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SEMIDERIVATIONS AND COMMUTATIVITY IN PRIME RINGS 

BY 

H. E. BELL* AND W. S. MARTINDALE, III 

ABSTRACT. A semiderivation of a ring R is an additive mapping 
f:R —* R together with a function g:R —> R such that f(xy) = 
f(x)g(y) + xf(y) = f(x)y + g(x)f(y) md f(g(x) ) = g(f{x) ) for 
all x, y e R. Motivating examples are derivations and mappings of 
the form x —» x — g(x), g a ring endomorphism. A semiderivation/ 
of R is centralizing on an ideal U if [f(u), u] is central for all u e U. 
For R prime of char. =^2, U a nonzero ideal of R, and 0 # / a 
semiderivation of /? we prove: (1) if / i s centralizing on £/ then either 
R is commutative or / is essentially one of the motivating examples, 
(2) if [/((/), f(U) ] is central then R is commutative. 

In [2] Bergen introduced the notion of a semiderivation of a ring R: 

DEFINITION. An additive mapping f:R -^ Ris a semiderivation if there exists a 
function g:R —» R such that 

(i)/(*>0 = /(*)g(jO + */O0 = f(x)y + g(x)f(y) 
(ii)/(g(jc)) = g ( / ( x ) ) 

/or #// j( j £ i?. 

In case i£ is prime and / ¥= 0 Chang ( [3], Theorem 1) has shown that g must 
necessarily be a ring endomorphism. 

For g = 1 a semiderivation is of course just a derivation. The other main 
motivating examples are of the form f(x) = x — g(x) where g is any ring 
endomorphism of R. (On the other hand a semiderivation is a special case of 
what Jacobson ([5], p. 170) refers to as an (sl9 s2)-derivation, being simulta
neously a (g, l)-derivation and a (1, g)-derivation). 

If U is an ideal of R then a semiderivation / of R is said to be centralizing on 
U if [/(w), u] lies in the center Z of R for all w G U. 

In [3] Chang extended a result of Posner [7] as follows. 

THEOREM 9, [3]. Let R be a prime ring of characteristic ¥=2, and let f be a 
nonzero semiderivation of R which is centralizing on R and whose associated 
endomorphism g is surjective. Then R is commutative. 
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In the same paper Chang also generalized a result of Herstein [4]: 

THEOREM 6, [4]. Let R be a prime ring of characteristic ¥=2, and let f be a 
nonzero semiderivation of R such that [f(R), f(R) ] lies in the center Z of R. Then 
R is commutative. 

Our aim in this paper is to generalize these results of Chang in two directions. 
First of all we will only assume that the commutativity conditions are imposed 
on an ideal of R rather than on R itself. As we shall see this is not as routine a 
generalization as is often the case for ordinary derivations. Secondly we will 
treat the case of general semiderivations without the restriction that g be 
surjective. Specifically we establish two results in both of which we let R be a 
prime ring of characteristic ¥= 2, / a nonzero semiderivation of R, and U a non
zero ideal of R. 

THEOREM 1. Iff is centralizing on U then either (a) R is commutative or (b) g is 
not one-one, g(U) is central, and there exists an element X in the extended centroid 
such that f(x) = X(x — g(x) ) for all x e R. 

THEOREM 2. If [f(U), f(U) ] lies in the center, then R is commutative. 

We begin by citing two recent results which will prove useful in our 
considerations. The first is a special case of a theorem due to Lee and Lee ( [6], 
Theorem 2): 

THEOREM A. If R is prime of characteristic ¥=2, U ¥= 0 an ideal of R, and 
a, b e R such that [a, [b, U]] c Z, then either a e Z or b e Z. 

As a well-known consequence we have 

COROLLARY A. If [a, U] c Z, then a e Z. 

The second result is a special case of a theorem recently proved by us ( [1], 
Theorem 2). 

THEOREM B. IfR is prime, U ¥= 0 an ideal ofR, g an endomorphism ofR which 
is one-one on U and centralizing on U, then R is commutative. 

