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The general problem of tracer diffusion in non-equilibrium baths is important in a wide
range of systems, from the cellular level to geographical length scales. In this paper,
we revisit the archetypical example of such a system: a collection of small passive
particles immersed in a dilute suspension of non-interacting dipolar microswimmers,
representing bacteria or algae. In particular, we consider the interplay between thermal
(Brownian) diffusion and hydrodynamic (active) diffusion due to the persistent advection
of tracers by microswimmer flow fields. Previously, it has been argued that even a
moderate amount of Brownian diffusion is sufficient to significantly reduce the persistence
time of tracer advection, leading to a significantly reduced value of the effective active
diffusion coefficient DA compared to the non-Brownian case. Here, we show by large-scale
simulations and kinetic theory that this effect is in fact practically relevant only for
microswimmers that effectively remain stationary while still stirring up the surrounding
fluid – so-called shakers. In contrast, for moderate and high values of the swimming
speed, relevant for biological microswimmer suspensions, the effect of Brownian motion
on DA is negligible, leading to the effects of advection by microswimmers and Brownian
motion being additive. This conclusion contrasts with previous results from the literature,
and encourages a reinterpretation of recent experimental measurements of DA for tracer
particles of varying size in bacterial suspensions.
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1. Introduction

Understanding the mass transport of colloidal and molecular species in non-equilibrium
environments is crucial for various processes, ranging from active intracellular transport
(Mogre, Brown & Koslover 2020) to the dispersion of nutrients in world oceans (Katija
2012). Apart from their practical importance, the transport properties of tracer particles in
generic ‘active baths’ have attracted much interest from a statistical physics perspective,
where they can be viewed as a minimal example of particles driven by external,
non-equilibrium noise (Argun et al. 2016; Park et al. 2020). Beyond the level of tracer
particles driven by generic non-equilibrium noise, the archetypical example of a tracer
particle in an active bath is a collection of point-like tracers being advected by a set
of microswimmers such as bacteria or algae (Lauga & Powers 2009). When swimming
through a viscous fluid, these swimmers create long-range flow fields that advect the
tracers, leading to tracer dynamics that is ballistic at short times and diffusive over
time scales longer than the autocorrelation time of the local flow field (Lin, Thiffeault
& Childress 2011). Realisations of this system have been studied extensively both
experimentally, typically in suspensions of E. coli bacteria (Wu & Libchaber 2000; Kim
& Breuer 2004; Drescher et al. 2011; Jepson et al. 2013; Koumakis et al. 2013; Miño
et al. 2013, 2011; Patteson et al. 2016; Peng et al. 2016; Semeraro, Devos & Narayanan
2018) or Chlamydomonas algae (Leptos et al. 2009; Yang et al. 2016; Ortlieb et al. 2019;
von Rüling, Kolley & Eremin 2021), and theoretically, with microswimmers typically
being modelled either as force dipoles acting on the surrounding fluid (Pushkin, Shum
& Yeomans 2013; Pushkin & Yeomans 2013; Morozov & Marenduzzo 2014; Nordanger,
Morozov & Stenhammar 2022), as spherical ‘squirmers’ with an imposed slip velocity
along their body (Thiffeault & Childress 2010; Lin et al. 2011; Thiffeault 2015), or
as needle-shaped ‘slender swimmers’ with imposed stresses along their body lengths
(Saintillan & Shelley 2012; Krishnamurthy & Subramanian 2015). While the details of
these three microswimmer models differ, the results regarding enhanced tracer diffusion
are largely generic and consistent with experimental results, which have shown the
swimmer-induced, hydrodynamic diffusivity DA to scale linearly with microswimmer
density n in the dilute limit where swimmer–swimmer correlations can be neglected
(Thiffeault & Childress 2010; Lin et al. 2011; Miño et al. 2013). In this limit, a fruitful
way of calculating DA is to consider the net displacement due to binary swimmer–tracer
scattering events (Pushkin & Yeomans 2013; Morozov & Marenduzzo 2014); two examples
of resulting (deterministic) tracer trajectories for scattering events are shown in figure 1.
For a non-tumbling swimmer, starting and ending at x = ±∞, the resulting loop is closed,
leading to a vanishing tracer net displacement Δ (figure 1a). For tumbling swimmers with
a finite persistence length, the trajectory is, however, punctuated midway through the tracer
loop, leading to significantly larger values of Δ (figure 1b). The resulting value of DA due
to a large set of such scattering events can then be obtained by summing over all possible
sets of scattering parameters.

In spite of the dependence of Δ on the microswimmer tumbling rate λ for single
scattering events such as that in figure 1, Pushkin & Yeomans (2013) showed that, in the
limit of large swimming speeds vs, DA is in fact independent of λ when summed over all
possible swimmer trajectories. This result was later generalised by Škultéty et al. (2020)
to arbitrary swimming speeds, leading to the following approximate expression for DA:

DA ≈ 7κ2n
2048λε + 336πvs

. (1.1)

974 A25-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

85
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.850


Interplay between Brownian and active tracer diffusion

Δ

(b)(a)

Figure 1. Tracer trajectories for infinite and finite swimmer paths. (a) Typical trajectory for a non-diffusing
tracer advected by a non-tumbling, point-dipole swimmer following an effectively infinite, straight path.
(b) Corresponding trajectory terminated due to a tumbling event. Note that, per (1.1), the effective tracer
diffusion DA is independent of tumbling rate λ for sufficiently high swimming speeds when averaged over all
possible swimmer–tracer configurations, even though the net displacement Δ is much larger for the tumbling
swimmer. Tracer trajectories were obtained through direct numerical integration using a non-regularised
dipolar flow field, as described by Morozov & Marenduzzo (2014).

