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Stark’s Conjecture and New Stickelberger
Phenomena

Victor P. Snaith

Abstract. We introduce a new conjecture concerning the construction of elements in the annihilator

ideal associated to a Galois action on the higher-dimensional algebraic K-groups of rings of integers in

number fields. Our conjecture is motivic in the sense that it involves the (transcendental) Borel regula-

tor as well as being related to l-adic étale cohomology. In addition, the conjecture generalises the well-

known Coates–Sinnott conjecture. For example, for a totally real extension when r = −2,−4,−6, . . .
the Coates–Sinnott conjecture merely predicts that zero annihilates K−2r of the ring of S-integers while

our conjecture predicts a non-trivial annihilator. By way of supporting evidence, we prove the corre-

sponding (conjecturally equivalent) conjecture for the Galois action on the étale cohomology of the

cyclotomic extensions of the rationals.

1 Introduction

In 1890 Stickelberger [50] proved what might be called the first “equivariant mo-
tivic” result in number theory. Needless to say this aspect of Stickelberger’s theorem
was heavily disguised! Recall [57, p. 94] that one may construct, from the values of

the Dirichlet L-function, a Stickelberger element in the rational group-ring of the
Galois group of a cyclotomic field. Then the product of the annihilator ideal of the
roots of unity with the principal fractional ideal generated by the Stickelberger ele-
ment is integral and annihilates the class-group. Since Galois groups are involved it

is clear how the adjective “equivariant” might be associated with Stickelberger’s the-
orem. The purpose of this paper is to explain the association with “motivic” and to
introduce, with supporting evidence, new conjectural Stickelberger-like phenomena.

In what follows, by a Galois representation of a field F we shall mean a continuous,

finite-dimensional complex representation of the absolute Galois group of F, which
amounts to saying that the representation factors through a finite Galois group G =

Gal(E/F) of a Galois extension E/F.
We begin with the Stark conjecture, which asserts that the function assigning to

a Galois representation of number fields the value of a regulator map divided by
the leading term of the Artin L-function at s = 0 is always algebraic and is Galois
equivariant. Stark’s regulator is defined on K1 of the ring of algebraic integers.

We assume that the higher-dimensional analogue of Stark’s conjecture is true, that

is, replace K1 by K1−2r for r = −1,−2,−3, . . . and the Dirichlet regulator by the
Borel regulator. Having posed this higher-dimensional Stark conjecture in an earlier
version of this paper, I learned from David Burns that it had long ago been mentioned

by B. Gross [22].
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420 V. P. Snaith

For a Galois extension E/F of number fields with abelian Galois group G we con-
struct in §4 a “fractional ideal”, a finitely generated Z[1/2][G]-submodule Jr

E of the

rational group-ring Q[G], for each r = −1,−2,−3, . . . . The construction of Jr
E is

“motivic” in the sense that transcendental techniques (Borel’s regulator, Deligne co-
homology, etc.) and l-adic techniques are involved in its construction and the deriva-
tion of its properties (for example, Theorem 7.6).

When E/F is totally real and r = −1,−3,−5, . . . , the L-values at s = r are non-
zero, and in this case Jr

E is equal to the higher Stickelberger ideal which appears in
the Brumer–Coates–Sinnott conjectures. We conjecture that Jr

E participates in a new
Stickelberger phenomenon. Namely, for each odd prime l and a suitable Galois in-

variant set of primes S ′,

Conjecture 1.1

(

annZl[G](Tors K1−2r(OE,S ′)⊗ Zl) · Jr
E

)

∩ Zl[G] ⊆ annZl[G]

(

K−2r(OE,S ′)⊗ Zl

)

,

where annZl[G](M) denotes the annihilator ideal of M.

The Quillen–Lichtenbaum conjecture relates K-groups to étale cohomology, pre-
dicting that the l-adic Chern classes yield natural isomorphisms of the form

c1−r,2−e : Ke−2r(OE,S ′)⊗ Zl

∼=−→ H2−e
ét

(

Spec(OE,S ′); Zl(1− r)
)

when e = 0, 1, r = −1,−2,−3, . . . , and l is an odd prime. I believe that re-
cent unpublished work by Rost combined with recent unpublished work of Suslin–
Voevodsky1 is expected to establish the Quillen–Lichtenbaum conjecture for all odd
primes. We shall not make use of these unpublished results, except by way of justifi-

cation for concentrating on étale cohomology.