Throughout this paper R will be a prime ring of characteristic ¥=2, Z will 
denote the center of R, F will denote the field of fractions of Z (if Z is nonzero), 
and C will denote the extended centroid of R. We shall on occasion make tacit 
use of the fact that R can be embedded in its central closure RC. The main 
appearance of the extended centroid will be in Lemma 4 where use is made of 
the basic fact that if <}>: U—» R is an (R, i^-bimodule map of an ideal U ¥= 0 then 
there exists X G C such that Xu = <j>(u) for all u G U. 

Furthermore we shall assume that R is endowed with a semiderivation / (with 
associated endomorphism g). Before imposing any commutativity conditions we 
begin with several lemmas of a general nature. 
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LEMMA I. Iff ¥= 0 and U ¥* 0 is an ideal of R, then f ¥= 0 on U. 

PROOF. Suppose f(U) = 0. Then for u G U, X G R we have 

0 = f(ux) = f(u)g(x) + uf(x) = uf(x\ 

forcing/(x) = 0 by the primeness of R. 

LEMMA 2. Iff ¥* 0, U ¥= 0 is an ideal of R, and a G R such that af(U) = 0, 
then a = 0. 

PROOF. By Lemma 1 we may pick u G U such that f(u) ¥= 0. For v G U we 
see that 

0 = afiyu) = a(f(v)g(u) + v/(«) ) = AV/(I/) = 0, 

whence a = 0 by the primeness of i£. 

LEMMA 3.Iff=£0andU¥=0is an ideal of R, then f\U) ¥= 0. 

PROOF. Suppose f\U) = 0. Then for w, v G U we exploit the definition off 
in different ways to obtain 

(1) 0 = f\uv) = / ( / ( « > + g(«)/(v) ) -

= f\u> + g(f(u) )/(v) + / (g(«) / (v) ) 

(2) 0 = /2(«v) = / ( / („ )v + g(«)/(v) ) 

= / 2(")g(v) + / («) / (v) + f(g(u)f(v) ). 

Subtraction of (2) from (1) yields 

(3) <*</(«) ) - / ( « ) ) / (v ) = 0, «, v G C/. 

An application of Lemma 2 to (3) then says that gf(u) = f(u) for all u G U. 
Again for w, v G (7 we may also write 

0 = / 2 ( „ v ) = / ( / ( « > + g(«) / (v)) 

= / 2 (")g(v) + / («) / (v) + / (g(«) )g(/(v) ) + g(«)/2(v) 

whence we have 

(4) f(u)f(v) + / (g (n ) )g ( / (v ) ) = 0, tt> v e £/. 

Since f(g(u) ) = g(f(u) ) = /(w) for all w G L̂  and characteristic R ¥= 2 WQ 
conclude from (4) that f(u)f(v) = 0 for all u, v G £/. Another application 
of Lemma 2 asserts that f(u) = 0 for all u G £/, which then contradicts 
Lemma 1. 

Some remarks are in order before we proceed to the next lemma. At first 
glance it may well seem that some difficulties could arise from the fact that g(R) 
is just a subring of R and accordingly may not interact well with an ideal U 
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of R. Fortunately, however, it turns out that the "worst" case, namely g(R) n 
U = 0, actually is easily handled by use of the extended centroid C. 

LEMMA 4. If there exists a nonzero ideal UofRfor which U n g(R) = 0, then 
there exists X e C such that f(x) = X(x — g(x)) for all x e R. 

PROOF. We let Wbe the ideal HxŒR U(x - g(x))U and note that W ¥* 0 
(otherwise g would be the identity mapping in contradiction to U n g(R) = 0). 
We define a mapping <j>:W —> R according to the rule: 

2 ut{xt - g(xt) )v, -> 2 UjfixtX 

where ui9 vt e U and JC, e R. Of course our main problem is to prove that <$> 
is well-defined, since once we have done this it is immediate that <j> is an 
(R, i?)-bimodule map of Winto R. To this end we suppose that 

(5) 2 «,•(*,--*(*,•)>,- = 0 

and attempt to show that 2 uif{xi)vi = 0. Applying/ to (5) we see that 

0 = / 2 (*W; - u^x^) 

= 2 [uJiXiV;) + AuJgiXiVi) - /(ugiXi) )g(vz) - ugixJfiVi) ] 

= 2 K / ( * > , + u^x^fiyi) + /(«i)g(^)g(v/) 

" M)g(*,)g(v;) - g(";)/(g(*,))g(v,) - tigM/ty)] 

= 2 ^ h - 2 g(«/)g(/(xI.))g(vI-) 

= 2 ujixjvi - g (2 Uifix^Vj). 