Here, κ is the magnitude of the microswimmer dipole (in units of volume over time), and
ε is a characteristic linear size of the microswimmer, which we take to be equal to the
short-range regularisation length of the dipolar flow field; unless stated otherwise, in the
following we will use κ and ε to non-dimensionalise the numerical data.

Rather than using the scattering approach outlined above, (1.1) was derived by
formulating a kinetic theory for the spatiotemporal correlations of the disturbance velocity
field U created by the swimmers. Due to the linearity of Stokes flow, we can write U as a
superposition of the individual swimmer flow fields us:

U(r, t) =
N∑

i=1

us(r; ri, pi), (1.2)

where ri and pi are, respectively, the position and orientation of swimmer i. Knowing the
statistical properties of U , DA can be calculated via the Green–Kubo relation

DA = 1
3

∫ ∞

0
〈ṙT(t) · ṙT(0)〉 dt = 1

3

∫ ∞

0
〈U(rT , t) · U(rT , 0)〉 dt ≡ 1

3

∫ ∞

0
CT(t) dt,

(1.3)

where, in the second equality, we have assumed point-like tracers advected by the
disturbance flow, so that ṙT = U(rT), and the third equality defines the velocity
autocorrelation function CT(t) in the co-moving tracer frame. While yielding results for
dilute suspensions identical to those for the scattering approach discussed above, kinetic
theories are more readily extended to accommodate the effect of swimmer–swimmer
correlations due to the mutual advection and reorientation of swimmers (Škultéty
et al. 2020). Importantly, these interactions break the symmetry between rear-actuated
(pusher) swimmers, such as most bacteria, and front-actuated (puller) ones, such as
Chlamydomonas, leading to a super-linear scaling of DA with n for pushers, and a
corresponding sub-linear scaling for pullers (Stenhammar et al. 2017).

Equation (1.1) shows two qualitatively different regimes for high and low vs: for vs →0 –
the so-called shaker limit – the dominant mechanism controlling the decorrelation of CT(t)
is tumbling of the swimmer. For fast swimmers, with vs � λε, the decorrelation of the
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fluid velocity is instead dominated by the swimmer self-propulsion and is thus independent
of λ, and (1.1) reduces to the expression derived by Pushkin & Yeomans (2013). A third,
somewhat less explored, mechanism affecting CT(t) is Brownian translational diffusion of
the tracer: even though Brownian diffusion does not affect the statistics of the flow field
U(r, t) as measured in the lab frame, the positional noise of the tracer particle will cause it
to cross the streamlines of the disturbance flow, thus perturbing its trajectory compared to
the athermal case shown in figure 1, leading to a lower DA. Since the Brownian diffusion
constant D0 depends inversely on the tracer radius per the Stokes–Einstein relation, the
magnitude of this effect is expected to be significant primarily for small tracer particles,
and it has been hypothesised to explain the non-monotonic size dependence of enhanced
tracer diffusion seen in experiments with colloids in E. coli suspensions, where Patteson
et al. (2016) observed a maximum in DA for a tracer radius of approximately 5 μm.
Furthermore, the effect of Brownian motion on enhanced tracer diffusion was analysed
theoretically by Kasyap, Koch & Wu (2014) for a model of slender-body swimmers,
showing that DA is a non-monotonic function of D0, with DA first showing a small increase
for intermediate D0, before falling below the athermal value as D0 grows larger. In a
more recent study of finite-size spherical tracers in microswimmer suspensions, Dyer
& Ball (2021) analysed numerically the combined effect of thermal fluctuations and
near-field flows on the size-dependent tracer dynamics, finding non-monotonic behaviour
similar to that observed experimentally. In this paper, we will revisit the problem of
the interplay between Brownian and hydrodynamic diffusion for the simple case of
point-like tracers immersed in a dilute suspension of microswimmers described via a
regularised dipolar flow field. Using kinetic theory and large-scale lattice Boltzmann (LB)
simulations of E. coli-like suspensions, we show that the effect of Brownian diffusion
on active diffusion is practically relevant only whenever vs < λε, which corresponds to
extremely slow (or frequently tumbling) swimmers. For biologically relevant values of vs
and λ, swimming is instead the dominant decorrelation mechanism, so that DA becomes
independent of both D0 and λ. In contrast to previous studies, our results thus indicate that
the effect of Brownian motion on the enhanced diffusion is in fact negligible for most
microswimmer realisations, and thus that the experimentally observed non-monotonic
size dependence of DA on tracer size reported by Patteson et al. (2016) has other
explanations.

