

The above equation implies that

π̃∗(dηα)(Xβ , Xγ) = −π∗ηα([Xβ , Xγ]) = −
Cα

β ,γ

2
,

π̃∗(dηα)(Yβ , Yγ) = −π∗ηα([Yβ , Yγ]) =
Cα

β ,γ

2
.

Hence, dηα has the term (Cα
β ,γ/2)(−ηβ ∧ ηγ + ξβ ∧ ξγ). Likewise, we can find the

formulas for dηα and dξα as (3.5) and (3.6) and we completes the proof. ∎

Fixing a line bundle related to a weight λ, the Chern class of Lλ can be represented
by the form −i∂∂ log r2, where r is the radius function induced by some Hermitian
metric on Lλ . Then we have

1
2

dd c log r2 = −d(J dr
r
).(3.8)
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Indeed, the 1-form −Jdr/r is induced by circle action along each fiber and more details
will be discussed in the next section. Referring to Proposition 3.3, the curvature form
can be represented as

− 1
2

dd c log h = 1
2 ∑

α∈Δ+
(λ, α)ηα ∧ ξα .(3.9)

Comparing with (2.17), the Kähler–Einstein metric is the curvature form associated
with the anti-canonical bundle, Lδ .

3.3 Invariant dd c-lemma on Lλ

Consider the data (X , Lλ) as in the previous section. According to Proposition 3.1, the
space of left-invariant vector fields on M have two different cases (a) and (b). Suppose
that λ satisfies one of the following conditions:
• The space of left-invariant vector fields on M satisfies case (a) in Proposition 3.1.
• The space of left-invariant vector fields on M satisfies case (b) in Proposition 3.1.

And λ is proportional to some positive root α with λ = −lα, l > 0.
Then, we have the following invariant dd c lemma.

Proposition 3.4 Let (X , Lλ) satisfy the conditions above. If ω is an G-invariant closed
real (1, 1)-form on L, [ω] = 0, then there exists a G-invariant Kähler potential Φ ∈
C∞(Lλ) such that

ω = dd c Φ.(3.10)

Proof Since ω is exact, there exists an 1-form θ such that dθ = ω. Moreover, θ can
choose to be G invariant. Notice that ω = d(g∗θ), then, by taking integral over G, we
obtain a G-invariant 1-form θ with ω = dθ.

The main idea of proof is to represent dθ and ∂∂ϕ with respect to G-invariant
coframe, then we can reduce the proof of Proposition 3.4 to solving a system of ODE.

Let Lλ be the line bundle such that the space of left-invariant vector fields on M
satisfies case (b). Suppose that λ is proportional to α. The basis of left-invariant 1-form
on level set M is {η0 , ηα , ξα}. Then, we can extend these invariant 1-forms in radian
direction by rescaling 1/r on each level M(r). Precisely, there is a natural projection
p ∶ L× → M. By identifying L× ≅ G ×λ C

×, the projection can be written explicitly,

p((g , z)) = (g , ∣z∣−1z).

Thus, p∗ extends {η0 , ηα , ξα} to L×. By abusing the notion, we write {η0 , ηα , ξα} as
the extended vector fields over L×. Also let μ = dr/r, hence {μ, η0 , ηα , ξα} forms a
basis of invariant 1-forms over L×. Then the invariant 1-form θ can be represented as

θ = φr(r)μ + φ0(r)η0 + φα(r)ηα + ϕα(r)ξα .(3.11)

Applying Proposition 3.3, we can take derivative of θ in (3.11),

dθ = rφ′0(r)μ ∧ η0 −
φ0(r)

2 ∑
α∈D+

(λ, α)ηα ∧ ξα(3.12)

+ rφ′α(r)μ ∧ ηα + rϕ′α(r)μ ∧ ξα − lφα η0 ∧ ξα + lϕα η0 ∧ ηα(3.13)
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− φα
Cα

β ,−γ

2 ∑(ηβ ∧ ηγ + ξβ ∧ ξγ) + ϕα
Cα

β ,−γ

2 ∑(ηβ ∧ ξγ − ξβ ∧ ηγ)(3.14)

− φα
Cα

β ,γ

2 ∑(ηβ ∧ ηγ − ξβ ∧ ξγ) − ϕα
Cα

β ,γ

2 ∑(ηβ ∧ ξγ + ξβ ∧ ηγ).(3.15)

