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On Classification of Certain C∗-Algebras
George Elliott and Igor Fulman

Abstract. We consider C∗-algebras which are inductive limits of finite direct sums of copies of C([0, 1])⊗O2.
For such algebras, the lattice of closed two-sided ideals is proved to be a complete invariant.

1 The Problem and the Result

We consider the following class of C∗-algebras: inductive limits of finite direct sums of
copies of C([0, 1])⊗ O2, where O2 denotes the Cuntz algebra with two generators. There-
fore, an algebra A from this class can be represented as the limit

A1 → A2 → · · · → A

with each Ai being isomorphic to

ni⊕
j=1

C([0, 1])⊗ O2.

We prove that a complete invariant for this class of C∗-algebras is the lattice of closed
two-sided ideals of the algebra. More precisely, we have proved the following theorem.

Theorem 1 Let A and B be two C∗-algebras as above. If their lattices of closed two-sided
ideals I(A) and I(B) are isomorphic as lattices, then the C∗-algebras A and B are isomorphic.

2 Partial Case Considered by J. Mortensen

Jacob Mortensen [3] has solved the above problem in a particular case. The invariant is the
same, namely the lattice of closed two-sided ideals I(A) of the algebra A. The problem was
solved only for the algebras with totally ordered ideals.

Theorem 2 (Mortensen’s Classification Theorem) (See [3, Theorem 5.1.1]) Let A and B
be two C∗-algebras as above, and assume that I(A) and I(B) are totally ordered. If the lattices
I(B) and I(A) are isomorphic, then the algebras A and B are isomorphic.

Sketch of Mortensen’s Proof Suppose A and B are two algebras as above, and assume that
I(A) ∼= I(B).

Received by the editors August 20, 1998; revised January 21, 1999.
AMS subject classification: 46L05, 46L35.
c©Canadian Mathematical Society 2000.

320

https://doi.org/10.4153/CMB-2000-039-4 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2000-039-4


On Classification of Certain C∗-Algebras 321

Main “tool”: for a homomorphism of C∗-algebras ϕ : C → D one can construct a map
ϕ̂ : I(D)→ I(C), namely: for each I ∈ I(D), one puts ϕ̂(I) ≡ ϕ−1(I).

(Remark: the map ϕ̂ is not in general a homomorphism of lattices, it is only infimum-
preserving.)

Then, one obtains the following diagram:

I(A1) ←−−−− I(A2) ←−−−− · · · ←−−−− I(A)��
I(B1) ←−−−− I(B2) ←−−−− · · · ←−−−− I(B)

where the horizontal arrows come from the construction of A and B, and the vertical arrow
represents the given isomorphism of lattices.

Mortensen completes this diagram as follows:

I(A1) ←−−−− I(A2) ←−−−− · · · ←−−−− I(A)�
�

��
I(B1) ←−−−− I(B2) ←−−−− · · · ←−−−− I(B)

to get an approximately commuting diagram (after passing to a subsequence and renum-
bering). In this process, he strongly relays on the condition of total ordering of I(A) and
I(B).

Then, he uses his existence and uniqueness theorems to “lift” each map of the type
I(D) → I(C) to the corresponding C∗-algebra homomorphism C → D. The whole dia-
gram above can be lifted to the corresponding diagram for C∗-algebras:

A1 −−−−→ A2 −−−−→ · · · −−−−→ A�
�

B1 −−−−→ B2 −−−−→ · · · −−−−→ B

Mortensen manages to do this in such a way that the resulting diagram is the approx-
imate intertwining in the sense of Elliott [2]. Therefore, there exists an isomorphism ρ
between the limit C∗-algebras A and B completing the above diagram:

A1 −−−−→ A2 −−−−→ · · · −−−−→ A�
�

��ρ
B! −−−−→ B2 −−−−→ · · · −−−−→ B

Finally, one can prove that the map ρ̂ : I(B)→ I(A) coming from ρ as above coincides with
the given map.

