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WHEN DO FINITE BLASCHKE PRODUCTS COMMUTE?

ISABELLE CHALENDAR AND RAYMOND MORTINI

We study the following questions. Which finite Blaschke products are eigenvectors of
the composition operators T;,: f +— fou, what are the possible eigenvalues, and which
pairs (B, C) of finite Blaschke products commute (that is, satisfy Bo C = C o B).

1. INTRODUCTION

We shall start by introducing some notation that will be used throughout the paper.
The open unit disc {z € C: |2 < 1} is denoted by D and its boundary by T. For p € D,
we define the automorphism S, of D by

-~ Z
S,(z) = 1”_ =

Note that S, is self-inverse. As usual, N denotes the set of nonnegative integers and
N = N\ {0}.

We say that two functions f: ©; — £, and g: 9, — §2; are conjugate to each other
if there exists some conformal map ®: £; — €, such that f = ! o go ®. We also say
that f is ®-conjugate to g.

It is well known (see [13, Chapter 0]) that a nontrivial conformal automorphism of
D is elliptic (that is, has one fixed point in D) or hyperbolic (that is, has two distinct
fixed points on T) or parabolic (that is, has a single fixed point on T). Conformal
automorphisms of the unit disk are also called Blaschke factors, or Blaschke products of
degree 1. We denote this class by Aut(D). Finite Blaschke products are finite products
of Blaschke factors; by the Schwarz-Pick lemma they have at most one fixed point in D.

For o € T and n € N*, define the map R, o by R, () = az". Note that R, , is the
rotation z — az, which is also denoted by R,.

The rotation R, is called rational if o® = 1 for some s € N*. The smallest such
positive integer is called the indez of R. If u is a conformal automorphism of D conjugate
to a rational rotation of index s, then we say that u is an elliptic Mdbius transformation
of index s.
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If ¢ is a map of D or D into itself and n is a positive integer, the n-th iterate of ¢,
denoted by ¢!, is the n-fold composition @ o - -0 ¢ of .

In Section 2 we give a complete description of finite Blaschke products which are
eigenvalues of composition operators of the form T, : f — f ou, where u is a conformal
automorphism of D.

In Section 3, given a finite Blaschke product B with a fixed point p € D, we study
which finite Blaschke products C satisfy BoC = Co B on D. The problem of commuting
rational functions was completely solved by Julia {10] and Ritt [11]. What we present
here is another, more modern, approach to the case of finite Blaschke products. It uses
results from ergodic theory in the case of Blaschke products of higher degree and is
entirely elementary for the case of small degrees. At the same time, it gives a somewhat
finer analysis of the solutions.

Finally, our analysis of certain commuting Blaschke products leads us to give coun-
terexamples to three conjectures made by Cowen [4].

2. FINITE BLASCHKE PRODUCTS WHICH ARE EIGENVECTORS OF CERTAIN
COMPOSITION OPERATORS

LEMMA 2.1. Suppose thata,b €D, that 8 € T and that A = S;,(B8). If aB # b,
then S, 0 Rg oSy = R 0 S, (45)- IfaB =b, then S, 0 Rgo S, = Rg.

PROOF: Since the composition of two Blaschke factors is again a Blaschke factor,
we know that S, o Rgo S, = R) 0 S.. To determine ¢, the zero of this function, we solve
the equation 8Sy(c) = a, which is equivalent to S,(Ba) = c. If af # b, we see that

5 _ Sa(BS4(0) _ Sa(8b) _

@B Syap) e

If af = b, then ¢ = 0. Taking derivatives on both sides and evaluating at the origin
shows that A = —f. 0
For a € D and o € T, define

S
®,(a,2) = [[ Sars-1(2).
=1
Then, by Lemma 2.1, we see that

s—1
(1) ®,(a,02) =a’HSa,j-1(z).
j=0

It is well known (and easy to prove) that two elements of Aut{D) commute if and
only if they have the same fixed points (see {2, page 115]). In particular, there exist two
commuting hyperbolic automorphisms. Take, for example,
t+z
141tz

Ft(Z) =

1
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where —1 < t < 1. This contrasts the situation dealt with in the next proposition, where,
in particular, it is shown that any element of Aut(D) commuting with a Blaschke product
of degree bigger than 2 is necessarily elliptic.

