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1. Introduction

The following paper is a sequel to the author’s earlier paper [2]. In
that paper some general results were obtained which described the motion
of a fluid with a free surface subsequent to a given initial state and prescribed
boundary conditions of a certain type. The analysis was based on a linearized
theory but gravity effects were included. Viscosity, compressibility and
surface tension effects were neglected. Among the problems treated was that
of the normal symmetric entry of a thin wedge into water at rest. This water
entry problem has attracted a considerable amount of attention since the
pioneer paper by Wagner [5]. Both linear and non-linear approximations
have been used but all papers apart from [2] neglect gravity on the assump-
tion that in the early stages of the penetration this is unimportant. One of
the objects of [2] was to determine the solution with the gravity terms re-
tained. A formal solution was obtained but no attempt was made to analyse
this quantitatively. In the present paper we examine the extent of this effect
in some detail. It will be of help to the reader to have some familiarity
with the first three or four sections of [2] but in order to make the present
paper self-contained we shall first reintroduce the notation used there and
quote the necessary results from that paper without proof.

We consider an incompressible fluid with a free surface whose equation
is y = n(x, t). The plane y = 0 is the mean free surface, 7 is assumed small
and the y-axis points vertically downwards. In the first instance two-
dimensional problems only are considered and symmetry about the y-axis
is also assumed. Although two-dimensional problems are less important
than those with axial symmetry, this specialization is made in the interests
of mathematical simplicity and the extension to axially symmetric flow
will be made where feasible. The fluid is non-viscous and the flow assumed
to be irrotational. Accordingly there exists a velocity potential ¢(z, y, ¢)
which is harmonic in the variables z and . On y = 0, ¢ satisfies the boundary

condition
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We denote by bars the Fourier cosine transform with respect to z so
that, in particular,
(A t) = f:n(x, t) cos Axdz.
The main result of [2] is the determination of the motion of the fluid, at

rest for £ < 0, when a wavemaker acts along the boundary z =0, y > 0
in such a way as to supply the boundary condition

%~ vy (6= 092020
It is found that
) i, £) = — [ 04, 7) cos {(4g)} (t—)}ar,
where
3 Oy = [ Uy, ey,

and from these equations the equation of the free surface #(z, ¢) is recovered
by Fourier inversion. We consider in particular a thin symmetric body which
rests when ¢ < 0 with its tip at the origin and its axis vertical. Its shape in
this position is given by z = f(y), where f is small in some sense, is itself
positive but is defined for negative values of its argument only. If this body
is plunged at £ = 0 with constant speed U into the water,

—Uf'(y—Ut z=00=y=<Up,

@ vy =" ¢ L )
0 (z=09>Ui).

For a thin wedge, f(y) = —s&y, where ¢ is small, and after some algebra we

find the equation of the free surface to be

2eU2 *  cos Ax
o AQAU-g

(6) 7nxt) = ) {cos (Ag)¢—U(A/g)} sin (Ag)dt—erUt}dA.

2. Investigation of the splash profile

The splash profile is not by itself the most important physical charac-
teristic of the water entry problem but it is one which is easily visualized
and also one which admits of comparatively detailed analysis. Moreover,
one would hope to get some general indication of gravity effects by means of
such an investigation. The usual arguments concerning the ‘‘early stages”
of the entry refer to times ¢ which are small compared with UJg, the only
combination of the data which has the dimension of time. We therefore seek
the asymptotic form of % as given by (5). We can do this in two ways. We
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can try to find the displacement at a given position for small £. We can also
seek the displacement at a given time for large values of 2.

The second of these problems is more straightforward and it will be
discussed first. Examination of the integrand in (5) shows it to be of the form
cos Az F (4), where F (1) is an analytic function of 4 whose only singularity is
a simple pole at 4 = —g/U? and which is of order 2-# for large real positive
values of A. It follows that an asymptotic expansion for large values of
can be obtained by integration by parts, leading to the form

26U (F'(O) _Ero ).

f) = —
n(= ) 7 2 x4

After some manipulation, this produces the expansion
n__%f11 _UZ)S (1 _gf_)
© n [3 (x + 4U

~io{z) i 4 (5) + o (5))] 4o )

When g = 0, the expression for 7(z, t) can be found explicitly, either
by letting g — 0 in (5) and evaluating the appropriate integral or, more
directly, by solving the boundary value problem as in [1] with ¢ =0 as a
boundary condition on y = 0 instead of (1). If the value of n when g =0
is denoted by #,, either of these methods gives
e 2U¢ vt Ut ( U’tz)}

=2 gtan 2 Leg (14 ==
x T x x xr

(7)

It is easily verified that the terms in (7) which are not O(z~7) coincide with
those obtained by setting g = 0 in (8).