2. Model and method

We consider a collection of N non-interacting microswimmers at number density n = N/V
moving through a three-dimensional viscous fluid of viscosity μ. Each microswimmer is
composed of two equal and opposite point forces of magnitude F separated by a length �,
and swims with a constant speed vs. The resulting reduced hydrodynamic dipole strength
is κ = F�/μ. Furthermore, the swimming direction pi relaxes through Poisson-distributed
random tumbles with uncorrelated directions, occurring with average frequency λ.

The position rT of a point-like tracer obeys the equation of motion

ṙT = U(rT) +
√

2D0 η, (2.1)

where η is a unit-variance white noise, δ-correlated in time, and D0 is the Brownian
diffusion constant. Thus, the effect of Brownian motion is fully contained in the tracer
dynamics, while we assume the effects of thermal fluctuations on the fluid and on the
pairwise swimmer–tracer dynamics to be subdominant. The fluid disturbance velocity
U(rT) due to the presence of all swimmers is given by (1.2) and can, in principle, be

974 A25-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

85
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.850


Interplay between Brownian and active tracer diffusion

summed up explicitly on each time step. However, to avoid the (prohibitively costly)
pairwise summation over all swimmers and tracers, we instead solve numerically for
the flow field using an efficient point-force implementation of the LB method described
previously (Nash, Adhikari & Cates 2008; Bárdfalvy et al. 2020). Our simulations
comprise a system with periodic boundaries and size 1003 lattice units. In LB units,
set by the LB lattice spacing Δl and time step Δt, the microswimmer density was kept
constant at n = 0.01 unless stated otherwise, corresponding to N = 104 microswimmers.
Furthermore, NT = 5 × 104 point tracers were included for statistical averaging. In
addition to the LB simulations, in § 3 we will furthermore extend the kinetic theory
developed previously by Škultéty et al. (2020) to the case of microswimmers undergoing
Brownian diffusion, and show that in the limit of non-interacting swimmers, the
derived expression for DA is equivalent to that for Brownian tracers in a suspension of
non-Brownian microswimmers.

Inserting (2.1) into the Green–Kubo relation (1.3) yields

DTot = D0 + 1
3

∫ ∞

0
CT(t) dt = D0 + DA, (2.2)

where CT was defined in (1.3). Thus, to obtain DA, we evaluate numerically the time
correlation of the disturbance velocity measured in the co-moving tracer frame. Since the
tracer position rT depends on D0, CT(t), and thus DA, will depend implicitly on D0.

To characterise the system, we will use three dimensionless quantities. First, we define
the Péclet number, which measures the relative importance of active and thermal forces,
as

Pe ≡ DA(D0 = 0)

D0
, (2.3)

where DA(D0 = 0) is the active diffusivity of a tracer immersed in an equivalent
microswimmer suspension but in the absence of Brownian tracer motion. It should be
noted that our definition of Pe is qualitatively different from that of Kasyap et al. (2014),
who, instead of DA(D0 = 0), use the swimming speed vs to characterise the active forces.
We, however, argue that the activity experienced by the tracers depends on the magnitude
of the velocity fields generated by the swimmers, and is thus dependent on κ and encoded
in DA(D0 = 0), while vs is instead a measure of the swimmers’ self-propulsion. For
experimental realisations of microswimmers, κ and vs are directly proportional to each
other; however, the specific relation between them will nevertheless be specific to each
type (or species) of swimmer, and decoupling them enables us to study separately the
effects of self-propulsion and fluid forcing, as we demonstrate further below.

Second, we measure the change in active diffusion due to Brownian motion through the
quantity

ξ ≡ DA(D0)

DA(D0 = 0)
. (2.4)

In the limit Pe → ∞, where Brownian motion becomes negligible, we thus expect that
ξ → 1 as DA approaches its non-Brownian value. Finally, in accordance with Škultéty
et al. (2020), we account for the effect of microswimmer self-propulsion using the reduced
swimmer persistence length L, defined by

L ≡ vs

ελ
. (2.5)
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3. Kinetic theory

In this section, we will outline the main steps in the derivation of DA for a suspension
of Brownian tracer particles immersed in a dilute microswimmer suspension, whose
dynamics are governed by (2.1). Just as in our previous works (Stenhammar et al. 2017;
Škultéty et al. 2020), we describe the flow field measured at r due to a swimmer with
position ri and orientation pi by a regularised dipolar flow field us(r):

us(r; ri, pi) = κ

8π

[
3

(pi · r′)2r′ + ε2(pi · r′)pi

(r′2 + ε2)5/2 − r′

(r′2 + ε2)3/2

]
, (3.1)

where r′ = r − ri, r′ = |r′|, and ε is the regularisation length. Our starting point is
the derivation of Škultéty et al. (2020), where we formulated and solved a kinetic
theory describing the fluctuations of the velocity field U(r, t) due to a superposition
of single-swimmer flow fields. In the limit of non-interacting swimmers, which is the
case that we consider here, the temporal correlations of the steady-state velocity field U
measured in the lab frame, CU(t) ≡ 〈U(r, t) · U(r, 0)〉, are given by