Conjecture 1.2

(

annZl[G](Tors H1
ét(Spec(OE,S ′); Zl(1− r))) · Jr

E

)

∩ Zl[G]

⊆ annZl[G]

(

H2
ét(Spec(OE,S ′); Zl(1− r))

)

.

For those familiar with such things I suggest that this conjectural phenomenon

should be considered as “a kind of integral sharpening of a twisted Stark conjec-
ture”. I understand this to mean that this conjecture shows how to produce anni-
hilator elements in the integral group-ring of the Galois group from leading terms
of L-functions at negative integers. Furthermore, the rather unexpected form of the

construction of the fractional ideal Jr
E is inspired by the Stark conjecture [53] con-

cerning the Galois properties of these leading terms. As I mentioned above, when
the leading terms are actually just the (non-zero) L-values, Jr

E is equal to the higher
Stickelberger ideal which appears in the Brumer–Coates–Sinnott conjectures, which

accounts for the occurrence of the phrase “new Stickelberger phenomena” in the title.

1See the very recent [56] as well as [19] and [32].
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Stark’s Conjecture and New Stickelberger Phenomena 421

In this paper we shall verify the second conjecture in the case of abelian exten-
sions of the rationals. In fact, for this it suffices to treat the case of cyclotomic fields

(Theorem 6.1). Even this simple case reveals a new phenomenon. Suppose that E/Q

is a totally real, abelian Galois extension and that r = −1,−3,−5, . . . . In this case
the Coates–Sinnott conjecture would predict that the higher Stickelberger ideal times
the annihilator of Tors K1−2r(OE,S ′) ⊗ Zl lies in the annihilator of K−2r(OE,S ′) ⊗ Zl.

However, when r = −2,−4,−6, . . . , the Stickelberger ideal is zero and the Coates–
Sinnott conjecture becomes trivial, but the conjecture which I have just introduced
does not.

The paper is arranged in the following manner. In §2 we recall the Stark conjecture

concerning the leading term at s = 0 of the Artin L-function and the Brumer con-
jecture, a generalisation of Stickelberger’s theorem, concerning the relation between
the value at s = 0 of the Artin L-function and the annihilator ideal of the S-class-
group in an abelian extension of number fields. In §3 we describe the analogues of

the Stark and Brumer conjectures, conjectures of Gross and Coates–Sinnott respec-
tively, in which the algebraic K-groups K1 and K0 are replaced by K1−2r and K−2r

for r = −1,−2,−3, . . . . In §4, assuming the validity of the higher-dimensional
Stark conjecture, we construct a finitely generated, Galois invariant subgroup — the

fractional ideal Jr
E — of Q[G] where G = Gal(E/F) is an abelian Galois group of

number fields. We verify that Jr
E is welldefined and coincides with the higher Stick-

elberger ideal when the latter is defined and non-trivial. In §5 we introduce a new
conjectural relationship between Jr

E and the annihilator ideals of higher-dimensional

algebraic K-groups (or étale cohomology groups) of algebraic integers. In §6 we
prove Conjecture 1.2, the étale cohomology version of Conjecture 1.1, for cyclotomic
fields. This is sufficient to verify the conjecture for any abelian extension of the ra-
tionals. In §7 we use the technique of [49] (see also [47, Ch. 6 and 7]) together with

results from [3, 6] to establish the technical results which are needed in §6. Section 8
contains some concluding remarks about possible generalisations and the naturality
of the fractional ideal and, most importantly, describes a method for constructing
annihilator elements when the Galois group is non-abelian.