We can now examine the nature and magnitude of the effects of gravity
terms in the equation of the splash profiele. We note that for large «, 7 is
negative as expected since y is measured vertically downwards but that the
effect of the gravity term is to increase the displacement away from the
undisturbed free surface. At first sight this seems a curious result since one
would intuitively expect the free surface to be kept down further by the
action of gravity forces. However, we must remember that there is built
into our system of equations the principle of conservation of volume and
that the volume of liquid displaced in a given time is the same whether gravity
terms are present or not. Thus the area under the 5 curve is independent of g
and we see that the presence of gravity terms tends to depress the splash
profile near the body but to introduce a compensating increase further
away. This point is emphasized by the further observation that 7,, as given
by (7), has a logarithmic singularity at & = 0 whereas 7, as given by (5)
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is finite at = = O since the integral in (5) is absolutely and uniformly
convergent for = 0. This shows that the 5 and 5, curves must cross over
at some point. The general shape of the 7, curve can be easily determined.
It changes monotonically from its logarithmic infinity at =0 to a
zero of order x~2 at x = o0. The 7 curve, on the other hand, is finite at z = 0
and for large ® at a given time ?

(@, t) = nolx, t) (l + f—’;f) +0 (;:1-4) .

An additional point of contrast is that the n curve will have a sinusoidal
profile and, away from z = 0, will be not unlike the surface profile occurring
in the Cauchy-Poisson initial value problem (see, for example [3] pp.
156—163).

It is possible to obtain the leading terms in the expansion of the splash
profile for large x when an arbifrary thin body, whose shape at t =10 is
x == f(y), enters the water with constant speed U. From (2), (3) and (4)

(8) 74,8 =U f: cos {(Ag)} (t—1)}dv fov’ f (@—Uz)e?*da.
The function % (z, ¢) is found from # by Fourier inversion and, after integra-
tion by parts,
27’ (0, t) ( 1 )
= — 0 —,
(@, ?) — tolZ

where the prime denotes differentiation with respect to . If (8) is differen-
tiated with respect to 4, 1 is set equal to zero and the orders of integration
interchanged, we obtain after some manipulation

9 t—2m Ut)d Ugttﬂ!Ual+1
O) )=~ Z{ [ ae—vnaat ZF [ e—arn-vnad +o(5)-
This shows that, for a thin body of arbitrary shape, the effect of gravity is
always to increase the height of the splash profile far away from the body.
The appropriate part of the earlier result (6) can be obtained by setting
Hy) = —ey in (9).

The compensating depression nearer to the origin is most clearly seen
by an example which is not exactly a water entry problem but is closely
akin to one. If an explosion is set off in the water at £ = 0 at the point
=0, y=7Y, then we may obtain some representation of this by setting
Uy, t) = 6(y—Y)48(¢t), where 6 denotes the Dirac delta function. By using
the techniques derived in [2] we obtain

(10) (@, t) = — Efme‘“' cos {(Ag)¥t} cos AxdA.
o
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When g = 0, the splash profile can be evaluated explicitly and if we denote
this by the suffix zero as before, then

2Y

Nz, t) = — 2@ Y

In this idealized model, 7, is independent of ¢ and the splash profile is formed
instantaneously and permanently. However, when g # 0, integration by
parts gives
2 g2 1
n(x,t) = — s (Y+ ?) +0(;4) >

showing the characteristic behaviour for large . On the other hand, when
z = 0itis clear from (10) that {5| << |5,|, since the presence of the oscillating
cosine term coming from the fact that g ¢ 0 must decrease the absolute
value of the integrand. The delta function explosion model is similar to
the water entry problem in this respect that a fixed amount of fluid is releas-
ed to cause the splash profile and that this amount is independent of g.
The integrated curves of 5 and #, over all 2 must therefore be the same.