CU(t) = κ2n
15π2ε

∫ ∞

0
A2(ζ ) e−τ F(Lζ τ) dζ, (3.2)

where
A(x) = 1

2 x2 K2(x), (3.3)

with K2 being the modified Bessel function of the second kind, and

F(x) = 15
(5x2 − 12) sin x − x(x2 − 12) cos x

x5 , (3.4)

defined such that F(0) = 1. Furthermore, we used the dimensionless variables
L = vs/(λε), τ = tλ and ζ = kε, where k = |k| is the wavevector magnitude. Equation
(3.2) can be expressed equivalently in closed form in terms of elliptic integrals, as given
by (72) of Škultéty et al. (2020). Equation (3.2) contains decorrelation of the flow field
due to two separate mechanisms: exponential decay of CU(t) due to tumbling, and a more
complex, oscillatory behaviour due to swimming, encoded in the function F .

To obtain the hydrodynamic diffusivity of a passive tracer, Škultéty et al. (2020) used
a stationary tracer approximation, implying that the tracer advection by the swimmer flow
field is negligible compared to the self-propulsion of the swimmer. This implies that
rT remains effectively constant over the time it takes for U to relax, such that CT(t) =
〈U(rT [t], t) · U(rT [t = 0], 0)〉 ≈ 〈U(rT [t = 0], t) · U(rT [t = 0], 0)〉 = CU(t), where, in
the last equality, we have made the additional assumption that the tracers are distributed
homogeneously in space so that they sample an unweighted spatial average of the flow
field. Thus if we can replace the correlation function CT in the co-moving tracer frame
with that in the stationary lab frame, CU , then we can insert (3.2) into the Green–Kubo
relation (1.3) and integrate over time to yield the following expression for DA, identical to
(85) of Škultéty et al. (2020):

DA = κ2n
45π2λε

∫ ∞

0
A2(ζ )G(Lζ ) dζ, (3.5)

where

G(x) = 5
2

3x + 2x3 − 3(1 + x2) arctan x
x5 , (3.6)
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Interplay between Brownian and active tracer diffusion

defined such that G(0) = 1. Furthermore, by matching the asymptotic behaviours for
L → 0 and L → ∞, (3.5) can be approximated by the simple expression given in (1.1)

The generalisation of (3.5) to the case of Brownian tracers might seem straightforward,
but unfortunately is not. Since the approximation CT(t) = CU(t) amounts to the
tracer remaining effectively stationary during a swimmer–tracer scattering event, this
approximation will, by construction, not capture any effects on DA coming from Brownian
diffusion across streamlines. This can be realised easily by noticing that CU(t) is solely
a property of the swimmer suspension, and will be strictly unaffected by the tracer
dynamics; thus DA in (3.5) remains unaffected by the inclusion of tracer diffusion.
Instead of going beyond the stationary tracer approximation, we circumvent this problem
by noticing that in a suspension of non-interacting microswimmers, the dynamics of
a Brownian tracer will be statistically identical to that of a non-Brownian tracer in a
suspension of Brownian swimmers with the same translational diffusivity D0. This is
because the single-swimmer flow field in (3.1) depends solely on the separation vector
rT − ri, implying that the flow field experienced by a diffusing tracer (i.e. noise acting on
rT ) is identical to that experienced by a non-Brownian tracer sampling the flow field from
a swimmer with the same noise instead applied to ri. In a non-interacting microswimmer
suspension, this equivalence is exact as long as the noise has zero mean and identical
spectral properties, and we verify it numerically in figure 3. However, it breaks down as
soon as swimmer–swimmer correlations become significant, since swimmer diffusion will
then affect the magnitude of such correlations, which tracer diffusion will not.

Thus, as outlined in Appendix A, we instead calculate CU(t) for the case of a suspension
of diffusing swimmers, described by the dynamics

ṙi = vspi +
√

2D0 η, (3.7)

including the same tumbling dynamics as before. This yields the following generalisation
of (3.2):

CU(t; D0) = κ2n
15π2ε

∫ ∞

0
A2(ζ ) e−(1+D̃ζ 2)τ F(Lζ τ) dζ, (3.8)

where we have additionally defined the non-dimensional diffusivity D̃ = D0/(λε
2). Since

the effect of Brownian diffusion is now fully incorporated into the properties of CU ,
we again use the stationary-tracer approximation and insert this expression into the
Green–Kubo relation (1.3), leading to the following expression for DA in the presence
of Brownian diffusion:

DA(D0) = κ2n
45π2λε

∫ ∞

0

A2(ζ )

1 + D̃ζ 2
G

(
Lζ

1 + D̃ζ 2

)
dζ. (3.9)

In § 4, we evaluate (3.8) and (3.9) numerically, and compare the results with direct
numerical simulations of microswimmer suspensions.