The first of the fractional ideal/annihilator relations of Conjecture 1.2 occurred in
[49]. Several of the technical results used here were proved in that paper (building
on results of [6]) in order to give proofs of the étale cohomology versions of the
Coates–Sinnott conjecture and the Lichtenbaum conjecture for abelian extensions of

the rationals. The importance of Conjectures 1.1 and 1.2 becomes apparent when
the L-function vanishes. In the other case several authors, of whose work I learnt
after completing the first version of this paper, can prove stronger results than mine
[28, Theorem (0.7)], [7, Theorem 3.1], [37, Théorème 2.3]. In addition, the papers

[1, 12, 13, 30] and the series [2, 25, 26], are closely related to this one.

2 Some Well-Known Conjectures

2.1 Let ζE(s) denote the Dedekind zeta function of a number field E. The analytic class
number formula [53, p. 21] gives the residue at s = 1 in terms of the order of the
class-group of OE, the algebraic integers of E, and the Dirichlet regulator R0(E). Let
dE denote the discriminant of E. In terms of algebraic K-groups of OE the class-group
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is equal to the torsion subgroup Tors K0(OE) of K0(OE) and the formula has the form

ress=1 ζE(s) =
2r1+r2πr2 R0(E)|Tors K0(OE)|
|Tors K1(OE)|

√
dE

.

The Dirichlet regulator R0(E), which is a real number, is the covolume of the lattice
given by the image of the Dirichlet regulator homomorphism [53, p. 25]

R0
E : O∗

E = K1(OE) −→ R
r1+r2−1.

Here r1 and 2r2 denote the number of real or complex embeddings of E respectively.
Equivalently, by Hecke’s functional equation [34], [53, p. 18], ζE(s) has a zero of order

r1 + r2−1 at s = 0. Let ζ∗E (s0) denote the first non-zero coefficient in the Taylor series
for ζE at s = s0. Therefore at s = 0 the functional equation yields

ζ∗E (0) = lim
s→0

ζE(s)

sr1+r2−1
= −R0(E)|Tors K0(OE)|

|Tors K1(OE)| .

This form of the analytic class number formula prompted Lichtenbaum [33] to

ask: Which number fields E satisfy the analogous equation for higher-dimensional
algebraic K-groups

ζ∗E (r) = ±2ǫ
Rr(E)|Tors K−2r(OE)|
|Tors K1−2r(OE)|

for r = −1,−2,−3, . . . and some integer ǫ? Here Rr(E) is the covolume of the Borel
regulator homomorphism defined on K1−2r(OE) and to which we shall return shortly.
This identity has become known as the Lichtenbaum conjecture and is known to be

true in many cases. In particular, the étale cohomology version of Lichtenbaum’s
conjecture was proved for cyclotomic fields in [25] (see [49] for a different proof
and the survey article [48] for an overview). The passage from cohomology to alge-
braic K-theory requires the deep results of Suslin–Voevodsky, Rost et al. which were

referred to in the Introduction.
Next we shall recall how Stark [53] refined the analytic class number formula into

a conjecture dealing with L∗
F (0,V ), the leading coefficient of the Taylor series at s = 0

of the Artin L-function associated to a Galois representation V of F [34].

Let Σ(E) denote the set of embeddings of E into the complex numbers. For r =

−1,−2,−3, . . . , set

Yr(E) =

∏

Σ(E)

(2πi)−r
Z = Map(Σ(E), (2πi)−r

Z)

endowed with the G(C/R)-action diagonally on Σ(E) and on (2πi)−r . If c0 denotes
complex conjugation, c0((. . . , (2πi)−rnσ, . . .)σ∈Σ(E)) has (−1)r(2πi)−rnσ in the c0·σ-

coordinate. Therefore the fixed points of Yr(E) under c0, denoted by Yr(E)+, corre-
spond to elements {(2πi)−rnσ}σ∈Σ(E) such that (−1)rnσ = nc0·σ . Hence if σ(E) ⊂ R

and r is odd then nσ = 0. When r = 0 we define Y0(E)+ as the c0-fixed points of

Y0(E) = Ker
(

α :
(

∏

Σ(E)

Z

)

→ Z

)
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where α is the homomorphism defined by α((. . . , nσ, . . .)σ∈Σ(E)) =
∑

σ∈Σ(E) nσ .

