AN EMBEDDING THEOREM FOR ORDERED GROUPS

DONALD P. MINASSIAN

Definition. An *O**-*group* is a group wherein every partial order can be extended to some full order.

THEOREM. Suppose the group G has a normal chain $G = G_1 \supseteq G_2 \supseteq \ldots$ such that

$$\bigcap_{i=1}^{\infty} G_i = E \ (identity \ subgroup)$$

and each G/G_i is locally nilpotent and torsion-free. Then G can be embedded in the complete direct product G' of divisible O*-groups.

Proof. Consider this map f of G into the complete direct product H of the G/G_i :

 $f(g) = (G_1g, G_2g, \ldots)$ for every g in G.

Clearly f is a homomorphism and is one-to-one since $\bigcap_{i=1}^{\infty}G_i = E$; thus $G \cong f(G)$. Since each G/G_i is torsion-free and locally nilpotent, it can be embedded in a (unique minimal) divisible locally nilpotent torsion-free group D_i , where D_i consists of all roots of elements of G/G_i (cf. [5, p. 256]). Each D_i , being torsion-free and locally nilpotent, is O^* by [6, p. 174], and the theorem follows by taking G' as the complete direct product of the D_i . (The theorem is immediate if any $G_i = E$, since G itself is then a locally nilpotent torsion-free group.)

Definition. By a central series for a group G with identity subgroup E we mean a countably infinite normal chain (i.e., chain of subgroups normal in G):

$$G = G_1 \supseteq G_2 \supseteq G_3 \supseteq \ldots$$

such that $\bigcap_{i=1}^{\infty} G_i = E$ and G_{i-1}/G_i is in the centre of G/G_i for every *i*.

Remark. Clearly the theorem holds for such G if also the factors G/G_i are torsion-free.

Now if F is any free group and $F = F_1 \supseteq F_2 \supseteq \ldots$ is the lower central chain for F, then $\bigcap_{i=1}^{\infty} F_i = E$ by Magnus' theorem (cf. [5, p. 38]). Also, each F/F_i (the free nilpotent group of class i) is torsion-free; for if $a \notin F_i$ but $a^n \in F_i$ for nonzero n, then F_{s-1}/F_s is not torsion-free if $s \leq i$ is chosen so that $a \in F_{s-1} - F_s$; however, Witt's theorem (cf. [5, p. 41]) states F_{s-1}/F_s

Received September 23, 1971 and in revised form, January 26, 1972. This research was supported by a Butler University Faculty Research Fellowship.

is free abelian (and hence torsion-free; also, cf. [7]). Thus by the remark above, the theorem holds for F.

Necessary and sufficient conditions that a prescribed full order for a subgroup of a group extend to some full order for the group are unknown. However, if $G \subseteq G'$ are as in the theorem, and if no G_i is the identity E, then at least 2^{\aleph} full orders for G extend to full orders for G'. For each D_i $(i \ge 2)$ admits at least two full orders, and the resulting uncountably many lexicographic full orders on G' are distinct on $H \subseteq G'$ since each D_i consists only of roots of elements of G/G_i . Hence, if no G_i is E, these orders are distinct on $G \cong f(G) \subseteq H$ by definition of f. (Of course, these remarks hold for free groups of rank ≥ 2 , since no F_i is E.)

Definitions. A partial order P for a group G is called *isolated* if, for all x in G and all n > 0, $x^n \ge e$ implies $x \ge e$, where e is the group identity. A group in which every partial order extends to an isolated partial order will be called an I^* -group, following [2]. Likewise a group in which every right partial order extends to an isolated right partial order (obvious meaning) will be called RI^* , and one in which every right partial order extends to a right full order will be called RO^* .

In [2, p. 468] Hollister shows that a free group of rank ≥ 2 is not I^* . Also, an RI^* -group is I^* (for if a partial order P is contained in the isolated right partial order Q, then $\bigcap_{x \in G} x^{-1}Qx$ is an isolated partial order containing P), and so a nonabelian free group is not RI^* ; cf. [1, pp. 69–70]. These results and the isomorphism f applied to F (notation as above) yield two corollaries.

COROLLARY 1. A subdirect product of O^* (hence I^*) groups need not be I^* (hence not RI^* nor RO^*).

Finally, any right partial order for F is a right partial order for $H \supseteq F$, where $H \equiv \prod F/F_i$ (complete direct product as in the proof of the theorem); thus H is not RI^* or RO^* . Also, in [3] Kargapolov showed that H is not O^* . Thus we have:

COROLLARY 2. The complete direct product of O^* -groups need be neither RI^* (hence not RO^*) nor O^* .

Note. It is unknown whether the classes I^* , RO^* , RI^* are closed under direct products. (In [3] and [4] the writers show that the restricted direct product of O^* -groups is O^* , whereas in [8] it is shown that the direct product of V^* (respectively V) groups is not V; a V^* (respectively V) group is one wherein every partial (respectively full) order on every subgroup extends to some full order for the group.)

References

1. H. A. Hollister, Contributions to the theory of partially ordered groups, Ph.D. thesis, University of Michigan, Ann Arbor, 1965.

DONALD P. MINASSIAN

- 2. —— Groups in which every maximal partial order is isolated, Proc. Amer. Math. Soc. 19 (1968), 467–469.
- 3. M. I. Kargapolov, Fully orderable groups, Algebra i Logika 2 (1963), 5-14.
- 4. A. I. Kokorin, Ordering a direct product of ordered groups, Ural. Gos. Univ. Mat. Zap. 3 (1962), 39-44.
- 5. A. G. Kurosh, The theory of groups, vol. 11, (Chelsea Publishing Co., New York, 1960).
- 6. A. I. Malcev, On the ordering of groups, Trudy Mat. Inst. Steklov. 38 (1951), 173-175.
- 7. D. P. Minassian, On solvable O*-groups, Pacific J. Math. 39 (1971), 215-217.
- 8. D. P. Minassian, On the direct product of V-groups, Proc. Amer. Math. Soc. 30 (1971), 434-436.

Butler University, Indianapolis, Indiana