4. Results and discussion

In figure 2, we begin by verifying (3.5) for the hydrodynamic diffusion coefficient DA

in the limit D0 = 0. In figure 2(a), we demonstrate the λ−1 dependence of DA in the
shaker limit vs = 0, while figure 2(b) shows its more complex dependence on vs for
constant λ. Apart from numerically verifying the kinetic theory expression (3.5), these
results illustrate how DA decreases abruptly due to the temporal decorrelation of the flow
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10−1 100 101 102

10−5

10−4

10−3

DA

vs = 0

10−2 10−1 100

vs

0

0.5

1.0

1.5

2.0

2.5

3.0

(×10−3)

λ = 0 .08

(b)(a)

λ

Figure 2. Effective tracer diffusion in the absence of Brownian motion. Panel (a) shows the λ−1 dependence
of DA(D0 = 0) for shakers with vs = 0, and panel (b) its vs dependence at constant λ = 10−4. Symbols denote
simulation results, and solid lines show results from (3.5) using ε as a fitting parameter. Error bars represent
one standard deviation as obtained from averaging over four separate runs with different initial conditions. The
results are non-dimensionalised in terms of κ and ε.

field U(rT , t) induced respectively by tumbling and swimmer self-propulsion. The slight
deviation between the theoretical curve and simulation results at small vs in figure 2(b) is
likely due to the specific form for the short-range regularisation, which becomes important
as vs → 0. In our derivation of (3.5), we use the regularised flow field (3.1), based
on the regularisation first introduced by Cortez, Fauci & Medovikov (2005). In the LB
simulations, we instead use a numerical interpolation scheme based on a regularisation of
the δ function (Peskin 2002) acting separately on the two point forces that make up each
microswimmer. Unlike the expression in (3.1), this numerical regularisation does not allow
a direct mapping (or adjustment) of the regularisation length ε. We thus do not expect
perfect agreement between kinetic theory and simulation in the low-vs regime where the
short-range regularisation becomes important, and therefore treat ε as a fitting parameter
when comparing data from LB simulations with kinetic theory predictions. However, we
find that the fitted value of ε varies only slightly (ε ∈ [1.9 Δl, 2.5 Δl]) for the values of vs
used throughout this work, in good accordance with the fact that the regularised δ function
is interpolated over a support of 2 Δl in each Cartesian direction; for a more in-depth
discussion of the effect of the interpolation scheme on the tracer dynamics, see de Graaf
& Stenhammar (2017).

In figure 3, we study the additional effect of varying the Brownian diffusion coefficient
D0, as encoded in (3.9). From the data in figure 3(a), it is clear that for large enough
D0, the active diffusivity DA decreases compared to its non-Brownian value. To enable
an easier analysis of the effect of varying swimming speed, in figure 3(b) we present the
same data instead plotted as a function of the reduced variables ξ and Pe. For shakers
with L = 0 (blue curve in figure 3b), DA is reduced compared to its non-Brownian value
(ξ < 1) as soon as Pe < 1, reaching a value as low as ξ = 0.2 for Pe ≈ 10−3. However,
for finite values of vs, this effect on DA occurs for gradually lower values of Pe; for
the fastest swimmers considered here, with L = 4.0, no significant reduction of DA is
observed even for Pe as low as 10−3. Instead, we observe a small but significant increase
in the active diffusion compared to its non-Brownian value, in accordance with what was
observed previously for slender swimmers by Kasyap et al. (2014); we discuss this effect
further below. Crucially, a reduced persistence length of L = 4 nevertheless corresponds
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10−4 10−3 10−2 10−1 100

D0

0.4

0.6

0.8

1.0

1.2

1.4

1.6

DA

(×10−3)

10−3 10−2 10−1 100 101

Pe

0.2

0.4

0.6

0.8

1.0

ξ

L = 0
1.1
2.4
4.0

L = 0
1.1
2.4
4.0

(b)(a)

Figure 3. Brownian motion suppresses active diffusion for slow swimming speeds. (a) Values of DA measured
from LB simulations (diamonds) and calculated from (3.9) (solid lines), both expressed in LB units. (b) The
same data but expressed in the dimensionless quantities ξ and Pe. For very slow swimmers with L � 1,
DA is reduced compared to the non-Brownian value (ξ = 1) whenever Pe < 1, while for faster swimmers,
significantly lower values of Pe are necessary to affect DA. The circles for L = 0 and 2.4 correspond to the
hydrodynamic diffusion of non-Brownian tracers measured in a suspension of Brownian swimmers of the
same D0, verifying the statistical equivalence between tracer and swimmer diffusion in the non-interacting
limit. Error bars represent one standard deviation as obtained from averaging over four separate runs with
different initial conditions. The results in (a) are non-dimensionalised using κ and ε.

to relatively slow swimming from a biological perspective: According to the approximate
calculation in Škultéty et al. (2020), L for E. coli bacteria lies somewhere in the range
between 5 and 20, indicating that the effect of Brownian motion on active diffusion is
likely negligible in suspensions of swimming bacteria due to their fast self-propulsion.
In our LB simulations, studying values higher than L ≈ 4 is challenging, as these large
swimming speeds both require very large systems to avoid significant finite-size effects and
yield artefacts due to the effect of finite Reynolds number in the swimmer–tracer scattering
dynamics (de Graaf & Stenhammar 2017). We nevertheless studied ξ(Pe) numerically
using (3.9) for larger values of L, verifying that both the peak and the subsequent decrease
in ξ continue to move to even lower values of Pe as L is increased.