This discussion shows that the rank of Yr(E)+ is given by

rankZ(Yr(E)+) =











r2 if r is odd,

r1 + r2 if r > 0 is even,

r1 + r2 − 1 if r = 0.

where |Σ(E)| = r1 + 2r2 and r1 is the number of real embeddings of E.

Now let G denote the Galois group of an extension of number fields E/F. Then,
for g ∈ G, let g((. . . , (2πi)−rnσ, . . .)σ∈Σ(E)) ∈ Yr(E) have (2πi)−rnσ in the σ · g−1-
coordinate. This defines a left G-action on Yr(E) which commutes with that of c0

so that Yr(E)+ is a Z[G]-lattice. The Dirichlet regulator homomorphism induces an
R[G]-module isomorphism of the form

R0
E : K1(OE)⊗ R = O∗

E ⊗ R
∼=−→ Y0(E)+ ⊗ R ∼= R

r1+r2−1.

The existence of this isomorphism implies that ([45, §12.1], [53, p. 26]) there exists

at least one Q[G]-module isomorphism of the form

f0,E : K : K1(OE)⊗Q
∼=−→ Y0(E)+ ⊗Q.

For any choice of f0,E Stark forms the composition

R0
E · ( f0,E)−1 : Y0(E)+ ⊗ C

∼=−→ Y0(E)+ ⊗ C

which is an isomorphism of complex representations of G. Let V be a finite-dimen-
sional complex representation of G whose contragredient is denoted by V∨. The
Stark regulator is defined to be the exponential homomorphism, (V 7→ R(V, f0,E)),
from representations to non-zero complex numbers given by

R(V, f0,E) = det
(

(R0
E · f −1

0,E )∗ ∈ AutC(HomG(V∨,Y0(E)+ ⊗ C))
)

where (R0
E · f −1

0,E )∗ is composition with R0
E · f −1

0,E .

Let R(G) denote the complex representation ring of the finite group G, that is,
R(G) = K0(C[G]). Since V determines a Galois representation of F, we have a non-

zero complex number L∗
F (0,V ) given by the leading coefficient of the Taylor series at

s = 0 of the Artin L-function associated to V [34]. We may modify R(V, f0,E) to give
another exponential homomorphism

R f0,E
∈ Hom(R(G),C

∗)

defined by

R f0,E
(V ) =

R(V, f0,E)

L∗
F(0,V )

.
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Let Q denote the algebraic closure of the rationals in the complex numbers and
let ΩQ denote the absolute Galois group of the rationals, which acts continuously on

R(G) and Q
∗
. The Stark conjecture asserts that

R f0,E
∈ HomΩQ

(R(G),Q
∗

) ⊆ Hom(R(G),C
∗).

In other words, R f0,E
(V ) is an algebraic number for each V and for all z ∈ ΩQ we

have z(R f0,E
(V )) = R f0,E

(z(V )). Since any two choices of f0,E differ by multiplication
by a Q[G]-automorphism, the truth of the conjecture is independent of the choice
of f0,E.

We shall be particularly interested in the case when G is abelian in which case
the following observation is important. Let Ĝ = Hom(G,Q

∗
) denote the set of

characters on G and let Q(χ) denote the field generated by the character values of a
representation χ.

Proposition 2.1 Let G be a finite abelian group. Then there exists an isomorphism

λG : HomΩQ
(R(G),Q

∗
)

∼=−→ Q[G]∗

given by

λG(h) =

∑

χ∈Ĝ

h(χ)eχ

where
eχ = |G|−1

∑

g∈G

χ(g)g−1 ∈ Q(χ)[G].

Proof This follows by combining the isomorphisms

Q[G]∗ ∼= K1(Q[G]) and K1(Q[G]) ∼= HomΩQ
(R(G),Q

∗
),

which are part of Fröhlich’s Hom-description machinery described in [14]. In fact

the second isomorphism, proved originally in [40], is true for arbitrary finite
groups G.