3 General Case

Our goal in this section is to prove Theorem 1 which generalizes Mortensen’s Theorem 2.

Remark We don’t assume anymore that I(A) and I(B) are totally ordered.
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3.1 New “Tool”

To eliminate the condition of total ordering in the Mortensen’s setting, we add another
“tool”. For a C∗-algebra homomorphism ϕ : C → D we consider the map between the
lattices of ideals ϕ̌ : I(C)→ I(D) acting in forward direction (while ϕ̂ is acting in backward
direction). The map ϕ̌ is defined naturally: for each I ∈ I(C), ϕ̌(I) is the ideal in I(D)
generated by the image ϕ(I).

Remarks 1. The map ϕ̌ is supremum-preserving.
2. The maps ϕ̂ and ϕ̌ are not (in general) inverses of each other, but they determine

each other by simple formulas. Namely, for I ∈ I(C):

ϕ̌(I) = inf{ J ∈ I(D) | I ⊆ ϕ̂( J)}.

Analogously, for J ∈ I(D):

ϕ̂( J) = sup{I ∈ I(C) | ϕ̌(I) ⊆ J}.

Also, the connection between ϕ̂ and ϕ̌ can be expressed in the following formula: for I ∈
I(C), J ∈ I(D):

I ⊆ ϕ̂( J) ⇐⇒ ϕ̌(I) ⊆ J

3. Mortensen gives the intrinsic description of the maps ϕ̂: these are the infimum-
preserving maps from I(D) to I(C) which are continuous in the Hausdorff metric on sub-
sets of [0, 1]. We don’t know such an intrinsic definition for the maps ϕ̌.

Suppose that A and B are as above. We use the following notation: ϕi j denotes the
(given) homomorphism between the finite stage algebras Ai and A j , ϕi denotes the homo-
morphism from Ai to the limit algebra A, ψi j and ψi have the same meaning for Bi and
B.

Assume that there is a lattice isomorphismΨ : I(A)→ I(B). From these data we get the
following diagram for the lattices:

I(A1) −−−−→ I(A2) −−−−→ · · · −−−−→ I(A)��Ψ
I(B1) −−−−→ I(B2) −−−−→ · · · −−−−→ I(B)

(1)

where again the horizontal arrows come from the structure of A and B, while the vertical
arrow represents the given isomorphism.

3.2 New Metrics on the Lattices I(An), I(A), I(Bm), I(B)

We choose the new metrics as follows. Find a countable dense set Dn = {dn,1, dn,2, . . . } in
the unit ball of each algebra An, so that the union D of images of all Dn’s in A is dense in
the unit ball of A.

Let l : N × N → N be the function of “counting by diagonals”, defined as follows:
l(n,m) = (n + m− 1)(n + m− 2)/2 + n.
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For I, J ∈ I(A) and d ∈ D let ‖d‖I = ‖d + I‖ in A/I. Let Dd(I, J) = | ‖d‖I − ‖d‖ J|.
Finally, let D(X,Y ) =

∑
n,m Ddn,m (I, J) · 2−l(n,m).

Analogously, for I, J ∈ I(Ak) and d ∈ Dk let ‖I‖d = ‖d + I‖ in A/I and Dd(I, J) =
| ‖I‖d − ‖ J‖d|. Then, let D(X,Y ) =

∑
n≤k, all m Ddn,m (I, J) · 2−l(n,m). Here, the elements

from D(n) with n < k are identified with their images in Ak.
We choose the metrics for I(Bn) and I(B) in an analogous way.

3.3 Building a “Forwards” Intertwining Map

We will complete the diagram (1) to get the following intertwining diagram:

I(A1) −−−−→ I(A2) −−−−→ · · · −−−−→ I(A)�
�

��
I(B1) −−−−→ I(B2) −−−−→ · · · −−−−→ I(B)

where the intertwining maps are being built inductively in a special way.
For simplicity we will always assume that all “finite stage” algebras Ai and Bi are isomor-

phic to C([0, 1],O2).
We begin with building a single intertwining map.
For a given finite stage Ai and a given positive number δ we will choose a certain finite

subset F ⊂ I(Ai) as follows. Elements of F correspond to the open intervals in the spec-
trum, such that the union of all the intervals is the whole segment [0, 1], every interval has
the length of δ, every interval is contained in the union of its neighbors, and the length of
the intersection of any two neighboring intervals is at most 2δ/3.

