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1. Introduction. A set of ordered pairs of integers {{au ntt)} is said to 
cover the integers if each integer x satisfies the congruence x = at (mod mt) 
for some i. We may assume that the mt are positive. Trivially {(0, 1)} covers, 
as does {(0, m), (1, m), (2, m), . . . , (m — 1, m)}. In order to arrive at some 
non-trivial problems concerning covers, the following definition is given: A 
finite set of ordered pairs of integers {(a*, mj))f=i, with w^ > 1 and mt ^ m^ 
if i 9^ j , is called a covering class of residues if every integer x satisfies the 
congruence x = at (mod m*) for some i. 

These covering classes of residues were introduced by P. Erdos (2), who 
used them to prove that there is an arithmetic progression of odd numbers 
none of which is expressible as a power of 2 added to a prime. Erdos (6) used 
the fact that {(0, 2), (0, 3), (1, 4), (7, 8), (11, 12), (19, 24)} is a covering 
class of residues. He also noted that {(0, 2), (0, 3), (1, 4), (5, 6), (7, 12)} is a 
covering class of residues. 

Extending the problem, Erdos (3) proposed the following question: Does 
there exist a covering class of residues where mt > n for every n? For n — 2, 
he observed that 

{(0, 3), (0, 4), (0, 5), (1, 6), (6, 8), (3, 10), (5, 12), (11, 15), 

(7, 20), (10, 24), (2, 30), (34, 40), (59, 60), (98, 120)} 

is a covering class of residues (6). J. D. Swift (1) found a covering class of 
residues {{au mi)} such that mt > 3 for all i. All of Swift's m/s were factors 
of 2880. J. Self ridge (5) found a covering class of residues {{aumt)\ with all 
Mi > 7. Erdos has posted a $50.00 reward (3) for settling the general question 
in either way. 

Another question posed by Erdos is: Does there exist a covering class of 
residues with all ra* odd? He has posted a $25.00 reward (3) for the negative 
answer to the question. J. Selfridge (5) posted a $250.00 reward for the positive 
answer to the question (an example required). 

Covering classes of residues will be called essentially different if each pos
sesses a prime modulus not found in the other class and there can be no cover 
formed with the remaining moduli after omitting this prime modulus. 

J. D. Swift (7) established that there were infinitely many essentially 
different covering classes of residues by the following method: If 2|g and 4|g 
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where g is a primitive root modulo an odd prime p, then 

{or1,2-)}£i u ! or1,2n-ip)}i=\ u i (o, 2*-V)} 
is a covering class of residues. 

In this paper we shall (i) exhibit a covering class of residues, { (GJ ,WJ) ) , 

with all Wj > 3 where the mt are factors of 360; (ii) prove that there are 
infinitely many covering classes of residues with all mt > 2 ; (iii) investigate 
a two-dimensional generalization of this problem. 

2. A covering class with all mx > 3. 

THEOREM 1. The following set is a covering class of residues: 

{(0, 4), (0, 5), (3, 6), (2, 8), (1, 9), (1, 10), (5, 12), (8, 15), (13, 18), (7, 20), 

(6, 24), (14, 30), (25, 36), (6, 40), (43, 45), (59, 60), (22, 72), (79, 90), 

(62, 120), (142, 180), (214, 360)}. 

The proof amounts to merely checking the numbers 1 , 2 , . . . , 360 to see 
that they each satisfy at least one of the congruences. The details are left 
for the reader. 

Since 360 X 8 = 2880, the method used to generate this example may be 
more effective than the method Swift used to get his example. 

3. Infinitely many covering classes with all mt > 2. 

THEOREM 2. For an odd prime p > 3, let 

A2 = {(0, 3), (1, 6), (/, 3-2p-2), (3-2"-1 - 1, 3-2")}£i, 

where t is the simultaneous solution of 

x = 1 (mod 3) and x = 2P~2 - 2 (mod 2V~2) ; 

Az= { ( 0 , ^ ) , ( l , 2 ^ ) , ( a „ 2 ^ ) } ^ , 

where anfor n = 2, 3, . . . , p — 3 is the simultaneous solution of 

x s= 2n~1 — 1 (mod 2n) and x = n (mod p), 

and ap-2 is the simultaneous solution of 

x == p - 1 (mod p) and x = 2V~2 - 2 (mod 2P~2) ; 

At = {(bn,2
n3p)}p

nZl, 

where bo is the simultaneous solution of 

x = 2 (mod 3) and x = p — 2 (mod p), 

bi is the simultaneous solution of 

x = 1 (mod 2) and x = p — 1 (mod p), 
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and bni for n = 2, 3, . . . , p — 2, is the simultaneous solution of 

x = 2 (mod 3) , 

x = 2n - 2 (mod2 w ) , 

x = p — 1 — n (mod p). 