When G is abelian the proof is very simple. There is a well-known isomorphism
of rings [29, p. 648]

ψ : Q[G] −→
∏

χ∈Ĝ

Q = Map(Ĝ,Q)

given by ψ
(
∑

g∈G λgg
)

(χ) =
∑

g∈G λgχ(g). If ΩQ acts on Q and Ĝ in the canonical
manner then ψ is Galois equivariant and induces an isomorphism of ΩQ -fixed units
of the form

Q[G]∗ = (Q[G]∗)ΩQ ∼= Map
ΩQ

(Ĝ,Q
∗
) ∼= HomΩQ

(R(G),Q
∗
).

It is straightforward to verify that this isomorphism is the inverse of λG.
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2.2 Stickelberger Elements and Annihilators

Now we are going to turn our attention to some conjectures concerning annihilator
ideals which appear in [4, 10, 59]. Suppose that E/F is a Galois extension of number
fields with G = Gal(E/F) abelian. Suppose also that F is totally real and that E is

totally real or is a CM field (i.e., E is a totally imaginary quadratic extension of a
totally real field (see [57, p. 38]). Let S be a finite set of primes of OF including those
which ramify in E/F. The reciprocity map of class field theory sends the class of a
proper ideal prime to S, A ⊳ OF , to its Artin symbol (A, E/F) ∈ G. The associated

partial zeta function is defined for complex numbers s having Re(s) > 1 by

ζF,S(g, s) =

∑

(A,E/F)=g,
A prime to S

NA−s.

Here g ∈ G and the sum is over all ideals coprime to all primes in S. These functions
have a meromorphic continuation to the whole complex plane and the corresponding
Stickelberger elements are defined to be

ΘE/F,S(1− r) =

∑

g∈G

ζF,S(g, r) · g−1 ∈ C[G]

for r = 0,−1,−2,−3, . . . . These elements are characterised by the relation

χ(ΘE/F,S(1− r)) = LF,S(r, χ−1)

for all one-dimensional complex representations χ of G, where LF,S(r, χ−1) is the
Artin L-function with all the Euler factors associated to elements of S removed. By a

result of Klingen and Siegel [46] ΘE/F,S(1−r) lies in Q[G] for r = 0,−1,−2,−3, . . . .
Let µ(E) denote the roots of unity in E so that µ(E) = Tors K1(OE) in the notation

of §2.1. The Stickelberger elements ΘE/F,S(1) satisfy the integrality relation

annZ[G](µ(E)) ·ΘE/F,S(1) ⊆ Z[G]

where annZ[G](µ(E)) ⊳ Z[G] denotes the annihilator ideal of µ(E). When F = Q this
was proved in [27], for F real quadratic in [11] and in general in [8, 17].

The Brumer conjecture goes further than the mere integrality statement, asserting
that

annZ[G](Tors K1(OE,S ′)) ·ΘE/F,S(1) ⊆ annZ[G](Tors K0(OE,S ′))

where S ′ is the set of primes of E above those of S and OE,S ′ denotes the S ′-integers of
E. When F = Q this is Stickelberger’s Theorem ([9, p. 298]; [57, p. 94]). In general
there are only partial results, for example, [21].

3 Analogous Conjectures for Higher K-Groups

3.1 Higher Dimensional Stark Conjectures

Lots of interesting progress has been made by simply taking some phenomenon in-
volving class-groups or Picard groups, such as the analytic class number formula,
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and asking the question: What happens when K0 is replaced by Kn? The Lichten-
baum conjecture of §2.1 is a prime example. It was B. H. Gross [22] who first asked

this question about the Stark conjecture of §2.1.
For any negative integer r < 0 we have the Borel regulator [5, 24]

Rr
E : K1−2r(OE)⊗ R

∼=−→ Yr(E)+ ⊗ R

which is an R[G]-isomorphism. Now we mechanically imitate Stark’s procedure with
the Dirichlet regulator replaced by Borel’s. We choose a Q[G]-isomorphism of the
form

fr,E : K1−2r(OE)⊗Q
∼=−→ Yr(E)+ ⊗Q

so that
Rr

E · ( fr,E)−1 : Yr(E)+ ⊗ R
∼=−→ Yr(E)+ ⊗ R

is an R[G]-isomorphism. Then, as in §2.1, we form the Stark regulator defined, for
each representation V of G, by

R(V, fr,E) = det
(

(Rr
E · f −1

r,E )∗ ∈ AutC(HomG(V∨,Yr(E)+ ⊗ C))
)

.