Elements of F has a natural order, we will define them by f1, f2, . . . , fk.
It follows that every interval is contained in a compact set (denoted by Ki) which is

contained in the union of its neighbors.

Proposition 3 Let F be a finite subset in I(An) as above and ε be a positive number. Let G
be another finite set in I(Bm0 ) (see the diagram below).

There exist m > m0 and a map Φ : F → I(Bm) satisfying the following properties:

1. In the the following diagram

I(An)
ϕ̌n−−−−→ I(A)

Φ

�
��Ψ

I(Bm0 )
ψ̌m0 ,m−−−−→ I(Bm)

ψ̌m−−−−→ I(B)

the square is commutative on elements from F up to ε;
2. for every i ≤ k, there exists a compact set Mi such that

Φ( fi) ⊂ Mi ⊂ sup{Φ( fi−1),Φ( fi+1)}

where the ideals are identified with the corresponding open subsets of [0, 1];
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3. for every f ∈ F and every g ∈ G such thatΨ◦ ϕ̌n( f ) ⊆ ψ̌m0 (g) one has: Φ( f ) ⊆ ψ̌m0,m(g)
(i.e., if the image of f at infinity is contained in the image of g, then the same inclusion holds
at the m-th stage).

Proof We will construct the images of the elements from F by several successive “adjust-
ments”.

One may assume that G consists of a single element g. To satisfy condition (3.) it’s
enough to construct the image of f within the image of g. To satisfy also condition (1.), it’s
enough to choose m sufficiently large, so that for all f ∈ F the distance between ψ̌m ◦ ψ̂m ◦
Ψ ◦ ϕ̌n( f ) and ϕ̌n( f ) is smaller than ε/2, and the distance between ψ̂m ◦ Ψ ◦ ϕ̌n( f ) and
ψ̂m ◦Ψ ◦ ϕ̌n( f )∩ ψ̌m0,m(g) is also smaller than ε/2. So, the “first” approximation forΨ( f )
will be ψ̂m ◦Ψ ◦ ϕ̌n( f )∩ ψ̌m0,m(g). All successive approximations will be made within it, to
preserve condition (3.).

Now we will choose the images of the elements of F to satisfy condition (2.). Here
and further ‖x‖I stands for the norm of x + I in A/I, as before. For each i, let xi be a
positive element in sup{ fi−1, fi+1} and ai be a positive number such that Ki = {I ∈ I(An) |
‖x‖I ≥ ai}. (Such xi and ai evidently exist.) Let x ′i = ϕn(xi). Let K ′i be the subset
of the primitive spectrum of A defined by K ′i = {I ∈ Prim A | ‖x ′i ‖I ≥ ai}. By [1,
3.3.7], K ′i is compact in the Jacobson topology. Moreover, one checks immediately that
ϕ̌m( fi) ⊂ K ′i ⊂ sup{ϕ̌m( fi−1), ϕ̌m( fi+1)}. (Here again the ideals are identified with the
corresponding open subsets in the spectrum of A.)

The lattice isomorphism Ψ is a homeomorphism on the level of the primitive spectra
with the Jacobson topology. Therefore, the images of all K ′i under Ψ are also compact.
Moreover, as the function I �→ ‖x‖I is lower semi-continuous (see [1, 3.3.2]), every com-
pact set is contained in a compact set of the above type, i.e., there exist positive elements
z ′i ∈ sup{Ψ ◦ ϕ̌m( fi−1),Ψ ◦ ϕ̌m( fi+1)} and positive numbers bi such that each Ψ(K ′i ) is
contained in L ′i = {I ∈ Prim B | ‖z ′i ‖I ≥ bi}. One may assume that all z ′i are the images of
some elements of some finite stage algebra Bm. (Denote these latter elements by zi .) More-
over, one may assume that each zi belongs to the respective “first approximation” for the
image of fi .