Let J be complex structure. Note that dθ is real (1, 1)-form if and only if Jdθ = dθ.
Notice that Jη0 = μ, Jξα = ηα , then

Jdθ = rφ′0(r)μ ∧ η0 −
φ0(r)

2 ∑
α∈D+

(λ, α)ηα ∧ ξα

+ rφ′α η0 ∧ ξα − rϕ′α η0 ∧ ηα − lφα μ ∧ ηα − lϕα μ ∧ ξα

− φα
Cα

β ,−γ

2 ∑(ηβ ∧ ηγ + ξβ ∧ ξγ) + ϕα
Cα

β ,−γ

2 ∑(ηβ ∧ ξγ − ξβ ∧ ηγ)

+ φα
Cα

β ,γ

2 ∑(ηβ ∧ ηγ − ξβ ∧ ξγ) + ϕα
Cα

β ,γ

2 ∑(ηβ ∧ ξγ + ξβ ∧ ηγ).

Then, Jdθ = dθ implies the following ODE:

rφ′α = −lφα , rϕ′α = −lϕα(3.16)

and the terms of line (3.15) are vanishing. To ensure, the (3.15) vanishes

Cα
β ,γ = 0 or φα = ϕα = 0.(3.17)

Indeed, referring to (see [24], Theorem 6.6), if α = β + γ, for some α, β, γ ∈ Δ, then
the corresponding constant Cα

β ,γ ≠ 0. Assuming that there exist positive roots, β and
γ, satisfying α = β + γ, by (3.17), we have φα = ϕφ = 0, which automatically satisfies
(3.16); hence, if dθ is a real (1, 1)-form with some structure constants Cα

β ,γ nonvanish-
ing, then dθ can be written as

dθ = rφ′0(r)μ ∧ η0 −
φ0(r)

2 ∑
α∈D+

(λ, α)ηα ∧ ξα .

When it comes to the cases that the corresponding weight λ is proportional to a
simple root α, i.e., α cannot be written as the sum of two positive roots, dθ should
satisfy the equation (3.16) and its solution is given by φ = C/r l with C an arbitrary
constant. In the sequel, it suffices to show that the constant C in the expression of
solution φ should equal zero. To prove this, we need to apply the condition that
the form, dθ, is well-defined across the zero level of line bundle. Firstly, we take a
reference metric ω0 near the zero level of line bundle L. Let h be the canonical invariant
Hermitian metric defined as before and r be the radial function related to h. Also, given
a bundle coordinate u, we have

ωε = π∗ωKE + ε ⋅ dd c r2

= π∗ωKE + εr2 ⋅ dd c log h + εh ⋅ idu ∧ du.

It is easy to see that ωε is positive around zero level. To simplify calculation, let ε
tends to 0, then we obtain a semi-positive form ω0 = π∗ωKE . Consider the following
integration:
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∫
K

ωn−1
0 ∧ dθ ∧ dθ ,(3.18)

where the K is a compact neighborhood of zero level, which is defined as K = {x ∈ L,
r(x) ≤ δ}. In the sequel, we write 3.12, 3.13, and 3.14 as Θ1, Θ2, Θ3. Noticing that
all crossing terms Θ i ∧ Θ j ∧ ωn−1

0 = 0, (i ≠ j), and Θ3 ∧ Θ3 ∧ ωn−1
0 = 0. Only two

nonvanishing terms of the integration (3.18) are the following:

∫
K

ωn−1
0 ∧ dθ ∧ dθ = ∫

K
ωn−1

0 ∧ Θ1 ∧ Θ1 + ∫
K

ωn−1
0 ∧ Θ2 ∧ Θ2 .(3.19)