PROPOSITION 2.2. Suppose that U € Aut(D), and that U commutes with a
Blaschke broduct B of degree n > 2. Then U is an elliptic automorphism conjugate to
a rational rotation R,. Let p be the fixed point of U, and let s € N* be the smallest
positive integer such that 0° = 1. Then s dividesn—1. Moreover, B = S,0®05,, where

m
®(z) = ek H! H ®,(ay,, 2),
v=1

with 6 € [0,27), a, € D\ {0}, sk+ sm =n — 1, and k,m € N. (By convention, empty
0

products of the form [] are equal to 1.) The a, are not necessarily different.
v=1
Conversely, every Blaschke product of the form B above commutes with U whenever

U has fixed point p and is Sp-conjugate to a rational rotation with index s dividing n — 1.

PROOF: Assume that U is an elliptic automorphism with fixed point p and index
s which divides n — 1. Then U = S, 0 R, o S; where ¢° = 1. Using (1), it is now
straightforward to check that BoU = U o B. Note that 0~! =% and 0°~! = 7.

Conversely, suppose BoU = U o B. We first show that U has a fixed point in D. If
not, then U is either a hyperbolic or a parabolic M6bius transformation. In the first case,
U is conjugate to a retraction H: z + 7z (where 0 < 7 < 1) on the upper half plane, and
in the second case, U is conjugate to a translation T': z — 2z + r (where 7 > 0) on the
upper half plane. In the first case, we suppose that H = ¥~!oUoW¥ and C = ¥~'oBoV,
where ¥ is a conformal map from the upper half plane onto the unit disk. Then C is of
the form .

a;z + b;

— pif
C(Z)—e i C]'Z"'dj’

where the coefficients are real numbers and

det (“J' bf’) >0
¢ d;

when j = 1,...,n. Further, Co H = Ho C, that is, C(rz) = rC(z). Then C(0) = 0.
Suppose that C has a real pole a. Since C(rz) = rC(z), all the r"a (where n € N*) are
poles of C, an obvious contradiction. Thus C is a polynomial. Similarly, we see that
C has no zeros other than 0. Thus C(2) = 5z". Since C(rz) = rC(z), it follows that
r"~! = 1, which contradicts 0 < 7 < 1. Thus U is not conjugate to a retraction.

Of course, the rational function C cannot be periodic with period . Hence U cannot
be conjugate to a translation. Thus U is elliptic, that is, it has a fixed point in D.

https://doi.org/10.1017/50004972700039861 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700039861

192 I. Chalendar and R. Mortini (4]

Suppose that p is the fixed point of U in D. Then
B(p) = BoU(p) = U o B(p).

The uniqueness of the fixed point implies that B(p) = p. Let B = SpoBolS, and
V = S,0U oS, Then B commutes with V and B(0) = V(0) = 0. Moreover, by
Schwarz’s Lemma, V(z) = oz for some o € T. So

(2) E(UZ)‘= 0B(z).

Let a be a zero of B in D\ {0}. Then by (2), o*a is a zero of B when k € N. Since B
has at most n zeros, we see that o is a root of unity. Let s € N* be the smallest positive
integer such that ¢° = 1. By (1) we see that ®,{a,02) = ®,(a, z). This gives invariance
under the orbit of a with respect to the rotation. The same can be done with all the
remaining zeros, different from the origin. If a is a zero of B of order 1, then every zero
of the associated orbit {a,ca,c?a,...} has multiplicity [ too. We obtain m orbits, say,
all having the same length s. If, additionally, 1 denotes the order of the origin as a zero
of B, then we see that sm + u = n. Moreover, gz = (o2)* if and only if 0#~! = 1. Thus
@ — 1 is a multiple of s, say 4 — 1 = ks. We then obtain that ks+ ms=n—1andso s
divides n — 1. We conclude that B has the form

