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Summary

Expressions for the probability and average time of detection of a recessive visible gene in
populations where there is partial selfing or partial full-sib mating are presented. A small increase
in the proportion of inbred matings greatly reduces the average time until detection and increases
the proportion detected. Unless the proportion of inbred matings or the population size is very
small, the time and proportion detected are approximately independent of the population size.

1. Introduction

Robertson (1978) investigated the problem of ascer-
taining the average number of generations until
detection of a recessive visible mutant initially present
in single copy in a finite population. This is important
in interpreting whether a recessive gene has appeared
by mutation or was already present in the base
population in artificial selection schemes. It has also
relevance from an evolutionary viewpoint as the
time to observation of, for example, spontaneous
mutations, Crossover events or mutant insertions.

Using transition matrix methods and simulation, he
showed that for monoecious random mating popu-
lations of size N with selfing permitted, the mean time
to detection is close to 2N3 generations with a
coefficient of variation of about £ and, if selfing is
prohibited, this time increases by a little over one
generation. Karlin & Tavaré (1981a-c) used a
diffusion approximation, confirming the time-scale of
N5, and analysed a number of variants of the basic
problem such as differential viability selection forces
or partial penetrance of the heterozygote carriers.
Santiago (1989) used simulation to study the effect of
several systems of matings frequently used in lab-
oratory experiments, such as random pair mating,
within-family selection and circular mating, further
confirming the generality of the scale N5 found by
Robertson.

In all these papers random mating of the re-
productive individuals was assumed, except for the
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circular mating scheme investigated by Santiago
(1989). In many plants, however, there is much self-
fertilization (see, e.g. Schemske & Lande, 1985),
which must affect the time of appearance of recessive
homozygotes.

With random mating, a shortening of the time to
detection can be obtained only by increasing the
number of examined progeny. Karlin & Tavaré
(1981 5b) suggested that non-random mating patterns
be investigated for their influence on the early
detection of recessive mutants. Caballero, Keightley
& Hill (1991) found that a scheme where many full-sib
matings are performed among the selected individuals
would increase the fixation probability of recessive
genes without reducing that for additive genes or
delaying times to fixation. In such schemes with
partial full-sib mating and random mating, the time
until detection of recessives is expected to be reduced
compared to that from a random mating population.

Branching process approximations for calculating
the probability of detection of a recessive visible gene
in successive generations for populations with partial
selfing or partial full-sib mating and random mating
are presented in this paper and checked and extended
by transition matrix methods and stochastic simu-
lation. It is found that a small proportion of inbred
matings causes a large reduction in the time to
detection and this time is nearly independent of the
population size, unless the proportion of inbred
matings or the population size is very smalil.
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2. Transition matrix and simulation analyses

For partial selfing, we assume a breeding population
of size N initially with one or more copies of a mutant
gene (A’) in heterozygous condition, the remainder
being the wild-type allele (A4). Every generation,
individuals are screened for recessive homozygotes
A’A’ and, as soon as any appears, the process is
stopped. The transition of the breeding population
can be described by the number i (0 < i< N) of
heterozygous A4’ individuals, the remainder being
homozygous wild-type 44, with an additional killing
state (i = N+ 1) denoting detection of a homozygote
mutant (4°A4’), i.e. including all possible states of the
population where there is at least one 4’4’ individual.
Assume that the fitnesses of 44 and 44" are 1 and
1 + s, respectively. Then, for (0 < i < N) the frequency
of A’ after selection (gq) is ¢ = [i(1+s)/N]/[1 +is/N]
and the expected genotypic frequencies of offspring
are

Saa =x(1=3q/H+(1-x)(1—9)%
fAA’ = xq/2+(1 'x) 2Q(1 —Q),
fA’A' = xq/4+(1 _x)qz’

where x is the proportion of selfing. Each generation,
all breeding individuals and perhaps others are
screened for the recessive. It is also possible that the
recessive homozygote has lower viability than the wild
type or heterozygote. To incorporate both of these
possibilities, let K be an effective scoring rate, the ratio
of the number of screened to reproductive individuals
multiplied by the viability of the mutant homozygote.
Thus, for example, K=1 means N individuals
examined with 100 % viability of the mutant homo-
zygote or, alternatively, 2/ individuals examined and
viability 50 %, etc.