Inserting the solution of ODE (3.16),

Θ2 = −C1 lr−l μ ∧ ηα − C2 lr−l μ ∧ ξα − C1 lr−l η0 ∧ ξα + C2 lr−l η0 ∧ ηα ,

then we can compute the two terms in (3.19) separately,

∫
K

Θ2 ∧ Θ2 ∧ ωn−1
0 = −∫

K
(C2

1 + C2
2)l 2r−2l μ ∧ η0 ∧ ηα ∧ ξα ∧ ωn−1

0

= −(C2
1 + C2

2)l 2 ∫
δ

0
r−2l−1dr ∫

M1
η0 ∧ ηα ∧ ξα ∧ ωn−1

0 = −∞

and assume λ is proportional to a positive root by a negative constant,

∫
K

Θ1 ∧ Θ1 ∧ ωn−1
0 = − 1

2 ∑
α∈Δ+

∫
K

rφ′0(r)φ0(r)(λ, α)ηα ∧ ξα ∧ μ ∧ η0 ∧ ωn−1
0

= − 1
2 ∑

α∈Δ+
(λ, α)∫

δ

0
φ′0(r)φ0(r)dr ∫

M1
η0 ∧ ηα ∧ ξα ∧ ωn−1

0

= C lim
ε→0

(φ0(r))2∣
δ

ε
< C′ , (C , C′ are nonnegative constants).

Hence, ∫
K

dθ ∧ dθ ∧ ωn−1
0 = −∞, which leads to a contradiction. We obtain that

φα = ϕα = 0. According to the discussion of two cases, we have φα = ϕα = 0 and dθ
can be represented as

dθ = rφ′0(r)μ ∧ η0 −
φ0(r)

2 ∑
α∈Δ+

(λ, α)ηα ∧ ξα .(3.20)

Take a function Φ(r) such that Φ′(r) = φ0(r)/r, we compute i∂∂Φ,

dd c Φ = −d ⋅ JdΦ = −d ⋅ J(φ0(r)μ) = d(φ0(r)η0) = rφ′0(r)μ ∧ η0 + φ0(r)dη0 .

Combining with Proposition 3.3, we obtain

dd c Φ = rφ′0(r)μ ∧ η0 −
φ0(r)

2 ∑
α∈D+

(λ, α)ηα ∧ ξα .(3.21)

Now, we find Φ ∈ C∞(L×) such that ω = dd c Φ. It suffices to prove that Φ can extend
smoothly across the zero level of L. To prove this, we need to apply a basic fact from
complex functions: Let f ∶ [0,∞) → R be a smooth function, then, g(z) = f (∣z∣) is
smooth in C if and only if there exits a smooth function h ∶ [0,∞) → R such that
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f (r) = h(r2). Since ω is defined in the whole line bundle L, on each fiber, the terms
of ω,

rφ′0(r)μ ∧ η0 , φ0(r)ηα ∧ ξα(3.22)

can extend smoothly across the zero level. Notice that μ ∧ η0 = Cr−2du ∧ du, where
u denotes the fiber coordinate of L. Then, it is easy to see that the terms in (3.22) is
smooth on each fiber if and only if r−1φ′(r) and φ(r) are smooth on C if and only if
there exists a smooth function h ∶ [0,∞) → R such that h(r2) = φ(r). According to
the definition of Φ, we expand Φ near 0:

Φ′(r) = h(r2)/r = C−1/r + C1r + C2r3 + . . . ,

we have

Φ(r) = C−1 log r + C0 + C1r2 + C2r4 + . . . .

We claim that C−1 is vanishing. Otherwise, φ(0) ≠ 0, which implies that φ0(r)η0 is not
well-defined on the zero level. Recalling the expression of θ, this contradicts against
the fact that θ is well-defined on L. Therefore, we find a global Kähler potential for ω,
which completes the proof. ∎

Remark 3.5 The invariant ∂∂-lemma does not hold for all line bundles. For instance,
let α be a simple root with α = 2λ, for instance, the line bundle O(1) → CP

1. Consider
the following invariant 1-form:

θ = r2η0 + r2ηα + r2 ξα .

Then, we can check that dθ is an invariant exact real (1,1) form. However, comparing
with (3.21), there is no potential function for this form.

3.4 Proof of Theorem A

Firstly, it is easy see that the invariant dd c lemma can be applied when L is a negative
line bundle over X. Notice that the homogeneous line bundle L can shrink to the base
manifold X. Furthermore, we can require the shrinking process to be G-equivalent. In
particular, we have the following isomorphism between cohomology groups:

p∗ ∶ H1,1
G (X) ≅ H1,1

G (L),

which implies that all invariant Kähler classes of L arise from the invariant Kähler
classes of X. In each invariant Kähler class of X, there exists exactly one invariant
Kähler form, which follows directly from dd c-lemma on X. Given an invariant Kähler
form ω on L, by previous discussion, there exists an invariant Kähler form ωX on X
such that [ω] = p∗[ωX] then, by Propositions 3.4, there exists a smooth function Φ
defined on L such that

ω = p∗ωX + dd c Φ.