B(z) = el %+ H@,(au,z)
v=1

as required. 0

REMARK 2.3. We note that

B(2) = el 2ok ﬁ li[ Sa,oi-1(2)

v=1j=1

is independent of o, provided ¢® = 1. In fact,

(I>(z) — e:azak+1 H =
— Ay Z

If n — 1 is a prime number, then ® has a very simple form. Indeed, either ®(2) = 2",

or n-1 n-1
_ e 0 —Z"
d(z)=¢ z1 = ey
We also obtain the following result on eigenvectors and eigenvalues, generalising
special results in [3]. The attempt there to characterise the finite Blaschke products for
which BoU = B using the zero set of B does not seem to be manageable. Instead, if we

consider fixed points, then a complete description can be given (see also [5]).
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PROPOSITION 2.4. Suppose that U € Aut(D) \ {Id}, and that B is a finite
Blaschke product of degree n > 2 satisfying Bo U = AB for some A € C. Then U is an
elliptic automorphism of D, with fixed point p, say, U = S,0 R, 0 S,, and o € T\ {1}.

1. If B(p) # 0, then the index s of U dividesn, A =1 and B = Sppyo ¥ o 5,
' where m
U(z) = 2% H ®,(a,, 2),
v=1
with 6 € [0,27), a, € D\ {0}, sk + sm =n, k € N*, and m € N. The q,
are not necessarily different.

2. If1 < ord(B,p) < n, then U has index s, A = o? for some g € N‘, and
B=YVo Sp, where

¥(z) = ¢’2° [ 2u(a, 2),
v=1
with 6 € [0,27), a, e D\ {0}, g+ sm=n, meN.
3. Iford(B,p) =n, then A = o™ and B = €*? (S,)".

PROOF: Assume that BoU = AB. Suppose that U is not an elliptic transformation.
Then the iterates U™ converge locally uniformly to the Denjoy-Wolff fixed point « € T.
Hence, Bo U™ — B(a). Since a € T, we have |B(a)] = 1. But |B o Ul(0)| =
|A*|B(0)| < |B(0)| < 1, hence its limit is strictly less than 1, which is a contradiction.
So let p € D be the fixed point of U. Put V = S,0U 0 S,. Then V(2) = oz for some
o€eT.

1. Assume that B(p) # 0. Then B(p) = B(U(p)) = AB(p) implies that A = 1. Let
¥ = SppyoBoS, Then ¥(0) =0and ¥ oV = W. Choose a € D so that ¥(a) # 0.
Then ¥(o’a) = ¥(a) for every j € N. Since the degree of ¥ is n, ¥(a) has at most n
different preimages. Thus o° = 1 for some s € N*. Let s be the smallest such positive
integer, so that s is the index of U. Hence, by our previous proof,

m
T(2) = €20 H ®,.(a,, 2),
v=l
where ¢ € N* is the multiplicity of the origin as a zero of ¥. Clearly ¢ + ms = n. Since
U(oz) = 09¥(2), it follows that 0% = 1. Thus s divides g that is ¢ = sk for some k € N*.
2. Assume that B(p) = 0, but ord(B p) <n. Let ¥ = Bo S,. Then ¥(0) = 0 and
¥ oV = AV. Since B, and hence also \Il has at least one zero a different from 0, we see
that the o7a (where j € N*) are zeros of U. Thus o® = 1 for some s € N*. Then, as
before, it follows that

U(z) = e2¢ H ®,(ay, 2),

v=1l

where g € N* is the multiplicity of the origin as a zero of 7. Clearly ¢ + ms = n. Also,
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¥(oz) = 09%(z). Hence A = o9,
3. This is clear. 0

REMARK 2.5. If we consider solutionsof BolU = B, B(0) =0, U # 1d, where n is a
prime number, then we obtain Proposition 4.3 in {3]. In fact (ii) implies that

B =Si0RpueoS,=el 52
=5, woS,=e¢€ 2
AR e 71
where a = €p" and b = e ¥q = p”. Hence
B = -5

1-p7sp’
which coincides with
B = ewSU(p)SU[zl(p) . SU[n-l](P)SU[n](p)
and U = S, 0 R, 0 S, where 0™ = 1, n being the index of U. Note that Ul" = Id.

Here are two examples. First, suppose that

a—2z —a—2z
B(2) i@ itar
Then B(~z) = —B(z). Second, suppose that

_L D -z (VE-1) -

B = I T (Va1
and (1/\/5)
— 2
O

Then B(U(z)) = - B(z).