The transition probability matrix with elements m,,
denoting the conditional probability the population is
in state j at generation #41 given it is in state i at
generation ¢, is defined by

my; = (-]Iv) Fa) V(g Y(A =1, JVED,

m; vy =1-(1 ~faa)™, Myp,; = 0, My, v =1
(i,j=0,1,...,N).

Note that loss of the mutant and its detection (states
i =0 or N+1) are absorbing states.

Denote by d the vector with elements d, =m, .,
and Q the matrix with elements g, =m, ; for i,j =1,
2, ..., N, I the identity matrix and v the vector v, =1,
v,=0((=2,3,...,N) for one initial mutant present.
Then, using results from Kemeny & Snell (1960), the
asymptotic probability of detection or total pro-
portion of (conceptual) replicates where the mutant is
detected (P) is

P=v(I-Q)d,
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the average time to detection (7) is
T=v(I-Q)?%d/P,

and the standard deviation of the time to detection
(SD) is

SD = {[v(I+Q)A—Q)~*d/P]-T*:.

For a dioecious model with partial full-sib mating,
simulation was carried out. One heterozygote for the
mutant was initially present in a population of size N
(equal number of males and females) with, otherwise,
wild-type homozygotes. Among the reproductive
individuals full-sibs were mated whenever they were
available, otherwise at random. Selection forces were
simulated by truncation selection. The number of
progeny from each pair was multinomially distributed
and a total KN was screened. The procedure was
continued unti! loss or detection of the mutant as a
homozygote and each simulation was replicated 10000
times. For details of the procedure see Caballero et al.
(1991).

3. Branching process approximations

In a monoecious population of size N with random
union of gametes, the expected frequency of homo-
zygotes in generation f+1 for a mutant present in
single copy in generation ¢ is 1/4N% Thus, the
probability of detection as a homozygote if N
individuals are examined in generation r+1 is
1—[1—-(1/4N%)" ~ 1/4N. If the proportion of selfing
is x, the expected frequency of homozygotes is x/4N
and the probability of detection with N offspring
examined is approximately x/4. Therefore, the prob-
ability of detection will be a function of x rather than
N if x> 1/N. An analogous argument can be made
for a dioecious population with partial full-sib mating.
The probability of detection in successive generations
can, thus, be obtained for x > 1/N by assuming a
branching process in which mutant homozygotes can
arise only from inbred matings.

(i) Partial selfing

In a large population with partial selfing, it is assumed
that homozygotes for the mutant arise only from self-
fertilization of heterozygote carriers. Thus, the number
of mutant homozygotes (4’A’) from a single het-
erozygote is Poisson distributed with index

p = x(l +S)/4,

where x is the proportion of selfing and s is defined as
above. Hence, the probability that a heterozygote at
generation ¢ is not detected by a homozygote offspring
at generation ¢+1 is

a = exp[— Kp],

where K is defined as above.
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Heterozygotes (4A4”) can arise from selfing, with
probability x(1 +s5)/2, or from an outcross between a
heterozygote and a wild type homozygote, with
probability (1 —x)(1+s). Thus, their number can be
assumed independently Poisson distributed with index

w=0-x/2)(1+s).

Hence, the probability (Pr[A]) that a heterozygote has
h heterozygote offspring is given by Pr[h] = e™* u"/h!,
with probability generating function

Gl = 3 Prin ¢ = explu—1)).

h=0

The probability there are no mutants detected up to
generation 7+ 1 is given by the probability generating
function of the total number of AA4” to generation ¢,

Y, ()= i a” Pr(z, = n],

n=1

where z, is the total number of heterozygotes to
generation ¢. For simplicity, we will denote ¥,(«) as
W,. Now, ¥, = a as there is one heterozygote at
generation 0, and from standard branching process
theory

‘.Pt+1 = aG[¥,] = aexp [,”'(\Pt -1)]
(see Feller, 1968, p. 298). Substituting and rearranging,

Yo = exp{(1+9[(1 —x/2) ¥, — (1 —x/2+ Kx/4)]},
(1

with initial value ¥, = 1. The probability of detection
(P) up to and including generation ¢ is, therefore,

P=1-%,

The total proportion detected (P) is obtained by
setting \¥,,, = ¥, = W. For the simplest case of K =
1 and s=0, a second order approximation,
P+ xP—x/2 =0, obtained from (1), is adequate. If
there are initially 4 heterozygotes, equation (1) is
given by (¥,,,)" and the total proportion detected
(P,,) can be directly obtained from the proportion
detected with one initial homozygote (F,,) by P, =
1—(1—P,)". Iteration of equation (1) also enables
the average time to detection and its variance to be
calculated.