Hence, we complete the proof of Theorem A.
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4 Momentum profiles and the classification of invariant scalar-flat
Kähler metrics

This section is dedicated to the proof of Theorem B. Our main tool of this section
comes from [22], in which the momentum construction is applied to investigate the
Calabi ansatz. In Section 4.1, we will build up momentum construction by tracking
the idea in [22]. Then, momentum construction will be applied in Section 4.2 to
get the existence and uniqueness of G-invariant scalar-flat Kähler metric. We
also prove the scalar-flat Kählers are asymptotically conical metrics. This proves
Theorem B.

4.1 Momentum construction of Calabi ansatz

Let (X , ωX) be a Kähler manifold and π ∶ (L, h) → (X , ωX) be a holomorphic line
bundle of M with Hermitian metric h. Let t be the logarithm of fiber norm function
related to h; i.e., given a local line bundle coordinate chart (u, v), where u represents
the fiber coordinate, t = log[r(u)2] ∶= log h(u, u). Then, Kähler metrics arise from
Calabi ansatz is given by

ω = π∗ωX + 1
2

dd c f (t),(4.1)

where f is a smooth function of one real variable. According to Theorem A, all
invariant Kähler metrics comes from Calabi ansatz (4.1).

It is well-known that the problem of prescribed scalar curvature is equivalent to a
fourth-order PDE of potential function, specially, in this case, a fourth-order ODE.
However, Hwang and Singer comes up the method of momentum profile in [22] by
which it can be reduced to be a second-order ODE, as the curvature formula related
to momentum profile is of second order. In the following, we study the momentum
profile associated with the given original data.

The Kähler metric, ω, arising from Calabi ansatz (4.1) may not exist in the whole
line bundle L. For instance, in some cases, it might be blowing up in a finite domain
with respect to fiber coordinate. We use L′ to denote the possible existence region
of L for ω. Notice that Kähler metric ω constructed in (4.1) admits a natural Killing
field X0, which generates a circle action on each fiber and can be written in local
bundle coordinates, X0 = rJ(∂/∂r). In aspects of symplectic geometry, X0 generates
a Hamiltonian action on (L, ω) by

iX0 ω = −dτ.(4.2)

At each point on p ∈ X, there exists a coordinate chart around p such that ∂ log h∣p =
∂ log h∣p = 0. By computing ω at each point in the chart,

ω = π∗ωX + f ′(t) 1
2

dd c log h + f ′′(t)i du ∧ du
∣u∣2(4.3)

and inserting (4.3) into (4.2), we have τ = f ′(t). Let the interval I be the image of
moment map τ. Noting that ∣∣X0∣∣ω is a constant along each level of τ, we can define
the function φ ∶ I → R≥0 by factoring through τ,
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φ(τ) = 1
2
∣∣X0(τ)∣∣2ω .

The interval I together with the function φ is called momentum profile related to
(L′ , ω). The essential relation between φ(τ) and the potential f is given by

φ(τ) = 1
2

ω(X0 , JX0) = − 1
2

JX0( f ′(t)) = − 1
2

f ′′(t) ⋅ JX0(log r2) = f ′′(t).(4.4)

Also by observing (4.3), the positivity of Kähler form implies the following two
things: f is a convex function; hence the moment map τ = f ′(t) induces a Legendre
transformation from t to τ. Moreover, if we denote γ = −i∂∂ log h, the positivity of ω
also requires ω − τγ to be positive. An interval, I, is defined to be a momentum interval
if for all τ ∈ I, ω(τ) = ω − τγ is positive. In the following, we shall reconstruct (L′ , ω)
by momentum profile (I, φ) with a momentum interval I and φ ∶ I → R≥0.

Based on the inverse Legendre transformation, we can rebuild the Kähler metric ω
explicitly by momentum profile (I, φ) as follows. Let (a, b) be the interior of I with
−∞ ≤ a < b ≤ ∞ and fix τ0 ∈ I.
(a) Fiber domain: Let T be the defining domain of f (t) with T○ = (t1 , t2), then,

t1 = lim
τ→a+∫

τ

τ0

dx
φ(x) and t2 = lim

τ→b−∫
τ

τ0

dx
φ(x) .

