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AN EMBEDDING THEOREM FOR ORDERED GROUPS 

DONALD P. MINASSIAN 

Definition. An 0*-group is a group wherein every partial order can be 
extended to some full order. 

THEOREM. Suppose the group G has a normal chain G = Gi 3 G2 ^ . . . 
such that 

OO 

Pi d = E (identity subgroup) 
i=i 

and each G/Gi is locally nilpotent and torsion-free. Then G can be embedded in the 
complete direct product G' of divisible 0*-groups. 

Proof. Consider this map / of G into the complete direct product H of the 
G/Gt: 

f(g) = (Gig, G2g, . . .) for every g in G. 

Clearly / is a homomorphism and is one-to-one since (yt=iGi = E; thus 
G =f(G). Since each G/Gt is torsion-free and locally nilpotent, it can be 
embedded in a (unique minimal) divisible locally nilpotent torsion-free 
group Du where D{ consists of all roots of elements of G/Gt (cf. [5, p. 256]). 
Each Du being torsion-free and locally nilpotent, is 0* by [6, p. 174], and the 
theorem follows by taking G' as the complete direct product of the D i. (The 
theorem is immediate if any Gt = E, since G itself is then a locally nilpotent 
torsion-free group.) 

Definition. By a central series for a group G with identity subgroup E we 
mean a countably infinite normal chain (i.e., chain of subgroups normal in G): 

G = G i D G 2 2 G 3 3 . . . 

such that n?=iG t = E and Gi-i/Gl is in the centre of G/Gt for every i. 

Remark. Clearly the theorem holds for such G if also the factors G/Gt are 
torsion-free. 

Now if F is any free group and F = F\ 3 F2 2 . • . is the lower central 
chain for F, then PiT=i^z = E by Magnus' theorem (cf. [5, p. 38]). Also, 
each F/F% (the free nilpotent group of class i) is torsion-free; for if a (? Ft 

but an G Fi for nonzero n, then Fs-i/Fs is not torsion-free if 5 ^ i is chosen 
so that a 6 Fs-X — Fs\ however, Witt 's theorem (cf. [5, p. 41]) states Fs-i/Fs 
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is free abelian (and hence torsion-free; also, cf. [7]). Thus by the remark 
above, the theorem holds for F. 

Necessary and sufficient conditions that a prescribed full order for a sub­
group of a group extend to some full order for the group are unknown. However, 
if G CI G' are as in the theorem, and if no Gt is the identity E, then at least 
2K full orders for G extend to full orders for G'. For each Dt (i ^ 2) admits 
at least two full orders, and the resulting uncountably many lexicographic 
full orders on G' are distinct on H C G' since each Dt consists only of roots of 
elements of G/Gt. Hence, if no Gi is E, these orders are distinct on 
G =f(G) C H by definition of / . (Of course, these remarks hold for free 
groups of rank ^ 2 , since no Ft is E.) 

Definitions, A partial order P for a group G is called isolated if, for all x in G 
and all n > 0, xn ^ e implies x §; e, where e is the group identity. A group 
in which every partial order extends to an isolated partial order will be called 
an I*-group, following [2]. Likewise a group in which every right partial order 
extends to an isolated right partial order (obvious meaning) will be called 
RI*, and one in which every right partial order extends to a right full order 
will be called RO*. 

In [2, p. 468] Hollister shows that a free group of rank ^ 2 is not /*. Also, 
an RI*-gro\xp is /* (for if a partial order P is contained in the isolated right 
partial order Q, then C\x^Gx~lQx is an isolated partial order containing P), 
and so a nonabelian free group is not RI*; cf. [1, pp. 69-70]. These results and 
the isomorphism / applied to F (notation as above) yield two corollaries. 

COROLLARY 1. A subdirect product of 0* (hence I*) groups need not be I* 
(hence not RI* nor RO*). 

Finally, any right partial order for F is a right partial order for H 3 F, 
where H = YL F/Ft (complete direct product as in the proof of the theorem) ; 
thus H is not RI* or RO*. Also, in [3] Kargapolov showed that H is not 0*. 
Thus we have: 

COROLLARY 2. The complete direct product of 0*-groups need be neither RI* 
(hence not RO*) nor 0*. 

Note. It is unknown whether the classes /*, RO*, RI* are closed under 
direct products. (In [3] and [4] the writers show that the restricted direct 
product of 0*-groups is 0*, whereas in [8] it is shown that the direct product 
of V* (respectively V) groups is not V; a V* (respectively V) group is one 
wherein every partial (respectively full) order on every subgroup extends to 
some full order for the group.) 
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