(it) Partial full-sib mating

In this case, assuming pair mating, the breeding
population is completely described every generation
by the number S (single) of matings of the type
AA4x AA” and D (double) of the type 44" x AA".

In a large population, the number of matings of
type j when there is one mating of type i in the
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previous generation can be assumed Poisson dis-
tributed with index (u,;)

pss = (1=x/2)(1+ys),
Msp = tpp = (x/4)(1 +5)%, @)
tps = (1—3x/4)(1 +3),

where x is now the proportion of full-sib matings and
1+s is the relative viability of the mutant het-
erozygote.

The probability (a) that a mutant homozygote is
not detected from the offspring of a D mating is

o = exp[—K/2], 3)

where K is defined as above.

The derivation of the recurrence equation to
calculate the probability of no detection (shown in the
Appendix) is similar to that for partial selfing except
that there is now a two state branching process and
two recurrence equations have to be considered for
the types S and D. Assuming initially one heterozygote
(i.e. one S mating), the probability that no recessive
homozygotes will appear up to and including gen-
eration r+1 (®,,,) is

D,y = exp{(1—x/2)(1 +5)(P,— 1)+ (x/4)(1 +5)*
X [@,exp {(x/4)(1 +9)(1 - O,_)) - (K/2} 1]}, (4

with initial value @, = 1. The probability of detection
up to and including generation ¢ is F,=1—®, or
1—(®,)* for A initial S matings. Analogously to the
selfing case, the total proportion detected for K =1
and s =0 can be well approximated by a second
degree equation,

PP+ Px(1—e%/2)~x(1—e%)/2 = 0.

Equation (4) can be iterated for successive generations
to estimate the average time to detection and its
variance.

4. Results

Figure 1 shows transition matrix results for partial
selfing, neutrality (s = 0) and examination of only the
breeding individuals (K =1), plotted against the
coefficient of inbreeding due to nonrandom mating, a
function F=x/(2—x) of the average number of
selfing progeny, x (see, e.g., Hedrick & Cockerham,
1986), and expectations calculated by means of
equation (1). In addition, expected values for partial
full-sib mating [eq (4)] are also shown for comparison.
In this case, F = x/(4—3x), for a given proportion x
of full-sib matings (Li, 1976, p. 245).

Whilst a reduction in the time to detection with
inbreeding is expected, a striking feature from these
figures is the large effect of a small increase in F on

reducing the time to detection and increasing the
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Fig. 1. Probability of detection as a homozygote (P) of a
mutant initially present in single copy, average time
(generations) until detection (T) and standard deviation
of this time (SD), plotted for varying values of F.
Transition matrix results for monoecious populations
with N = 20 and N = 100. Expectations for monoecious
[egn (1)] and dioecious [eqn (4)] populations. K = 1,
s=0.

proportion detected. For F = 0-03, for instance, which
would be attained with only 9% selfing, the time to
detection for N = 100 and random mating is reduced,
and the proportion detected is increased, by about
40%. For all values of F, the standard deviation of
the time to detection is approximately Z of its mean,
as for random mating and other systems of mating
(Robertson, 1978 ; Santiago, 1989).

Observed and expected values for partial selfing
agreed well for values of F> 0-1 (for N = 20) and
F > 0-05 (for N =100) as predicted above. Indepen-
dence of N for large values of F observed in Fig. 1 can
be seen in more detail in Fig. 2, where the proportion
detected and average time to detection for different
population sizes are plotted for small values of F
[expectations for infinite N from eq (1) are shown with
arrows]. The implication is that, the greater the
population size, the greater the reduction in time to
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Fig. 2. Probability of detection as a homozygote (P) of a
mutant initially present in single copy and average time
(generations) until detection (T) for different values of F
and varying population size (V). Transition matrix results
for monoecious populations with K= 1, s = 0.
Expectations for infinite N from eqn (1) indicated by
arrows.

detection for a fixed proportion of inbred matings,
relative to that with random mating,.