Therefore 

2 «/(*,>,. = g(2 */(*,>,-) G u n g(*) = o, 

whence 2 uif(xi)vi = 0 and <J> is well-defined. By the nature of the extended 
centroid C it follows that there exists À G C such that \w = <Hw ) for all w E W. 
Now, regarding i£ as a subring of the central closure RC, we have for all 
u, v E U and JC G R 

uX(x - g(x))v = X(u(x - g(x))v) = <t>(u(x - g(x))v) = uf(x)v. 

From the primeness of R we thus see tha t / (x) = X(x — g(x) ) for all x e R. 
Another situation in which / is close to being of the form x — g(x) is 

given by 

LEMMA 5. If g is not one-one and V ¥^ 0 is an ideal of R contained in ker g 
then 

(a) / ( V) is a nonzero ideal of R, 
(b) there exists X e C such that f(x) = X(x ~ g(x)) for all x e R. 
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PROOF. For v G V and r G R we see immediately from 

f(vr) = f(v)r + g(v)f(r) = f(v)r 

and 

f(rv) = r/(v) + /(/-)g(v) = r/(v) 

that / (K) is an ideal of R. Furthermore / ( V) ¥= 0 in view of Lemma 1 and so (a) 
is proved. The argument establishing (a) also shows that fis an (R, JR)-bimodule 
map of V into R. As we know this gives rise to an element X G C such that 
f(v) = Xv for all v G V. For v G V and r G i ^ w e then see that 

Xvr = f(vr) = vf(r) + f(v)g(r) = v/(r) 4- Avg(r), 

in other words, v(f(r) + g(r) — Àr) = 0. The primeness of R then forces f(r) 
= X(r - g(r) ) for all r G R. 

Before coming to our main theorems we treat one case in which an especially 
strong commutativity condition is imposed. 

LEMMA 6. Iff ¥= 0, g is one-one, and there exists a nonzero ideal U such that 
f(U) c Z, then R is commutative. 

PROOF. For u G U and r G i i w e first remark from / ( [u, r] ) = [/(w), r] + 
[g(w), /(/•) ] that [g(w), f(r) ] G Z (here [x, y] denotes the Lie bracket xy — yx). 
Replacing r by g(r) and making use of f(g(r) ) = g(f(r) ) we then see that 
g([" , f(r)]) = [g(w), g ( / ( r ) ) ] G Z and in particular g([u, f(r)]) lies 
in the center of g(R). Since g is one-one it follows that [U, f(R) ] c Z, whence 
f(R) a Z by Corollary A. If / ( Z ) = 0 then f2{U) c / ( Z ) = 0 which con
tradicts Lemma 3. Therefore we may choose z G. Z such that f(z) ¥= 0. Now 
from f(zr) = f(z)g(r) + zf(r) we conclude that f(z)g(R) c Z. Since 0 *= 
/ ( z ) G Z it follows that g(#) c Z and consequently that R is commutative in 
view of g being one-one. 

We are now ready to impose the condition that / is centralizing on an ideal U 
(i.e., [w, f(u) ] G Z for all u G U) and to prove our first main result. 

THEOREM 1. Let R be a prime ring of characteristic ¥=2, let f be a nonzero semi-
derivation of R (with associated endomorphism g), and let U be a nonzero ideal 
of R such that f is centralizing on U. Then the following hold: 

(a) If R is commutative, then either f is a derivation of R or there exists an 
element X in the field of fractions F of R such that f(x) = X(x — g(x)) for all 
x G R. 

(b) IfR is not commutative, then ker g ¥= 0, g(U) c Z and there exists X G C 
such that f(x) = X(x — g(x) ) for all x G R. Moreover, iff(g(U) ) ¥= 0, then 
g(R) c Z, andX G F. 
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PROOF. TO prove (a) we may suppose that g ¥= 1, since g = 1 simply means 
t h a t / i s a derivation. Accordingly we may choose a e R such that a — g(a) ¥= 
0 and set X = f(a) (a - g(a) ) ~ l e F. From 

/ (**) = Rx)a + g(x)/( f l) = f(x)g(a) + x/(a) 

it follows that / ( X ) ( Û ~ g(fl) ) = f(a)(x - g(x) ), i.e., / ( * ) = X(x - g(x) ) for 
all JC e i? and we are done. 