(b) Potential function: f (t) is given by data (I, φ)

f (t) = ∫
τ(t)

τ0

xdx
φ(x) .

(c) Fiber metric: The metric ω induces the metric on each fiber in terms of coordinate
u, gfiber and the ω-distance between τ0 level and τ(t) level, s(t)

gfiber = φ(τ)∣du
u

∣
2

, s(t) = ∫
τ(t)

τ0

dx
2
√

φ(x)
,

where the formulas in (b) and (c) can be obtained by change the variable though
Legendre transformation.

The next step is to work out the curvature formula in terms of momentum profiles.
To make curvature formula fit in the momentum profile, define (τ, π) ∶ L′ → I × X.
Here are some notations that will be used in the following:
• Let ωφ represent the Kähler metric constructed by momentum profile (φ, I), and

we can rewrite (4.3) in terms of τ,

ωφ = p∗ωX(τ) + φ(τ) idu ∧ du
∣u∣2 ,(4.5)

where ωX(τ) = ωX − τγ.
• Let B denote the endomorphism ω−1

X γ, ρX be the Ricci curvature form of X, define
the following functions on I × X:

Q(τ) = det(I − τB),
R(τ) = tr[(I − τB)−1(ω−1

X ρX)].
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Then, the Ricci curvature, Laplacian and scalar curvature have the following represen-
tation in terms of momentum profile and notations above:
• The Ricci form of ωφ ,

ρφ = p∗ρX − i∂∂ log φQ(τ).(4.6)

• Scalar curvature Sφ ,

Sφ = R(τ) − ΔωX(τ) log Q(τ) − 1
Q

∂2

∂τ2 (φQ)(τ).(4.7)

In the case of G-invariance, Q(τ) is a polynomial in τ and ΔX(τ) log Q(τ) = 0.
Then, we can assume that R(τ) = P(τ)/Q(τ) for some polynomial P in τ. Therefore,
we reduce the problem of prescribed scalar curvature to a second-order ODE

(φQ)′′ + QSφ = P.(4.8)

4.2 Proof of Theorem B

In the following, we compute the explicit formula of the polynomials Q(τ), P(τ) in
terms of ωX and corresponding weight λ. Recall the formulas (2.14) and (3.9) and ωX ,
γ can be expressed in terms of dzα = ηα + iξα and dzα = ηα − iξα ,

ωX = i
2

Cα ,S dzα ∧ dzα , γ = −i∂∂ log h = i
4 ∑

α∈D+
(λ, α) dzα ∧ dzα ,

where S ∈ s such that Cα ,S > 0. Then, the matrix B is diagonal, and Q(τ) has the
following expression:

Q(τ) = det(I − τB) = ∏
α∈D+

[1 − τ (λ, α)
2Cα ,S

].

Since the Ricci curvature ρX has the expression

ρX = i
4 ∑

α∈D+
(α, δ) dzα ∧ dzα .

Then,

R(τ) = tr [(I − τB)−1 ω−1
X ρX] = ∑

α∈D+

(α, δ)
2Cα ,S − τ(λ, α) .

Hence, the ODE (4.8) can be rewrite as follows:

(φ ∏
α∈D+

(2Cα ,S − τ(λ, α)))
′′

+ Sφ ∏
α∈D+

(2Cα ,S − τ(λ, α))

= ∏
α∈D+

(2Cα ,S − τ(λ, α)) ∑
β∈D+

(β, δ)
2Cβ ,S − τ(λ, β) .(4.9)

To determine the initial data of the ODE (4.9), we need to apply the following
completeness proposition in [22, Propositions 2.2 and 2.3].
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Type of Ends Decay (Growth) Fiber Range (t) Distance to

conditions Ends (ω)

finite ends φ = 0, φ′ = 1, [−∞, t0] finite

finite ends φ = φ′ = 0 (−∞, t0] infinite

infinite ends Cτ < φ ≤ Kτ2 [t0 , tend), (tend < ∞) infinite

infinite ends φ ≤ Cτ [t0 ,∞) infinite

Table 1: Behaviors of (L′ , ω).