We return now to the wedge problem and examine the more delicate
asymptotic solution of (5) for a given position z and small values of the time
t. We note that it is impossible to expand the integrand in powers of ¢
since this immediately causes the integrals with respect to 4 to diverge.
However, the expansion of % in powers of ¢ for fixed # can be accomplished
by an ingenious device suggested in a letter to the author by Professor
E. T. Copson to whom he is greatly indebted. This consists of forming the
quantity Uzj—g5, where the dots denote differentiation with respect to ¢
This leads to the equation

Ui 2:U%4
ay U
3 3 2 2 12
4 2eU% (?E) {C (g) sin g — S (g_t_) cos g—} s
X, 4x 4x 4ar 4x

where C, S are forms of Fresnel integrals defined by
1 6 4 1 ] e
C(0) = Wfo z7% cos zdz, S(ﬂ) = WJ; z~% sin 2dz.

By this device the expression for 7 is transformed from the evaluation of a
somewhat complicated Fourier integral to the solution of an ordinary, second
order, non-homogeneous differential equation with constant coefficients
and initial conditions # = # = 0. The complete solution can easily be written
down in terms of the appropriate Green's function but for our purposes
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we shall merely obtain the leading terms in the expansion of % for fixed 2
and small ¢. Up to and including terms in # this expansion is

2= —ale) (i) () 0 +3)

=) (14 & SR el Y (DU 7).
(12) x 31;(:1: + 4U, + 10z \ 2 + 6U +o)
In this expression, contributions from the terms in (11) which involve Fresnel
integrals enter only in the terms of order # and higher. The g which arises

in the term in # on the right hand side of (12) comes exclusively from the
existence of the term —gjj in the left hand side of (11).

3. The case of axial symmetry

When a thin axially symmetric body is thrust with constant speed U
into the water, it was shown in [2] that substantially similar methods could
be used to determine the splash profile as were used for the two-dimensjonal
case. The main difference was the replacement of Fourier cosine transforms
with respect to # by Hankel transforms of order zero with respect to 7,
the radial co-ordinate. Application of these methods gives the equation
of the splash profile when a thin cone of apex angle 2¢ is thrust normally
into the water with constant speed U as

EU? r  Jo(Ar)
g Jo AAU+g)

- {U(Ag)¥ sin (Ag)kt—AU?(1—cos (Ag)}t)—g(l—e2UV*)}dA.

Using the ideas of the previous section we determine Uzj—gn and obtain
® Jo(A

Usj—gn = eﬂsz Jold)

o A

Evaluation of the last integral in this expression presents some difficulty

but a series form has been given by Terazawa [4] and using this we can write

] . Ut Ut = (—1)"nl [g\"
—pp = 2 U2 i A i Wt Mgy |2
Uj—gn = & U {smh . " ,,2:0 (2n+1)!(r) P,(O)}.
The solution of this equation for which 7 == 0 when £ = 0 is

2 Uttt gt

= — — {14+ 2 ces
n) == S (14 55) +
where careful examination shows that the missing terms are o(#*) for fixed »
and small ¢ but are also o(r—3) for fixed ¢ and large 7. It is observed that the
general pattern of behaviour is much as in the two-dimensional case but
with gravity effects being slightly less significant after the same interval
of time.

n(r,t) =

{1—e-AVt_U ([g)} sin (Ag)te}da.
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4. Conclusions

The splash profile for the water entry problem has been examined on
the basis of a linearized theory which includes gravity effects. Justification
for neglecting gravity in previous papers rested on the assumption that such
effects would be unimportant for values of ¢ « U/g. A critique for this asser-
tion is established by the demonstration that, to a first approximation, the
splash profile is affected by a factor of magnitude 14g¢/4U and 14-g¢/5U
in the two-dimensional and (axially symmetric) three-dimensional cases
respectively. Further, it is shown that gravity tends to decrease the height
of the splash profile near to the body and to increase it further away. The
inclusion of gravity effects, besides being more realistic physically, has the
satisfactory mathematical consequence that the splash profile is now uni-
formly bounded instead of possessing a singularity at the origin.

We have made no mention of drag forces on the body. It is possible to
obtain an expression for the drag force for the entry of a wedge when g = 0
by integrating the contribution from the unsteady term 9¢/d¢ in Bernoulli’s
equation. The resultant vertical drag is of order s2. When gravity terms are
present the hydrostatic pressure on the wedge is of order unity and when this
force is resolved vertically it is of order e. Thereis thusno basis for comparison.
We may therefore assume that, for thin bodies, the ordinary hydrostatic
pressure is dominant in offering resistance to the progress of the body into
the water.
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