Let us now consider, for a given U, the solutions of B o U = B of minimal degree
for B.

COROLLARY 2.6. Suppose that U is an elliptic Mébius transformation with
fixed point p and index n. Then the minimal degree solutions of B o U = B are the

Blaschke products
B(2) = ,Bb—__i”:,
1-b5p
where B € T and b € D. Their degree is n.
ProoF: This is immediate from Proposition 2.4; just notice that the minimal degree
of the solutions coincides with the index of U and that
a—e’Sp L b-S;
T—aes;  ° 1-bSp’

Sa0 Ry o008y =

where b = e %a. Note that b does not depend on p. 0
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3. COMMUTING FINITE BLASCHKE PRODUCTS WITH A FIXED POINT IN D

The two following propositions present in an elementary wé.y the description of
Blaschke products of degree two and three which commute with Blaschke products of
degree two with a fixed point in D.

PrROPOSITION 3.1. Suppose that B and C are Blaschke products of degree 2,
and that B has a fixed point in D. Then BoC =Co B ifand only if B = C.

PROOF: Let p be the fixed point of B in D. Then

B(C(p)) = C(B(p)) = C(p).

Hence C(p) is a fixed pomt of B. Due to the umqueness of the fixed pomt C(p) =p. Let
B=S,0Bo0S8, and C= SpoC oSp. Then C commutes with B and C(0) = B(0) = 0.
We show that C =

CASE 1. Suppose that E(a) = 0 for some a € D\ {0}. Since the degree of B is 2 and
B(C(a)) = C(B(a)) = C(0) = 0, we have either C(a) = 0 or C(a) = a. Since 0 is the
unique fixed point of C, the second assertion cannot hold. Since the degree of Cis 2, we
may assume that B(z) = €925,(z) and C(z) = €25,(z). We then obtain

(3) CoB=(RuS,) 0B =e®B(S,0B) = R 0+654(S, 0 B).
On the other hand,
(4) BoC = (RsS,)0C = €“C(8,0C) = Ryiws6S4(Sa 0 C).
Hence, by comparing (1) and (2), we see that

S,0C=S,0B.

Left-composing with S, yields C=B8B.
CASE 2. Suppose that E( ) = €922, Assuming that C vanishes at a where a # 0, we see,

by replacing B with C above, that B vanishes at a, a contradiction. Thus C(z) = €22,
By (3) and (4), applied for a = 0, we obtain that B = C in this case too. 0

PROPOSITION 3.2. Suppose that B is a Blaschke product of degree 2 and C a
Blaschke product of degree 3. Assume that B has a fixed point p inD. Then BoC = CoB
ifand only if B= Sp0Ry,05;, and C = Sp0 Ry 4205, for some a € T.

PROOF: Since B(p) = p we see that C(p) = C(B(p)) = B(C(p)). Hence Clp) =p
and p is a fixed point of C. Let B = S,0B0S,and C = 5,0C0S,. Then CoB = Bol
and B(0) = C(0) = 0. Write B = R, S, and C = RgS,S.. We show that a =b=c = 0.
By hypothesis we obtain

(5) RapS(Se © 820 C) = RpaSa(Ss 0 B)(S. 0 B).
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Assume that a # 0 and a # b. Then 5’((1) # a {note that 0 is the fixed point of C).
Hence S, (5(0)) # 0. Since the right side of (5) vanishes at a, either Sy(a) = 0 (which is
not possible, since a # b), or S.(a) = 0, hence ¢ = a. It follows from (5) that

(6) Ss(Sa© C) = (Ss 0 B)(Sa 0 B).

Evaluate (6) at a. Then S,(a)S.(C(a)) = S5(0)S4(0). But C(a) = 0. Hence Sy(a)a = ba.
Division by a yields Sp(a) = b, hence a = 0, a contradiction. So assuming a # 0, we see
that a = b = ¢. But in that case, too, we get the following contradiction, by evaluating
(6) at a:

0= [.5',,(5((1))]2 — B(a)=a=>a=0.