To prove (b) we start with the given condition 

(6) [u, f(u) ] e Z, u e U. 

Linearization of (6) produces 

(7) [a,f(u)] + [u,f(a)] e Z, a, u e U 

and replacement of w by [a, u] in (7) yields 

(8) la,f([a,u])] + [[a,u],f(a)]eZ, a, u e U. 

Expanding / ( [a, u]) in (8) we then have 

(9) [a, [f(a\ u] ] + [a, [g(a\ f(u) ]] + [[«, u], f(a) ] e Z, 

and applying the Jacobi identity to the first summand in (9) gives us 

(10) [ [a, f(a) ], u] + [f(a\ [a, u] ] + [a, [g(a\ f(u) ] ] 

+ {[a,u],f(a)] G Z. 

The first summand in (10) is 0 by our hypothesis, the second and fourth 
summands cancel, and so we are left with 

(11) [a, [g{a),/(«)] ] e Z, a, u G [/. 

From 0 = / ( [a, a] ) = \f{a), a] + [g(a), f(a) ] we see that 

(12) [g(a),f(a)} G Z, a G U, 

and we can linearize (12) to obtain 

(13) [g(a), / ( « ) ] + [g(u\ f(a) ] G Z, u, a G U. 

In view of (13) we can now rewrite (11) as 

(14) la,[g(u),f(a)]] e Z, a, u e U. 

At this point we examine the case where g is one-one. We set V = g - ^É/) = 
{v <= i*|g(v) G £/} and note that Fis an ideal of R. We first assume that V =£ 0. 
In (14) we set a = g(v), v ^ V thereby achieving 

g( [v, [u, f(v) ] ] ) = [g(v), [g(u), g(f(u) ) ] ] 

= fe(v),[g(«),/(g(v))]] G Z 
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for ail v G V and u G U. This puts g( [v, [u, f(v) ] ] ) in the center of g(R) 
and hence [v, [w, f(v) ] ] c Z since g is one-one. By Theorem A either v G Z or 
/ (v) G Z. Setting^ = {x G F|x G Z } and £ = {JC G F | / ( J C ) G Z ) we know 
that V = A U B whence by a familiar group theory argument either V = A or 
V = B, i.e., either F c Z o r / ( F ) c Z. In the former case it is well-known that 
i? is commutative and in the latter case we may conclude that R is commutative 
by Lemma 6. This completes the argument in case V ¥= 0. The situation where 
V = g~l(U) = 0 means that g(R) n U = 0. Here Lemma 4 says that there 
exists X G C such that / ( * ) = A(JC — g(x) ) for all x ^ R. But now, since 
/ is centralizing on U, we see that g must also be centralizing on U, i.e., 
[g(w), w] G Z for all u G f/. As g is one-one an application of Theorem B 
then forces R to be commutative. All told the situation in which g is one-one 
always leads to R being commutative, contradictory to the hypothesis in 
part (b). 

To complete the proof of (b) we now assume that ker g ¥= 0 and set W = 
U n ker g. By Lemma 5 f(W) is a nonzero ideal of R and there exists X G C 
such that/(jc) = A(x — g(x) ) for all x Œ R. For w G [/ and w G W relation 
(13) tells us that [g(u\ f(w) ] G Z, i.e., [g([/), / ( JF) ] c Z. By Corollary A it 
follows that g(U) C Z and the first part of (b) has been established. Finally, if 
f(g(U) ) ¥= 0, we may choose a G U such that f(g(a) ) ^ 0. In particular 0 =£ 
g(a) G Z, and from g(ra) = g(r)g(a) e Z , r G i ? , w e observe that g(R) c Z. 
As a result we may write 0 ¥= f(g(a) ) = X(g(a) — g2(a) ), which shows 
simultaneously that 0 ¥= g(a) — g1(a) G Z and f(g(a)) G Z. Therefore X = 
f(g(a) )(g(a) — g (a) )~ G F and the proof of Theorem 1 is complete. 