Let gi be a continuous function such that gi(λ) = 0 if λ ≥ bi/2 and gi(λ) > 0 if λ >
bi/2. Let yi = gi(zi) and y ′i = ψm(yi). (Of course y ′i = gi(z ′i )). The ideal in Bm generated
by yi (denote this ideal by Yi) corresponds to the open set {I ∈ Prim Bm | ‖zi‖I > bi/2}.
Let Y ′i = ψ̌m(Y ). The ideal Y ′i is generated by y ′i . One can also check that Y ′i corresponds
to the open set {I ∈ Prim B | ‖z ′i ‖I > bi/2}. Hence, Y ′i containsΨ ◦ ϕ̌n( fi).

Therefore, each z ′i is contained in the ideal generated by y ′i−1 and y ′i+1. Hence, by choos-
ing m large enough, one can achieve that each zi is approximately contained in the ideal
generated by yi−1 and yi+1, and the discrepancy is less than the smallest of the numbers
bi/4. Then, for each zi there exists an approximation z̃i which belongs to the ideal gener-
ated by yi−1 and yi+1.

Let g̃i be a continuous function such that g̃i(λ) = 0 if λ ≥ bi/4 and gi(λ) > 0 if
λ > bi/4. Let ỹi = g̃i(z̃i) and ỹ ′i = ψm(ỹi). (Then again ỹ ′i = g̃i(z̃ ′i ).) The ideal generated
by yi is contained in the ideal generated by ỹi . (Denote the latter ideal by Ỹi .) It follows that
each z̃i is contained in the ideal generated by ỹi−1 and ỹi+1. Now, for each i we defineΦ( fi)
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to be
(
ψ̂m ◦Ψ ◦ ϕ̌n( fi)

)
∩ Ỹi . Then condition (2.) is satisfied, with Mi defined as follows:

Mi = {I ∈ I(Bm) | ‖z̃i‖I ≥ bi/4}

Corollary 4 There exists a map Φ̃ : F → I(Bm) satisfying all the conditions for Φ in Propo-
sition 3, and in addition such that all the open subsets corresponding to all Φ̃( fi) satisfy the
following conditions:

1. every such subset is a union of a finite number of intervals;
2. endpoints of different subsets don’t coincide.

Proof Every open set corresponding to Φ(Fi) is the union of countably many intervals.
One can choose finitely many of them whose union still covers the compact set Mi . More-
over, one can decrease some of the intervals if necessary to make their endpoints different.
Take the ideal obtained this way for Φ̃( fi). If the approximations made are close enough,
the diagram (3) with Φ̃ instead of Φ is still approximately commutative.

3.4 Building the Whole “Forwards” Intertwining Diagram

Starting with ε = 1/2 we get F1 ⊂ I(A1), as before. Then we choose Bm as in Lemma 3 and
renumber it as B1. (On this stage, we take G = ∅.)

Then we choose a finite set (denote it by G1) in I(B1) in the same way as F1, but in
addition so that for every I ∈ F1, the ideal Φ1(I) is the supremum of some elements of G1.

Then we apply the same procedure to I(B1) with ε = 1/4. Now we take F1 for the set G
in Proposition 3. We get the following diagram:

I(A1) −−−−→ I(A2) −−−−→ I(A)�
��

I(B1) −−−−−−−−−−−−−−−→ I(B)

(2)

In this diagram, the “horizontal” map I(A1)→ I(A2)→ I(A) is approximately equal to the
map I(A1) → I(B1) → I(B) → I(A), which is approximately equal to the map I(A1) →
I(B1) → I(A2) → I(A). Therefore, the map I(A1) → I(A2) → I(A) is approximatively
equal to the map I(A1) → I(B1) → I(A2) → I(A). Also, the image of every f ∈ F1 under
the latter map is contained in its image under the former map. By construction of the
metric on I(A) and also because of finite domains of all maps in question, these two maps
are approximately equal on some finite stage, i.e., there exists an integer n such that the
map I(A1)→ I(A2)→ I(An) is approximately equal to I(A1)→ I(B1)→ I(A2)→ I(An),
with the same condition of inclusion. We renumber An as A2.