We conclude that a = 0. Note that Sy = —Id. In this case, by replacing a by —a, we
may write B as B(z) = az?. Then

(7) RQ,QBZSI,ZSZ = Rg_ga(sb o Rz,a)(sc o R2,c.)-
It follows from (7} that
(8) BSES? = (Syo Ry0)(Se0 Rya)-

Evaluating at 0 shows that 8b%c? = bc; hence bc = 0. Say b = 0. By (8),

9) R35S52 = Ry _a(Sc 0 Ra).
Therefore we get 8S? = —a(S. o Ry4). Evaluating at 0 gives fc2 = —ac. Hence ¢ = 0,
too.

So a = b= ¢ = 0. This implies that Ry 0 R35 = Rgap> and R3 30 Ry = R pgas.
Hence 8 = a?. 0

The next theorem generalises the previous results in this section. Its proof is mod-
elled along the lines of the main theorem of Arteaga [1]. We use two results from ergodic
theory.

For a positive integer g, denote by T, the map of T given by T,(z) = 29. Recall that
an endomorphism (that is, a continuous selfmap) f of T is said to be expanding if there
exist K > 0 and A > 1 such that

If["](z)| > KM forall ze T,n e N

In this special case we should depart from our usual style in Arteaga (1, Lemma 2.1]. Let
f and g be two commuting expanding C"(T)-endomorphisms of the unit circle T (where
r 2 2). Assume that f and g have degrees n and m respectively and that they have a
common fixed point on T. Then there exists a homeomorphism ¢ of T that conjugates
f to T, and g to T,.
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The Main Theorem of Johnson and Rudolph [9]. Let f and g be two commuting ori-
entation preserving endomorphisms in C?(T) with a common fixed point. Assume they
are both expanding and that f is p-to-1 and g is ¢-to-1, where p and ¢ are not con-
tained in a common singly generated multiplicative semigroup of N. Then there exists a
diffeomorphism ¢ € C?(T) such that ¢ conjugates f to T}, and g to Ty,.

THEOREM 3.3. Suppose that B and C are two finite Blaschke products of de-
grees n and m respectively, where m > n, and suppose that B and C satisfy the following
conditions:

1. BoC=CoBonD and
2. there exists p € D such that B(p) =
Then there exist ® € Aut(D) and a positive integer mgy such that

B=%0R, 0!
Clmol = ® o Ry 1 0 @71

(and thus there exists a € T such that C is conjugate to z — az™) or there exist
n1,ny € N* such that Clmom] = Bln2),

In the particular case where n = 2, one can take mg =1 andn, = 1. If B and C
have a common fixed point on T, then one may take mg = 1.

PROOF: Let B = SpoBoS, Then B is a Blaschke product of degree n such that
B(0) = 0, and thus there exist v € T and a; € D (where 2 < j € n) such that

o~ z p— a‘
B(z) = i
(Z) ’)’ZH 1-a,z
j=2 7

Therefore, for z € T, we have

|_1+Z |a’l

and so B is expandmg Now set C = Sp0C oS, Since BoC = C o B, we have
BoC = C o B, and therefore B o C(0) = C(0). The uniqueness of the fixed point in D
of B implies that C(0) = 0. It follows that C is also expanding. Since B o C = C o B,
we have, for every fixed point £ of B in T, that

cllg) = cbl(B(¢)) = B(CUN(¢)), jeN.

Hence, for every positive integer j, CUl(¢) is a fixed point of B. Since B has only a finite
number of fixed points on T, there exists a fixed point & of B such that there exists a
strictly increasing sequence (jx)x>1 of positive integers such that CUsl(€) = &, k > 1.
Therefore

CLik+n]-[ikl(§o) - Cljk+n]-ljkl(C(jkl(§)) - C[jk+ll(§) =&, j>1.
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Hence there exists an iterate C™ of C which shares a common fixed point with B on T.
Obviously, if B and C have a common fixed point on T, one may take mg = 1. Note that
in the particular case where n = 2, the uniqueness of the fixed point £ € T of B implies
that C(€) = £ Therefore if n = 2, one can take my = 1. It follows from Lemma 2.1 in
[1] that there exists a homeomorphism ®: T — T such that

EIT =®0T,0od ! and C~’|[;.n°] =® 0 Tpmo 0 d7L.