Then A\\J A2KJ A%\J A±is a covering class of residues with all mt > 2. 

Proof. I t suffices to prove t h a t if xo fails to satisfy any of the congruences 
of Ai, A2j or Az, it mus t satisfy one of the congruences of A±. II XQ does not 
satisfy one of the congruences of Ai, it is either odd or of the form a-2v~~2 — 2 
for some integer a. If x0 does not satisfy any of the congruences of A2} it is 
even and congruent to 1 or 2 (mod 3) or it is odd and of the form a-3 - 2 P - 3 — 1 
for some integer a. If xo is neither of form Ai or A2j then it mus t be either of 
the form (i) a-2p~2 — 2 and congruent to 2 (mod 3) , since the definition of t 
in A2 precludes the possibility of its being congruent to 1 (mod 3) , or of the 
form (ii) a-3-2p~d — 1. If XQ satisfies none of the congruences of A% or of the 
congruences of A\ or A2) then either (i) x0 = a-2p~2 — 2 is congruent to 2 
(mod 3) and no t congruent to p — 1 or 0 (mod p) or (ii) x0 = a -3 -2P~Z — 1 is 
not congruent to j (mod p), j = 0, 1, 2, . . . , p — 3. In other words, either 

Xo = a-2p~2 - 2 = 5 (mod p) for 5 = 1, 2, . . . , p - 2, 

or 

Xo = a - 3 - 2 p - 3 - 1 = j ( m o d £ ) f o r j = p — 2 or p - 1. 

Now if the la t ter were to hold, then x0 = b{ (mod 2*3^>) for i = 0 or 1. If the 
former were to hold, then x0 = bt (mod 2*3^) for i = 2, 3, . . . , p — 2. Hence 
Xo satisfies a congruence from the set A 4. 

A similar type theorem could be proved t h a t there are infinitely many 
essentially different covering classes of residues with all mt > 3. T h e length of 
the s t a t emen t of the theorem is qui te cumbersome and the proof is qui te long 
al though similar to the proof of Theorem 2. 

4. A g e n e r a l i z a t i o n . Let G be the ring of the Gaussian integers, i.e., 

G = {a\a = a + bi, a, b G Z). 

In G the unique factorization theorem holds and G is a principal ideal ring. 
Therefore congruences can easily be defined as a = /3 (mod 7) if y\a — ($. 
W e define: A set of ordered pairs of Gaussian integers {(ajy jj)} covers G if 
every Gaussian integer /3 satisfies /3 = aj (mod y j) for some j . 

Clearly { ( 0 , 1 ) } , {((>,»)}, { (0 ,1 + i), ( l , l + t ) } , a n d 

{ ( 0 , 1 + * ) , ( 1 , 1 - » ) } 

all cover G. Also {(0, 2) , (i, 2i), (1 , - 2 ) , (1 + i, -2i)} covers G. So in order to 
a d o p t ground rules t h a t are comparable to the definition of covering classes of 
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residues of §1 we eliminate units and associates. This is implemented by the 
following definition: A finite set of ordered pairs of Gaussian integers 
{(«;> 7;)ii=i with \yj\ > 1 such that no two 7/s are associates is called a 
covering class of residues in G if every fi in G satisfies the congruence /? = a;-
(mod 7 ;) for some j . 

THEOREM 3. The set 

{(0, 1 + i), (i, 2), (1, 2 + 2i), (1 + 2i, 4), (0, 2 + i), 

(i, 3 - i), (1 + 2i, 4 + 2i), (1 + 6i, 6 - 2i), (11, 8 + U)} 

is a covering class of residues in G. 