Lemma 5 The triangle in diagram (2) satisfy the following condition: for every f ∈ F1, the
image of f under the map I(A1) → I(B1) → I(A2) is contained in the image of f under the
map ϕ̌1,2 : I(A1)→ I(A2).
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Proof For f ∈ F1, let its image in I(B1) be the supremum of g1, g2, . . . , gk ∈ I(B1). By
the construction, the images of all g1, g2, . . . , gk underΨ−1 ◦ ψ̌1 are contained in ϕ̌1( f ). By
Proposition 3, their images under the map I(B1)→ I(A2) are contained in ϕ̌1,2( f ). But the
image of f under the map I(A1)→ I(B1)→ I(A2) is their supremum.

This procedure can be repeated with ε’s summing up to a finite sum, to get the following
intertwining diagram:

I(A1) −−−−→ I(A2) −−−−→ · · · −−−−→ I(A)�
�

��
I(B1) −−−−→ I(B2) −−−−→ · · · −−−−→ I(B)

(3)

3.5 Building a Single “Backwards” Map

Let C,D ∈ (An)∞n=1 ∪ (Bn)∞n=1. Through this Subsection, we will identify ideals in C or D
with the corresponding open subsets of [0, 1].

Let ε > 0, and let F ⊂ I(C) be a finite subset as chosen above. This set has a natural
order; let F = { fi}k

i=1. Let Φ : F → I(D) be an arbitrary map.
We will build the corresponding “backwards” everywhere defined map Ψ : I(D) →

I(C). Everywhere we identify the ideals with the corresponding open sets—their open sup-
ports.

Elements from the image Φ(F) correspond to open subsets of [0, 1]. By the conditions
above, these open sets consist of finite number of open intervals with different endpoints.
These intervals break the whole segment [0, 1] into the disjoint union of a finite number
of intervals which may be open or closed or half-open. Denote the set of these intervals by
R. For each interval r ∈ R, denote the middle point of r by mr . Let P be the set of all these
middle points.

It’s enough to defineΨ only on maximal ideals corresponding to the open subsets of the
type St = [0, t) ∪ (t, 1] and make sure it is continuous in the Hausdorff metric. (See [3,
Proof of Theorem 4.3.1].)

For every p ∈ P, we putΨ(Sp) to be the union of those elements of F whose images do
not contain the point p. Then,Ψ(Sp) is a certain open set.

Moreover, for neighboring points p, q ∈ P, the images Ψ(Sp) and Ψ(Sq) are at most ε
apart in the Hausdorff metric in I(C). Indeed, these two images are different by exactly
one small interval from F, say fi . This interval can bring to a large jump with respect to
the Hausdorff metric only in one case: namely, if the interval fi covers a gap. In any other
case, the jump would be small. But if this case happens, it means that both Ψ(Sp) and
Ψ(Sq) don’t contain at least one of the neighbors of fi . (Because if they contained both
of them, the gap wouldn’t exist.) Suppose these sets don’t contain fi−1. Then, they must
contain fi−2 (unless we are doing near the left border) because otherwise the gap would
be too large to be covered by fi . But this means that after adding (or before subtracting)
fi , the union of the intervals would contain both fi−2 and fi but not contain fi−1. This is
a contradiction: if the images of both fi−2 and fi don’t cover a certain point (p or q), the
image of fi−1 shouldn’t do either.
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Finally, we will define Ψ on all remaining St ’s by interpolation, making it continuous.
We will perform the interpolation as follows. Let p, q ∈ P be two neighboring points,
corresponding to the neighboring intervals p ′, q ′ ∈ R. Let a be the common endpoint of
p ′ and q ′. Assume that a ∈ p ′, thatΨ(Sq) = Ψ(Sp)∪(b, d), and thatΨ(Sp)∩(b, d) = (b, c).
(All other cases are considered analogously.) For all t ∈ (p, a] we putΨ(St ) ≡ Ψ(Sp), and
for t ∈ (a, q) we define Ψ(St ) ≡ Ψ(Sp) ∪