The average time to detection with partial full-sib
mating is always about 1.5 generations more than
with partial selfing for the same value of F (Fig. 1).
The proportion detected and the variance of the time
to detection also behave similarly for both systems of
partial inbreeding, though an increased proportion
of full-sib matings has always a slightly smaller effect
than an increased proportion of selfing. Stochastic
simulation was used to check the theoretical expec-
tations for partial full-sib mating, showing a very
good agreement between observed and expected
values. For example, for N =100, F=017, K=2
and s =01, values of T, P and SD were 4-33 + 0-03,
0-32+0-00 and 2-52+40-34, respectively from simu-
lation, and 4-05, 0-30 and 2:27, respectively from
equation (4).

Transition matrix results for different values of K
(the ratio of examined to reproductive individuals
times the viability of the mutant homozygote),
coefficient of selection of the heterozygote (s) and
initial number of heterozygote mutants (4) are shown
in Table 1. The time to detection for random mating
(F=0)and X = 1, s = 0 agrees well with its prediction
(2N? or, more exactly, 2:09N3, Karlin & Tavaré,
1981 q).
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Table 1. Transition matrix results (N = 100) for the proportion detected
(P), the average time to detection (T) and its standard deviation (SD) for
partial selfing and different degrees of inbreeding (F), ratio of number of
examined to reproductive individuals times the viability of the recessive
homozygote (K) (in all cases, at least N individuals are screened),
selective advantage of the heterozygote (s) and initial number of

heterozygotes carriers (h)

s=0h=1 K=1h=1 s=0K=1
K=! K=1 K=2 K=4 5=01s5=025=04 h=2 h=4
F=0
P 008 011 0-15 0-19 021 0-33 0-51 022 043
T 1192 951 754 596 964 887 714 863 715
SD 798 622 484 376 >80 48 333 613 578
F=01
P 014 022 032 045 029 037 051 038 062
T 507 398 3-05 2-33 432 4-46 434 3-84 3-47
SD 407 306 221 1-56 318 312 271 309 289
F=05
P 0-19 031 0-48 0-67 0-36 0-41 0-51 0-53 0-78
T 229 197 164 136 205 212 219 184 163
SD 166 132 097 066 138 142 144 123 108

An increase in the number of examined progeny has
a larger effect on increasing the proportion detected
with partial inbreeding than with random mating
(compare for example the increases in P from K =1
to K=4 for F=0 and F = 0-5). The proportional
effect on time to detection is, however, approximately
the same for all values of F. Values in Table 1 for K
= 0-5 would correspond, for example, to a case with
N screened individuals and 50 % reduction in viability
of the mutant homozygote.

For F = 0, an increased selection coefficient for the
mutant heterozygote enhances the chance of detection
of the mutant, but the time to detection and its
variance are little reduced (Robertson, 1978 ; Karlin &
Tavaré, 1981a,b; see also Table 1). With partial
inbreeding, the proportion detected is relatively less
enhanced because, for large s, its value becomes
independent of F (Table 1). The time to detection and
its variance are little affected (even increased) with
increasing s because, for large F, detection is essentially
determined by inbreeding and selection merely delays
detection by reducing the probability of loss.

An increase in the initial number of heterozygotes
carriers (1), of course increases the proportion detected
and reduces the time to detection and its variance.
These effects are, however, proportionately less
marked for larger values of F.

5. Discussion

Robertson (1978) and Karlin & Tavaré (1981a-c)
obtained the distribution of the time to first detection
as a homozygote of a recessive gene occurring only
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once in the initial generation, and found that this
distribution had a nearly geometric form with a mean
close to 2Ns for a wide range of N. These studies can
be important in the detection of recessive deleterious
visible mutants in experimental populations. They
cannot be applied, however, to populations were
mating is not completely at random, for example in
plants subject to partial self-fertilization. This paper
is intended to fill that gap. Simple expressions for
calculating the probability of detection in recurrent
generations for non-random mating populations are
presented and shown to be very accurate unless both
the proportion of inbred matings and the population
size are very small.