Proposition 4.1 [Hwang and Singer [22]] Let (I, φ) be a given momentum profile.
Then the associated fiber metric is complete if and only if the following conditions hold
at each endpoint of I:
• Finite Endpoints: φ satisfies one of the following conditions:

(i) φ vanishes to first order with ∣φ′∣ = 1; or
(ii) φ vanishes to order at least two.

• Infinite Endpoints: φ grows at most quadratically, i.e., φ ≤ Kτ2.

And the corresponding (L′ , ω) behaves differently under different decay condi-
tions provided in Proposition 4.1. We conclude the corresponding relations in the
Table 1, where we consider finite ends at τ = 0 and infinite ends as τ → ∞. The proof
of these bundle behaviors directly follows from the reconstruction of the data (L′ , ω)
by moment profile (φ, I), (a)–(c).

To fit in our cases, we define the momentum interval I = [0, b) with b ≤ +∞.
The reason we take the left ends to be 0 is to ensure ω∣X = ωS . Assume that the
corresponding scalar curvature of ωφ is constant. Combining with Proposition 4.1 and
Table 1, we shall solve the ODE with initial condition φ(0) = 0, φ′(0) = 1, and Sφ = 0.
It is obvious that there is a unique solution φ satisfies (4.9) and the initial condition.

4.2.1 The asymptotic behavior of scalar-flat Kähler metrics

In the scalar-flat cases, φ satisfies

(φ ∏
α∈D+

(2Cα ,S − τ(λ, α)))
′

=

∫
τ

0
∏

α∈D+
(2Cα ,S − t(λ, α)) ∑

β∈D+

(β, δ)
2Cβ ,S − t(λ, β)dt + ∏

α∈D+
2Cα ,S .

Assuming that λ is negative, φ is a strictly increasing function with initial value
φ(0) = 0 with degree one. According to Table 1, ωφ is well-defined over the whole
bundle Lλ . By solving the ODE (4.9), the leading coefficient of the solution is given as
follows:

iλ ,X = 1
(n − 1)n ∑

α∈D+

(α, δ)
(α,−λ) .
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We call iλ ,X the metric index of line bundle of (Lλ , X). Recall the Kähler metric
associated with φ is given as in (4.5). Let gX(τ), gX , gγ be the metric corresponding
to ωX(τ) = ωX − τγ, ωX , −γ, respectively, then

gφ = gX + τgγ + 2φ(τ)η2
0 + 2φ(τ)μ2 ,

where μ and η0 are the dual of r∂/∂r and X0, respectively. Then, on each level set of
L, M(τ), there is a metric induced by gφ , denoted by g(τ),

gM(τ) = gX + τgγ + 2φ(τ)η2
0 .

Let Cλ be the cone associated with Lλ by collapsing the base manifold X. Then, we
should determine the radial function l of cone Cλ such that the scalar-flat Kähler
metric is asymptotically conical to Ai∂∂l 2, where A is the constant coefficient and can
be canceled by rescaling. Based on the discussion in Section 4.1, we have the following
relationship between τ and t:

t = ∫
τ(t)

τ0

dx
φ(x) = ∫

τ(t)

τ0

dx
iλ ,X x

+ a1dx
x2 + . . . = a0 +

1
iλ ,X

log τ − a1

τ
+ . . . ,

where the second equality is just the Taylor expansion of 1/φ(x). Taking exponential
and solve for τ, we can see that τ admits the following expansion at infinity:

τ = b1r2iλ ,X + b0 + b−1r−2iλ ,X + . . . .(4.10)

Now, let l = r iλ ,X , then the model Kähler metric over Cλ is defined by the radial
function l,

ωmod = i∂∂l 2 = −iλ ,X l 2γ + 2i2
λ ,X l 2 μ ∧ η0 .

Rewrite the model Kähler form in terms of metric,

gmod = iλ ,X l 2 gγ + 2i2
λ ,X l 2η2

0 + 2i2
λ ,X l 2 μ2

= l 2(iλ ,X gγ + 2i2
λ ,X η2

0) + 2dl 2 .