(
b, c + (d − c)(t − a)/(q − a)

)
. One checks

that this is a continuous interpolation such that the resulting backwards map Ψ satisfies
the following property: for every f ∈ F: Φ( f ) = inf{I | I ⊂ Ψ( f )}. In other words, the
“forwards” map I(C) → I(D) derived from Ψ as described in Subsection 3.1 extends the
map Φ.

3.6 Building the Whole “Backwards” Intertwining Diagram

Proposition 6 Let C,D ∈ (An)∞n=1∪(Bn)∞n=1. Suppose that the lattice I(C) is equipped with
the Hausdorff metric, while the lattice I(D) is equipped with an arbitrary metric, in which
it is a compact space. Let ε > 0. Let F be the finite subset of I(C) representing covering of
[0, 1] by segments of length ε. Let Ψ1 and Ψ2 be two continuous infimum-preserving maps
from I(D) to I(C). Let δ be the modulus of uniform continuity of the map Ψ1 corresponding
to ε/2. LetΘ1 andΘ2 be the maps from I(C) to I(D) corresponding toΨ1 andΨ2 respectively
as in Subsection 3.1. Suppose that for every f ∈ F: Θ2( f ) ⊆ Θ1( f ), and the distance between
Θ2( f ) and Θ1( f ) is not more than δ. Then for every I ∈ I(D), the distance between Ψ1(I)
andΨ2(I) is not more than 2ε.

Proof Let I ∈ I(D). Let J = Ψ1(I) and K = Ψ2(I). Let FJ = { f ∈ F | f � J} and
FK = { f ∈ F | f � K}. If FJ = FK then by definition of the Hausdorff metric, the distance
between J and K is not more than ε. By the condition of inclusion above, we always have
that FK ⊆ FJ . Indeed, if an interval f isn’t contained in K, thenΘ2( f ) isn’t contained in I,
thereforeΘ1( f ) (which is larger) isn’t contained in I either, so f isn’t contained in J.

Now suppose that f ∈ FJ \ FK . If for each such f the set FK includes at least one of
the neighbors of f , then the distance between J and K is not more than 2ε. So, we can
assume that FK includes neither f nor its neighbors. Let g be the supremum of f and its
neighbor(s). Then Θ2(g) ⊆ I. Let L = Θ1(g) and M = Θ2(g). Then the distance in I(D)
between L and M is not more than δ. Therefore, the distance in I(C) between Ψ1(L) and
Ψ1(M) should be no more than ε. But M ⊆ I, thereforeΨ1(M) ⊆ Ψ1(I) = J. In particular,
f isn’t contained in Ψ1(M). On the other side, g is contained in Ψ1

(
Θ1(g)

)
= Ψ1(L).

Therefore, the distance in Hausdorff metric between Ψ1(L) and Ψ1(M) is at least 2ε/3.
This is a contradiction.

Proposition 7 For every ε > 0 there exists δ > 0 such that for every n and every two ideals
I, J ∈ I(An) lying at the distance less than δ from each other in terms of the metric defined
in Subsection 3.2, the Hausdorff distance between the preimages of I and J in I(A1) is less
than ε. (In other words, all the maps I(An) → I(A1) have the common modulus of uniform
continuity.)