As an example of a highly noncommutative prime ring possessing a nonzero 
centralizing semiderivation we cite the free algebra R = <$>{xx, x2,. . . ) . Here we 
let g be the endomorphism which maps every element onto its constant 
term and set f(x) = JC — g(x). Since g(R) is central it follows that / is 
centralizing. 

We come now to our second main result. 

THEOREM 2. Let R be a prime ring of characteristic ¥=2, and let f be a nonzero 
semiderivation of R. If there exists a nonzero ideal Ufor which [f(U), f(U)] c Z, 
then R is commutative. 

PROOF. Without loss of generality we may assume that g (the endomorphism 
associated with f) is one-one. Indeed, if ker g ^ 0 and W = U D ker g then by 
Lemma 5(a) f(W) is a nonzero ideal of R. Accordingly [f(W), f(W) ] c Z 
forces commutativity of R in view of Corollary A. 

With g one-one we first treat the case where g(R) n U = 0. By Lemma 4 
there exists À ^ O G C such tha t / (x ) = X(x — g(x) ) for all x G R, SO that our 
hypothesis now yields 
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(15) [ [ii - g(ii), v - g(v) ], g(r) ] = 0, M S K r G f i . 

But when expanded (15) reads 

[g( [«, v] ), g(r) ] = [[«, g(v) ] + [g(n), v] - [ii, v], g(r) ] 

G g(R) n 17 = 0 

that is, g( [ [u, v], r] ) = 0. Since g is one-one we then have [ [w, v], r] = 0 for 
w, v G £/, r G R, and this forces commutativity of R. 

Finally we analyze the situation in which g~ (U) ^ 0. We first set w = 
U n g - 1(£/) . For w, v, G (/we see from 

[/(«), / ( [/(«), v] ) ] = [ / (H) , [/2(M), g(v) ] ] + [ / ( I I ) , [ / ( I I ) , / (v) ] ] 

that [ / ( I I ) , [/2(w), g(v) ] ] G Z for all n, v e I/. In particular, for w G JF, we 
have 

[/(*(") ) , [ / 2 (g (*0 ) ,g (v ) ] ] e Z 

that is, g( [/(w), [/2(w), v] ] ) G Z. Since g is one-one we know that this forces 
[f(w)9 [/2(w), v] ] e Z for all w e W,v e U. By Theorem A it follows that for 
any w G W either / (w) G Z o r / 2 (w) G Z. The same group theory argument 
used in the proof of Theorem 1 can then be invoked at this point to conclude 
that either f(W) c Z or f2(W) c Z. In the former case we know by Lemma 6 
that R is commutative. Therefore we may assume that f\W) c Z. From 
Lemma 3 we also know that f2(W) ¥= 0, and so we may choose w G W such 
that a = f\w) ¥= 0 G Z. Starting with [ / ( / ( W ) I I ) , / (v) ] G Z, w, v G U, we 
obtain 

I /2(w)g(«), /(v)] + [ / (*0/(«) , / (v)] e Z 

which when further expanded yields 

(16) /2(w<)[g(«),/(v)] + [f(w),f(v)]f(u) + / ( w ) [ / ( « ) , / ( v ) ] e Z. 

Commuting (16) with/( j ;) , y G U, then results in 

/2(w)[ [g(u), / (v) ],/(>>) ] + [/(u0, /(v) ][/(«), /(>>) ] 

+ [/(«0,/O0 ][/(«), /(v)] = 0 

from which in turn we conclude that 

(17) /2(w)[ [g(tt), /(v) ], f(y) ]^ Z, II, v, j G £/. 

S i n c e / V ) ^ 0 (17) implies 

(18) [ [g(n), / (v) ], / ( j ) ] G Z, II, v, y G £/. 

Replacement in (18) of v by g(r) and >> by g(r), r G W, results in 

\ 
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l\g<u),f(g(r))],f(g(r))] e Z 

or in other words 

(19) g([[u,f(r)],f(r)])e Z. 

As we know, since g is one-one, (19) impies that [ [u, f(r) ], f(r) ] = 0 for all 
u e U and r G. W. By Theorem A we then conclude that f(W) a Z, whence R 
is commutative by Lemma 6. 
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