To understand further the mechanism behind the reduction in DA with D0, we consider
the two autocorrelation functions CT(t) and CU(t), which measure the fluid autocorrelation
in the co-moving tracer frame and in the lab frame, respectively. Figure 4 shows these
correlation functions for L = 0 and L = 2.4, with figures 4(a,b) corresponding to LB
results for CT , and figures 4(c,d) to kinetic theory results from (3.8) for CU . First, we
notice that the two sets of curves are very similar, implying that the stationary tracer
approximation CT ≈ CU is indeed accurate. Second, we notice that the decay of the
correlation function is significantly faster for swimmers than for shakers, again illustrating
that self-propulsion acts an efficient decorrelation mechanism for U . The effect of finite
D0 for shakers (figures 4a,c) is simply to decrease the relaxation time of the exponential
decay, in accordance with the L = 0 limit of (3.8). For swimmers, the situation is, however,
more complex: For short times, the flow field decays faster with decreasing Pe, while the
long-time tail of CT and CU instead becomes somewhat more extended with decreasing
Pe. For fast enough swimmers, the latter effect leads to the local maximum at ξ > 1
for intermediate Pe observed in figure 3(b) for the two highest L. Finally, we note that
the equal-time fluid velocity variance 〈U2(rT)〉, corresponding to the t = 0 values of CT
and CU , is independent of Pe. This means that, regardless of the ratio between diffusive
and active motion, the tracer particles sample the overall flow field homogeneously.
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Figure 4. Brownian motion decorrelates tracer trajectories. (a,b) Fluid velocity autocorrelation CT (t) in the
co-moving tracer frame measured from LB simulations for (a) shakers (L = 0), and (b) swimmers with L = 2.4
at indicated values of Pe. The dotted line shows the correlation function CU(t) of the fluid velocity in the
lab frame, demonstrating that the stationary-tracer approximation CT (t) ≈ CU(t) is excellent in the absence
of Brownian tracer diffusion (Pe → ∞). (c,d) Corresponding lab-frame correlation functions CU(t) obtained
from kinetic theory (3.9) for a suspension of diffusing swimmers, as described in § 3. Throughout, CT and CU
are non-dimensionalised using κ and ε.

This fact is non-trivial, since dry active particles that move autonomously on a solid
substrate are known to preferentially sample regions where they move slowly (Stenhammar
et al. 2016). Our results thus highlight that this generic mechanism is absent for inertialess
point tracers advected by an incompressible fluid. However, for microswimmer systems
where entrainment due to tracers being captured by the near-field flows of passing
swimmers (Jeanneret et al. 2016), we would expect the fluid flow sampled by tracers to
be significantly different from the average flow field in the system.

In figure 5, we study the dependence of the suppression of active diffusion on the
microswimmer density n in the shaker limit L = 0. At first sight, this dependence might
appear trivial, since DA is well known to be linearly dependent on n (Jepson et al. 2013;
Miño et al. 2013) in the limit of non-interacting swimmers, a fact that is unaffected by
Brownian motion as shown by (3.9). Since ξ measures the ratio between the Brownian
and non-Brownian values of DA, one would naively expect ξ to be independent of n.
However, since the Péclet number itself, as defined in (2.3), increases with n for constant
D0, the relative effect of Brownian motion on DA is in fact a complex function of n
even for non-interacting swimmers, as shown in figure 5. More specifically, according to
figure 5(b), the suppression of active diffusion becomes more significant with increasing
microswimmer density. In physical units, the highest concentration considered here
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Figure 5. Reduction of DA varies with microswimmer density. (a) Plots of ξ as a function of Pe for shakers
(L = 0) at various densities n, as indicated. (b) Plot of ξ as a function of n, at a fixed value of Pe = 0.013.
Simulation data are given by the symbols, with error bars obtained from averaging over four separate runs with
different initial conditions, while solid lines are computed from (3.9).

(nε3 ≈ 0.08) corresponds approximately to a bacterial concentration of 109 ml−1, which
is somewhat higher than the highest E. coli concentration considered by Jepson et al.
(2013), but still within the range of concentrations where swimmer–swimmer correlations
are reasonably small (Stenhammar et al. 2017). In summary, our results thus show that
for Brownian diffusion to have any measurable influence on hydrodynamic diffusion, it is
necessary to create a system with a relatively high density of very slow microswimmers;
as we discuss in § 5, this set of parameters is likely not achievable for suspensions of
biological microswimmers.