Proof. The only integers that do not satisfy 

x = 0 (mod 1 + i), x = i (mod 2), 

x = 1 (mod 2 + 2i), or x = 1 + 2i (mod 4) 

are Gaussian integers of the form 3 + 45 where ô is a Gaussian integer. Now 
<5 is congruent to 0, 1, 2, 3, or 4 (mod 2 + i) . If d = 0( mod 2 + i), then 
3 + 40 = i (mod 3 - i) since 3 = i (mod 3 - i) and (1 - i) (2 + 2i) = 4 
and Ô = (2 + i ) P so 45 = (2 + 2i) (3 - i)p. Hence 3 - i|3 - i + 45. If 
6 = 1 (mod 2 + i), then 3 + U = 11 (mod 8 + 4i) ; if 0 = 2 (mod 2 + i), 
then 3 + 45 = 1 + 2i (mod 4 + 2i) ; if ô = 3 (mod 2 + i), then 

3 + 45 = 0 (mod 2 + i) ; 

and if ô = 4 (mod 2 + i), then 3 + 4<5 = 1 + Qi (mod 6 - 2i). 

Now the questions that Erdôs asked have generalizations in this system. 
1. Does there exist a covering class of residues in G, {(aj} Y ; ) } , that have 

all 17 |̂ > \/n? 
We have an example for n = 2 which consists of the divisors or 

200 = i(l +i)e(2 + f)2(2 - i)2. 

We shall of course give a reward of $50.00 for a positive or negative answer 
to Question 1. 

2. Does there exist a covering class of residues in G, {(a;-, yj)\, that have 
all y j odd? (I.e., 7j ?* (1 + *)5,.) 

We shall of course give a $25.00 reward for the negative answer to this 
question and a $250.00 reward for the positive answer with example. 

These problems seem to be somewhat harder than in the real case. 
One result without much substance but of some interest is 

THEOREM 4. The set 

{(0, 2 + i), (1, 2 - i), (2, 5), (0, 3), (4, 6 + 3i), 

(8, 6 - 3i), (13, 15), (5, 9), (29, 18 + 9i), (44, 45)} 

covers the real integers and 1 + i is not a factor of y j for any j . 
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The proof is quite simple and we omit it. 
Results analogous to Theorem 2 are the following two theorems: 

THEOREM 5. For p a non-real odd Gaussian prime and N(p) = p a real 
prime let 

A = {((1 + if'1, (1 + »)")}&, B = {(«2(p-1)/2, (1 + i)np)}p
nZl. 

Then A \J B is a covering class of residues in G. 

THEOREM 6. Let p be a real Gaussian prime and 

D = {a + bi\ 0 < a < p - 1, 0 < b < p - 1}. 

Let A' be the A of Theorem 5 with n ranging from 1 to (p2 — 3)/2, and let 

C= {{f>,2<*-»<\ (I + i)jP)}t-oX 

where the dj are from D. Then A' \J C is a covering class of residues in G. 

Proof of Theorem 5. If a 0 in G fails to satisfy one of the congruences of A, 
then |8 = y2(p~1)/2 for some y in G. But for y there is an n G Z such that 
y == n (mod p) with 0 < n < £ — 1; see representation A of (4) for details. 
So /3 - w2<3,-«/2 (mod p) and further 

p = w2(p-1>/2 (mod (1 + ^ ) for all 0 < n < £ - 1. 

Hence j8 = ^2(2?~1)/2 (mod (1 + ^)wp). Therefore each f$ that fails to satisfy one 
of the congruences of A must satisfy one of the congruences of B. 

Proof of Theorem 6. The /3 of G that fail to satisfy one of the congruences 
of A' must be of the form £ = y2(-p2~1)/2 for some y in G. But for each 7 in G 
there is a 5̂  in D such that 7 = 0̂  (mod £) ; see representation B or C of (4) 
for details. So 

0 = <5,-2^2-1)/2 (mod£) 

and further 

0 = 8j 2^~^12 (mod (1 + i)j) for all 0 < j < £2 - 1. 

Hence 

0 = Ô,- 2(p2-1)/2 (mod (1 + 0 ' » . 

So each /3 in G that fails to satisfy a congruence from ^4' must satisfy one of 
the congruences of C. 

Theorem 5 or Theorem 6 shows that there are infinitely many essentially 
different covering classes of residues in G. We do not know whether there are 
infinitely many essentially different covering classes of residues in G with all 
M > V2. 

The author wishes to express his gratitude to Professors J. L. Self ridge and 
S. K. Stein for their remarks concerning the background of this problem. 
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