Our results show that a relatively small proportion
of inbred matings greatly increases the proportion
detected and accelerates the average time to detection

Table 2. Proportion detected (P), average time to
detection (T) and its standard deviation (SD) for
selfed (Sel) and full-sib (FS) lines as a function of K
(the ratio of the number of examined to reproductive
individuals times the viability of the recessive
homozygote) (results from transition matrices; s = 0)

Sel FS
K P T SD P T SD
1 050 200 141 035 400 2-37
2 070 160 096 043 344 1-83
4 087 127 034 048 312 1-52
Vel 100 100 000 050 300 i-4i
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relative to random mating, and this is more marked
the higher is the population size. This reduction in the
average time to detection is much larger than expected
from merely applying the random mating approxi-
mation (2N3) to the corresponding effective population
size. An increase in the degree of inbreeding reduces
the effective population size in proportion to 1 /(1 4 F)
(see Caballero & Hill, 1992), while the time to detection
is approximately exponentially reduced.

Karlin & Tavaré (1981 a, ¢) reckoned that, starting
with one heterozygote in a monoecious population of
size N with random mating, 0-88N? offspring should
be examined to ensure that the probability of detection
is at least one half. Thus, for say, N = 100, this means
K = 88. With 19 % selfing (F = 0-1), the same objective
is fulfilled with only K = 5, showing how powerful is
a small proportion of inbreeding in screening for
recessives.

If we are interested in early detection of recessive
genes, the most extreme screening method is to
subdivide the population into independent inbred
lines. Table 2 gives results for selfed and full-sib lines.
Our model for partial selfing with F =1 would give
slightly different results from those of selfed lines in
Table 2 because, in our model, the number of progeny
per individual is Poisson distributed and there are no
independent lines. For example, for K =1, P is 0-34
and T is 1-50, both somewhat smaller than with
independent selfed lines (see Table 2). Note also that,
because of the pair mating in the full-sib model, the
proportion detected cannot be increased up to one by
merely increasing K. In this paper, we have shown
that early detection must not necessarily be confined
to such large levels of subdivision. For example, if we
had a dioecious population with N = 100, we would
reduce T by subdividing the population in couples,
from 11-5 (with random mating and K = 1) to 4 (see
Table 2). Without subdivision, to get nearly the same
reduction, rather less than 50 % of full-sibs matings
would be necessary (and even less with larger N).
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Appendix

Using expressions (2), the probability (Pri[},,/,]) that
one mating of type i has j, S mating and j, D mating
offspring is

Pri(jy, o) = e7*ss(uly /i) e s0(ule, /")
and
PrD[jvjz] = e_ﬂbs(/"jﬁs/h!) e#oo j,f,)/jz!),
with probability generating functions
G*[¢y] = )y Prs[jl,j2] Py
4y0y=0
= exp{pss({—1)+psp(y — 1)}

and

GlE,v] = exp{pps(§— 1)+ ppp(y — D}

Let ®{¢,v) be the generating function of the total
number of progeny up to and including generation ¢,
starting from a single mating of type i in generation 0,
then

@7, (& y) = LG[DF(L, v), @&, v))
= £exp {uss(P(E ¥) — 1) +psp (@& ¥)— 1)} (A1)
and
@& y) = yGOO(L, v), P(E, ¥)]
= yexp {ups(D7(E, ¥) — 1) + ppp(@2(E, ) — 1)}

In order to reduce these two equations into one,
observe that

P&y _ ¢ .
DL y) ~ 7P/ HA+NPE )1
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Thus,

(&, y) = (/) P& y)
x exp{(x/4)(1 +5)[1 -0, MI}-

Substituting (A 2) into (A1) gives a two-step re-
currence relation for @7,,(¢, y). Now, the probability

(A2)
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of no detection up to and including generation ¢+1
(starting from one S mating) is
7,(1,0) = G [D(1, ), D7(1, )],

where « is defined by (3). Substituting and denoting
®5(1, ) as @, for simplicity, gives eqn (4).
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