5. Summary and conclusions

In this study, we have demonstrated a number of theoretical and computational results
regarding the effect of Brownian diffusion on the swimmer-induced hydrodynamic
diffusion of tracer particles in a suspension of dipolar microswimmers. Our key finding
is that the effect of Brownian diffusivity D0 on the activity-induced, hydrodynamic
diffusivity DA is significant only when the Péclet number as defined by (2.3) is below unity,
meaning that Brownian diffusivity needs to dominate hydrodynamic diffusivity. However,
the necessary requirement Pe < 1 is sufficient only in the shaker limit vs → 0: for
swimmers with persistence lengths larger than the organism size, significantly lower values
of Pe are required to perturb the tracer trajectories sufficiently to affect DA. This conclusion
is analogous to the independence of DA from the tumbling rate λ for large vs illustrated
in (1.1). Whenever vs is large, the decorrelation of U by swimming will dominate the
decorrelation due to tumbling and translational diffusion, and the dependence on λ and
D0 will thus vanish in the limit vs → ∞. While this effect is expected, what is perhaps
surprising is the rather moderate values of L = vs/(ελ) necessary to render the coupling
between D0 and DA negligible, as illustrated in figure 3(b). To put these values into
perspective, we use the conservative estimate L = 5 for E. coli. By virtue of figure 3(b),
we require that Pe ≤ 10−3 for Brownian motion to have an effect of ∼5 % on DA. Using as
an example the minimum value DA ≈ 10−2 μm2 s−1 measured by Jepson et al. (2013) in a
three-dimensional E. coli suspension, this requirement thus implies that D0 ≥ 10 μm2 s−1,
which by virtue of the Stokes–Einstein relation corresponds to a tracer radius R0 ∼ 20 nm.
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While significantly smaller than the particles used in typical measurements on colloidal
tracers (Leptos et al. 2009; Miño et al. 2013; Patteson et al. 2016), this diffusion coefficient
is close to the value of D0 measured for dextran in E. coli suspensions by Kim & Breuer
(2004). It is also fully feasible to realise such low Péclet numbers for micron-sized spheres
by instead decreasing the bacterial density to very low values; however, measuring the
correction to DA for Pe ∼ 10−3 represents a major difficulty, since it amounts to measuring
a ∼5 % deviation of an effective diffusivity that is itself a thousand times smaller than
the Brownian diffusion. It would thus require an extremely accurate determination of D0,
which then needs to be subtracted from the total measured diffusion constant to determine
DA. Obtaining this accuracy in a colloidal suspension would be very challenging due
to particle polydispersity, interactions with boundaries, temperature gradients, and other
system-specific complications. We thus conclude that, for typical L values relevant for
biological microswimmers, our results imply that the effect of Brownian motion on DA is
likely negligible for all practical purposes. To observe experimentally the reduction in DA,
one would instead need to study a system of dipolar shakers, which stir up the surrounding
fluid without self-propelling. While this is a somewhat exotic type of system, it could
potentially be realised by anchoring molecular motors or biological microswimmers to
a surface. In a biological setting, the shaker limit furthermore resembles previously
developed models of enzymes anchored to lipid bilayers that induce dipolar flows through
cyclical conformation changes (Hosaka, Komura & Mikhailov 2020).

Our results are qualitatively consistent with the previous theoretical results obtained
by Kasyap et al. (2014), including the non-monotonic behaviour of DA with respect to
D0 at high swimming speed. Their results, however, differ in three important ways. First,
they consider a ‘slender swimmer’ model, where the fluid is forced via a stress applied
along a line representing the swimmer body, rather than by two point forces. While
this model should lead to a dipolar flow in the far field, the near-field differences are
significant, as illustrated in figure 8 of Kasyap et al. (2014). Furthermore, they consider
only the fast-swimming limit where, according to (1.1), DA for dipolar microswimmers is
independent of λ. Finally, they parametrise their model in a qualitatively different way to
us: as discussed above, they adopt a definition of Pe based on vs rather than on the tracer
diffusivity as in (2.3). In this description, vs is furthermore directly coupled to κ , so that
changing Pe simultaneously changes the activity of the bath (via κ) and the swimming
speed vs. These differences make it difficult to compare directly with our results, as
we consider the effects of fluid advection and self-propulsion separately via Pe and L,
respectively.

Thus, even though Brownian motion is unlikely to provide a significant dependence
of DA on R0 for tracers immersed in suspensions of biological microswimmers, there
are several other mechanisms that need to be studied to explain the non-monotonic
dependence observed experimentally (Patteson et al. 2016) and computationally (Dyer &
Ball 2021). First, the effect of tracer entrainment by the near field flows of the swimmer
is strongly dependent on the size ratio between the swimmer and the tracer (Jeanneret
et al. 2016), although we expect this term to be small for micron-sized tracer particles
in E. coli suspensions. Second, the finite size of the tracer will change the equation of
motion (2.1) into the Faxén equation that takes into account the nonlinearity of the flow
field (Kim & Karrila 1991), an effect that was included implicitly in the wavelet Monte
Carlo simulations by Dyer & Ball (2021), and, together with tracer entrainment, is a
significant explanation of their observed R0 dependence of DA. Finally, non-hydrodynamic
interactions such as direct collisions, electrostatic interactions and artefacts due to
container walls are likely to depend in a non-trivial manner on the tracer size for each
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system in question. We thus conclude by noting that significant further experimental and
theoretical work is necessary to disentangle the system-specific properties from the generic
properties of tracer dynamics in microswimmer suspensions.
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Appendix A. Kinetic theory for DA(D0)

In this appendix, we demonstrate the main steps in the derivation of (3.8). The analysis
follows closely a similar derivation presented in Škultéty et al. (2020), albeit with two
major differences. First, in addition to that work, we include the effect of microswimmer
Brownian diffusivity, as discussed in § 3. Second, we consider the case of non-interacting
microswimmers, which simplifies the analysis significantly. Due to the similarity with the
derivation in Škultéty et al. (2020), we here present the key steps of the derivation and
refer the interested reader to that paper for technical details.