And the metric can be represented by dl as follows:

gφ = l 2( 1
l 2 gX + τ

l 2 gγ + 2φ(τ)
l 2 η2

0) +
2φ(τ)
i2
λ ,X l 2 dl 2

= b1[l 2(iλ ,X gγ + 2i2
λ ,X η2

0) + dl 2] + O(l−2)
= b1 gmod + O(l−2).

Therefore, all scalar-flat Kähler metrics on Lλ are asymptotically conical to (Cλ , gmod),
which complete the proof of Theorem B.

In general, gφ decays to gmod by order −2, which can be improved in some special
cases. For instance, let the base metric ωX be equal to the curvature form γ, then, the
similar calculation shows that the metric gφ with scalar-flat curvature decays to order
−2n + 2.

https://doi.org/10.4153/S0008414X24000464 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24000464


Invariant scalar-flat Kähler metrics on line bundles over generalized flag varieties 25

Acknowledgments The author would like to thank Professor Hans-Joachim Hein
and Professor Bianca Santoro for suggesting the problem, and for constant support,
many helpful comments, as well as much enlightening conversation.

References

[1] M. Abreu and R. Sena-Dias, Scalar-flat Kähler metrics on non-compact symplectic toric
4-manifolds. Ann. Global Anal. Geom. 41(2012), no. 2, 209–239.

[2] J. F. Adams, Lectures on Lie groups, University of Chicago Press, Chicago, IL, 1982.
[3] V. Apostolov and C. Cifarelli, Hamiltonian 2-forms and new explicit Calabi–Yau metrics and

gradient steady Kähler–Ricci solitons on Cn . Preprint, 2023. arXiv:2305.15626
[4] H. Auvray, The space of Poincaré type Kähler metrics on the complement of a divisor. J. Reine

Angew. Math. 2017(2017), no. 722, 1–64.
[5] R. Berman and B. Berndtsson, Convexity of the K-energy on the space of Kähler metrics and

uniqueness of extremal metrics. J. Amer. Math. Soc. 30(2017), no. 4, 1165–1196.
[6] A. L. Besse, Einstein manifolds, Springer, Berlin, 2007.
[7] A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces, I. Amer. J. Math.

80(1958), no. 2, 458–538.
[8] A. Borel and R. Remmert, Über kompakte homogene Kählersche Mannigfaltigkeiten. Math. Ann.

145(1962), no. 5, 429–439.
[9] R. Bott, Homogeneous vector bundles. Ann. Math. 66(1957), 203–248.

[10] E. Calabi, Métriques kählériennes et fibrés holomorphes. Ann. Sci. Ec. Norm. Supér. (4) 12(1979),
no. 2, 269–294.

[11] D. M. J. Calderbank and M. A. Singer, Einstein metrics and complex singularities. Invent. Math.
156(2004), no. 2, 405–443.

[12] X. Chen, The space of Kähler metrics. J. Differential Geom. 56(2000), no. 2, 189–234.
[13] R. J. Conlon and H.-J. Hein, Asymptotically conical Calabi–Yau manifolds, I. Duke Math. J.

162(2013), no. 15, 2855–2902.
[14] R. J. Conlon and F. Rochon, New examples of complete Calabi–Yau metrics on Cn for n ≥ 3. Ann.

Sci. Ec. Norm. Supér. (4) 54(2021), 259–303.
[15] A. Dancer and M. Y. Wang, Kähler–Einstein metrics of cohomogeneity one. Math. Ann. 312(1998),

503–526.
[16] S. Donaldson, A generalised Joyce construction for a family of nonlinear partial differential

equations. J. Gökova Geom. Topol. 3(2009), 1–8.
[17] T. Eguchi and A. J. Hanson, Self-dual solutions to Euclidean gravity. Ann. Physics 120(1979), no. 1,

82–106.
[18] J. Han and J. A. Viaclovsky, Deformation theory of scalar-flat kähler ale surfaces. Amer. J. Math.

141(2019), no. 6, 1547–1589.
[19] N. Honda, Deformation of LeBrun’s ALE metrics with negative mass. Comm. Math. Phys.

322(2013), no. 1, 127–148.
[20] N. Honda, Scalar flat Kähler metrics on affine bundles over CP1 . SIGMA. Symmetry, Integrability

and Geometry: Methods and Applications 10(2014), 046.
[21] J. E. Humphreys, Linear algebraic groups. Vol. 21, Springer, New York, 2012.
[22] A. Hwang and M. Singer, A momentum construction for circle-invariant Kähler metrics. Trans.