If ® is a diffeomorphism, it follows from a result of [12] that ® is a M6bius transformation,
that is, an automorphism of the unit disk. Interested readers are referred to [6, 7, 8
for further generalisations. If @ is not a diffeomorphism, the main theorem of [9] implies
that m™¢ and n are contained in a singly generated semigroup of the integers. Thus, m™°
and n are powers of a number [ € N with [ > 1. Then there exist n;,n, € N* satisfying

n=1Im, mm ="
, .

Therefore m™™ = n™ and thus Clmoml iy = Bir2ly. Clearly Clmoml = Blnal,
In the particular case where n = 2, necessarily ! = 2, and then there exists n, € N*
such that m = n™. It follows that C = Binal, 0
The following example shows that, if n > 2, then the index mg need not be equal
to 1.
EXAMPLE. Take B(z) = 23 and C(z2) = —2°. Then B(0) = C(0) = 0 and Bo C(z) =
C o B(z). Note that B and C have no common fixed point on T, which implies that
me # 1. Since C1(z) = 2%, one can take my = 2 and we obtain that B and C are
conjugate to z — 2z and z —— 2®® respectively by the identity map.
As a corollary of Arteaga 1], we obtain the following result.
COROLLARY 3.4. Suppose that B and C are finite Blaschke products of degrees
n and m respectively, where m 2 n > 3. Suppose that
1. BoC=CoBonD
2. there exists p € D such that B(p) =p
3. B'(€) # B'(¢) for all different fixed points £ and £ on T.
Then m is a power of n. Moreover, if m = n* with k € N*, then C = Bl
PROOF: Since the degree of B is greater than 3, we deduce from Arteaga [1] that
C = BWM for some k € N*. Hence m = n*. ad
We note that the condition on the derivatives of B implies that B cannot be conju-
gate to z — 2". In fact, the derivative of this function is equal to n at each of its fixed
points e2mk/(n=1),
Moreover, let us point out that in order to keep the assertion of the previous corollary,
one cannot omit the third condition, as the following example shows.

https://doi.org/10.1017/50004972700039861 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700039861

f11] When do finite Blaschke products commute? 199

Example. Take B(z) = €"2% and C = —B with 8 € (0,2x). Then B(0) = C(0) =0
and B o C(z) = C o B(z) = —e%®2°. Obviously we have B # C and B(z) = Cl3(z) =
e*iez% Note that B'(a) = B'(8) for the two fixed points a and 8 of B on T.

Our analysis of commuting finite Blaschke products leads us to a better intuition
about the role of fixed points. In particular we are now able to disprove conjectures of

(4]

4. CoUNTEREXAMPLES TO C.C. COWEN’S CONJECTURES

Suppose that f and ¢ are nonconstant analytic functions mapping the unit disk D
into itself and denote by a the Denjoy-Wolff point of f. Assume also that neither f nor
g is a conformal automorphism of D. Recall that whenever o € T, then f'(«) denotes
the angular derivative at a. It is well-known that then 0 < f'(@) < 1.

Conjecture 1 of [4] says that if & € T and if f'(o) < 1 then every g that commutes with
f has the same fixed point set as f. This is not true. Take f(z) = (z + 1/2)%(1 + z/2)~?
and g = fl4. Then we have o = 1, f/(1) = 2/3 < 1, fog = go f but f has three
distinct fixed points (1,w,w) whereas g has five distinct fixed points (1,w,w,—7/8 +

iv/15/8, ~7/8 — i1v/15/8), where w = €2™/3,

Conjecture 2 of [4] says that if f'(a) # 0, and if f and g are commuting functions with
two fixed points in common, then the fixed point sets of f and g are the same. This is
not true. Take f(z) = 2(z 4+ 1/2)(1 + 2/2)~! and g = f@. Then a = 0, f'(a) # 0, the
fixed points of f (1 and 0) are also fixed points of g, but —1 and —1/2 are additional
fixed points of g.

Conjecture 3 of [4] says that if [a| < 1 and f'(a) # O then there is an integer n such that
for every g that commutes with f, the fixed point sets of f and g™ are the same. This is
not true, either. Take, as before, f(z) = 2(z +1/2)(1+ z/2)~! and g = f o f. Since the
fixed point set of g contains —1 and —1/2 for every positive integer n, Conjecture 3 is
not correct.
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