The quantity of interest is the fluid velocity autocorrelation function CU(t), formally
defined as

CU(t) = lim
t′→∞

1
V

∫
dr Uα(r, t′) Uα(r, t + t′), (A1)

where V is the volume of the system, and the overbar denotes an average over the stochastic
history, i.e. the history of tumble events, and the long-time limit ensures independence of
the initial state of the system. Here and in the following, the superscript indices denote
Cartesian components of vectors. For a given state of the system, the instantaneous fluid
velocity Uα at a position r and time t is obtained as a superposition of individual velocity
fields generated by the microswimmers

Uα(r, t) =
N∑

i=1

uα
s (r; ri(t), pi(t)). (A2)

Here, ri(t) gives the instantaneous position of particle i, while the unit vector pi(t) gives
its instantaneous orientation; the index i = 1, . . . , N enumerates the particles, where N is
the total number of microswimmers. In the following, we assume us to be given by the
regularised hydrodynamic dipole (3.1).

Time evolution of the suspension comprises spatial motion of the microswimmers
according to (3.7), and their random re-orientation with rate λ, as discussed in § 1.

974 A25-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

85
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0003-4498-3910
https://orcid.org/0000-0003-4498-3910
https://orcid.org/0000-0002-7543-5549
https://orcid.org/0000-0002-7543-5549
https://doi.org/10.1017/jfm.2023.850


H. Nordanger, A. Morozov and J. Stenhammar

Alternatively, this dynamics can be described by the master equation

∂tFN +
N∑

i=1

(vspα
i ∇α

i − D0 ∇2
i )FN = −NλFN + λ

4π

N∑
i=1

∫
dpi FN, (A3)

where FN = FN(r1, . . . , rN, p1, . . . , pN, t) is the N-particle probability distribution
function. Here, ∇i denotes spatial derivatives with respect to the coordinates of particle i.
As shown in Škultéty et al. (2020), the same dynamics can be conveniently encoded by
the equation

∂th + vspα ∇αh − D0 ∇2h + λh − λ

4π

∫
dp h = χ(r, p, t), (A4)

where h = h(r, p, t) is an auxiliary field related to the Klimontovich correlation function
(Klimontovich & Silin 1962), and χ is a noise term with the properties

〈χ(r, p, t)〉 = 0, (A5)

〈χ(r, p, t) χ(r′, p′, t′)〉 = n
4π

δ(t − t′)
[

2λδ(r − r′)
(

δ(p − p′) − 1
4π

)

− D0δ(p − p′)(∇2 + ∇′2)δ(r − r′)
]

. (A6)

The advantage of this representation lies in its direct relation to the phase-space density
correlation function (Klimontovich & Silin 1962), which allows us to express the fluid
velocity autocorrelation function as

CU(t) = lim
t′→∞

1
V

∫
dr

∫
dr′ dr′′ dp′ dp′′ uα

s (r; r′, p′) uα
s (r; r′′, p′′)

× 〈h(r′, p′, t) h(r′′, p′′, t + t′)〉χ , (A7)

where the angle brackets denote the average of the (fictitious) noise χ (see Škultéty et al.
(2020) for details). The linear equation (A4) is solved by introducing the Fourier–Laplace
transform ĥ of the auxiliary field h:

ĥ(k, p, s) =
∫ ∞

0
dt e−st

∫
dr eik·r h(r, p, t), (A8)

which yields

ĥ(k, p, s) = χ̂ (k, p, s)
σ (k, p, s)

+ λ

4π σ(k, p, s)

∫
dp′ χ̂ (k, p′, s)

σ (k, p′, s)

1 − λ

4π

∫
dp′

σ(k, p′, s)

. (A9)

Here, σ(k, p, s) = s + λ+ D0k2 + ivs(k · p), χ̂ (k, p, s) is the Fourier–Laplace transform
of the noise, and we have dropped the initial condition ĥ(k, p, t = 0), which does not
contribute in the large-t limit.
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As demonstrated by Škultéty et al. (2020), only the first term in (A9) contributes to
CU(t). Performing the Fourier–Laplace transform in (A7) and combining it with (A9)
yields

CU(t) = nκ2

16π4 lim
t′→∞

L−1
s1,t′L

−1
s2,t′+t

∫
dk

A2(kε)
k4 (λ+ D0k2)

×
∫

dp (k · p)2
[

1 − (k · p)2

k2

]
1

s1 + s2

× 1
λ+ s1 + D0k2 + ivs(k · p)

1
λ+ s2 + D0k2 − ivs(k · p)

. (A10)

Performing the inverse Laplace transforms, denoted symbolically by L−1, and integrating
over p and the orientation of k, we finally arrive at (3.8) in the main text.
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