Amer. Math. Soc. 354(2002), no. 6, 2285–2325.
[23] D. D. Joyce, Explicit construction of self-dual 4-manifolds. Duke Math. J. 77(1995), no. 3, 519–552.
[24] A. W. Knapp, Lie groups beyond an introduction. Vol. 140, Springer, Cambridge, MA, 2013.
[25] C. LeBrun, Counter-examples to the generalized positive action conjecture. Comm. Math. Phys.

118(1988), no. 4, 591–596.
[26] C. LeBrun, Explicit self-dual metrics on CP2#. . . # CP2 . J. Differential Geom. 34(1991), 223–253.
[27] L. Li and K. Zheng, Uniqueness of constant scalar curvature Kähler metrics with cone singularities.

I: Reductivity. Math. Ann. 373(2019), 679–718.
[28] Y. Li, A new complete Calabi–Yau metric on C3 . Invent. Math. 217(2019), 1–34.
[29] M. T. Lock and J. A. Viaclovsky, A smörgåsbord of scalar-flat Kähler ALE surfaces. J. Reine

Angew. Math. 2019(2019), no. 746, 171–208.
[30] Y. Matsushima, Sur les espaces homogènes Kählériens d’un groupe de Lie réductif. Nagoya Math. J.

11(1957), 53–60.
[31] V. L. Popov, Picard groups of homogeneous spaces of linear algebraic groups and one-dimensional

homogeneous vector bundles. Math. Izv. 8(1974), no. 2, 301.

https://doi.org/10.4153/S0008414X24000464 Published online by Cambridge University Press

https://arxiv.org/abs/2305.15626
https://doi.org/10.4153/S0008414X24000464


26 Q. Yao

[32] R. Sena-Dias, Uniqueness among scalar-flat Kähler metrics on non-compact toric 4-manifolds.
J. Lond. Math. Soc. 103(2021), no. 2, 372–397.

[33] J.-P. Serre, Géométrie algébrique et géométrie analytique. Ann. Inst. Fourier 6(1956), 1–42.
[34] M. B. Stenzel, Ricci-flat metrics on the complexification of a compact rank one symmetric space.

Manuscripta Math. 80(1993), no. 1, 151–163.
[35] G. Székelyhidi, Degenerations of Cn and Calabi-Yau metrics. Duke Mathematical Journal, Duke

University Press, 168(2019), no. 14, 2651–2700.
[36] G. Tian and S.-T. Yau, Complete Kähler manifolds with zero Ricci curvature. I. J. Amer. Math. Soc.

3(1990), no. 3, 579–609.
[37] G. Tian and S. T. Yau, Complete Kähler manifolds with zero Ricci curvature. II. Invent. Math.

106(1991), 27–60.
[38] M. Wang, Einstein metrics from symmetry and bundle constructions. Surv. Differ. Geom. 6(1):

287–325, 2001.
[39] D. Wright, Compact anti-self-dual orbifolds with torus actions. Selecta Math. 17(2011), 223–280.
[40] S.-T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampére

equation, I. Comm. Pure Appl. Math. 31(1978), no. 3, 339–411.

Mathematics Department, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, United States
e-mail: qi.yao@stonybrook.edu

https://doi.org/10.4153/S0008414X24000464 Published online by Cambridge University Press

mailto:qi.yao@stonybrook.edu
https://doi.org/10.4153/S0008414X24000464

	1 Introduction
	2 Geometry of compact homogeneous Kähler manifolds
	2.1 Classification of compact homogeneous Kähler manifolds
	2.2 Classification of holomorphic line bundles
	2.3 Invariant closed (1,1)-forms on X

	3 Invariant ddC-lemmas on homogeneous line bundles
	3.1 Invariant 1-forms on M
	3.2 The differentials of left-invariant 1-forms on M
	3.3 Invariant ddc-lemma on Lλ
	3.4 Proof of Theorem A

	4 Momentum profiles and the classification of invariant scalar-flat Kähler metrics
	4.1 Momentum construction of Calabi ansatz
	4.2 Proof of Theorem B
	4.2.1 The asymptotic behavior of scalar-flat Kähler metrics