Proof First, suppose that both I(An) and I(A1) are equipped with the metric defined in
Subsection 3.2. Then the map I(An) → I(A1) mapping every ideal to its preimage is a
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contraction. Indeed, for each I ∈ I(An), let J be the preimage of I in I(A1). The homo-
morphism A1/ J → An/I (which is induced from the given homomorphism A1 → An)
is one-to-one, therefore isometric. Therefore for every d ∈ A1: ‖d‖ J = ‖d‖I . (Here d is
identified with its image in An.) Therefore, the distance between I and J is larger than the
distance between their preimages, as the former contains the same terms as the latter does,
plus some additional terms.

Now, it suffices to let δ be the modulus of uniform continuity of the identity map from
I(A1) with the metrics coming from elements to itself with the Hausdorff metric, corre-
sponding to ε.

Now we will build the “backwards” intertwining diagram analogous to the “forwards”
diagram (3). Letting ε be subsequently equal to 1/2, 1/4, 1/8 etc., we find the correspond-
ing values of δ in accordance with Proposition 7. By passing to an appropriate sub-diagram
in (3), we can achieve that the tolerances of the triangles are not more than these values
of δ. Then, subsequently applying Proposition 6, we obtain the intertwining backwards
diagram like in the Mortensen’s case:

I(A1) ←−−−− I(A2) ←−−−− · · · ←−−−− I(A)�
�

��
I(B1) ←−−−− I(B2) ←−−−− · · · ←−−−− I(B)

Applying Mortensen’s existence and uniqueness theorems to every intertwining map in
the above diagram, we can build the corresponding approximate intertwining of the C∗-
algebras:

A1 −−−−→ A2 −−−−→ · · · −−−−→ A�
�

B! −−−−→ B2 −−−−→ · · · −−−−→ B

This gives the isomorphism ρ : A→ B.

3.7 ρ̌ = Ψ

Proposition 8 The map ρ̌ : I(A)→ I(B) arising from the isomorphism ρ as above coincides
with the given isomorphismΨ.

Proof First, we prove that for I ∈ I(A), ρ̌(I) ⊆ Ψ(I). For this, it’s enough to check that
ρ(I) ⊆ Ψ(I). Let x ∈ I. Then ρ(x) ∈ ρ̌(I).

May suppose that x is the image of some y ∈ An. Moreover, up to arbitrarily small ε,
ρ(x) is the image of the same y. Denoting all the images of the element y in all Am by the
same letter y, and denoting all the preimages of I by the same letter Y , we have:

‖Y‖y = 0

Passing to the images of y and Y in Bm and denoting them again by the same letters
y and Y , we have: ‖Y‖y is arbitrarily small in Bm for sufficiently large m. On the other
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hand, by construction of the intertwining we have: ‖Y‖y → ‖Ψ(I)‖ρ(y) as m → ∞. So,
‖Ψ(I)‖ρ(y) = 0 and ρ(y) ∈ Ψ(I). Therefore, ρ̌(I) ⊆ Ψ(I).

Now we have:

ρ
(
ρ−1(I)

)
= I

ρ
(
ρ̂(I)
)
= I

ρ̌
(
ρ̂(I)
)
= I

So, ρ̌( J) = (ρ̂)−1( J) for J ∈ I(B). In addition, ρ̂−1(I) = ρ(I) = ρ̌(I). Therefore, ρ̂−1(I) ⊆
Ψ(I).

Exchanging the places of A and B we get the same results with ρ−1 instead of ρ andΨ−1

instead ofΨ. Hence, for J ∈ I(B): (ρ̌)−1( J) = ρ̂( J) ⊆ Ψ−1( J).
Therefore, all the four maps: ρ̌, (ρ̌)−1, Ψ, and Ψ−1 preserve inclusions. Let J = Ψ(I),

K = ρ̌(I), L = Ψ−1( J), M = Ψ−1(K), and N = (ρ̌)−1(K). We have:

1. L = Ψ−1
(
Ψ(I)
)
= I and N = (ρ̌)−1

(
ρ̌(I)
)
= I;

2. N = (ρ̌)−1(K) ⊆ Ψ−1(K) = M;
3. M = Ψ−1(K) ⊆ Ψ−1( J) = L.

Therefore, N = M = L = I and hence J = K.

References
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