Let S be a finite set of primes of F which includes all the primes which ramify

in E/F. Let L∗
F,S(r,V ) denote the leading term of the Taylor expansion of the Artin

L-function associated to S and V at s = r. We define a function R fr,E
given on a

finite-dimensional complex representation V by

R fr,E
(V ) =

R(V, fr,E)

L∗
F,S(r,V )

.

Then the higher-dimensional analogue of the Stark conjecture of §2.1 asserts that

R fr,E
∈ HomΩQ

(R(G),Q
∗
) ⊆ Hom(R(G),C

∗)

and the truth of this conjecture is independent of the choice of fr,E.
The calculations of Beilinson [3] (see also [6, §4.2], [24,38]) show that the higher-

dimensional analogue of the Stark conjecture is true when E/F is a subextension of

any abelian extension of the rationals (see the proof of Theorem 7.6).

3.2 Higher Dimensional Annihilator Conjectures

In this section we study the case E/F when the subfield F is the rational numbers.
In this case it is traditional (and will also be convenient) to use Dirichlet L-functions
[57]. As explained below, for our purposes this is equivalent to the use of Artin L-
functions LQ,S(r, χ) when S is the set of primes dividing the conductor of E.

Now let us examine the higher-dimensional analogues of the Brumer conjecture
of §2.2. These analogues were first posed by Coates and Sinnott in the case of abelian
extensions of the rationals and were expressed in terms of Stickelberger elements con-
structed from the Dirichlet L-function. Since we are going to return to this case as
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a source of crucial examples in §6.1 and Theorem 6.1 we shall recall the situation
of [10].

Suppose that E/Q is a finite Galois extension of number fields with abelian Galois
group G. Let f denote the non-archimedean part of the conductor (in the sense of
class field theory) of E/Q . That is, f is the smallest value of m such that E ⊆ Q(ξm)
where ξm = exp(2π

√
−1/m). Then, for each negative integer r = −1,−2,−3, . . . ,

there is an element of the rational group-ring, called a higher Stickelberger element,

Θ
Dir
E/Q (1− r) ∈ Q[G]

which is defined in the following manner. Any character χ : G −→ C∗ may be con-
sidered as a Dirichlet character [57, p. 29]. If χ has conductor equal to f then

χ(ΘDir
E/Q (1− r)) = L(r, χ−1)

where L(s, χ−1) denotes the Dirichlet L-function of the character χ−1 [57, Ch. 4].
More generally, if d is any divisor of f equal to the conductor of χ then

χ(ΘDir
E/Q (1− r)) = L(r, χ−1)

∏

p prime, p| f
(p,d)=1

((1− χ(p)−1 p−r).

The fact that higher Stickelberger elements exist in the rational group ring is a con-
sequence of a result of Klingen and Siegel [46].

Let c0 ∈ G denote complex conjugation and write e±r = (1 ± (−1)rc0)/2 for

the idempotents (with the obvious convention when c0 acts trivially) associated to
complex conjugation in the group ring of the Galois group. Since L(r, χ−1) = 0 if
and only if χ(c0) = (−1)r the element ΘDir

E/Q
(1− r) is not uniquely defined but

e−r ·ΘDir
E/Q (1− r) ∈ Q[G]

is uniquely characterised as the element taking the above non-zero values when

χ(c0) = (−1)r+1 and zero otherwise.
In particular, when E is totally real and r = −1,−3,−5, . . . , then c0 = 1 and

Θ
Dir
E/Q (1− r) ∈ Q[G]∗.

The relation between these Stickelberger elements and those defined using the
Artin L-function, as in §2.2, is described in the following manner. Suppose that f =

mls+1 where l is an odd prime, HCF(m, l) = 1 and the conductor of χ is dln with
HCF(d, l) = 1. When n ≥ 1

L(r, χ−1)
∏

p prime, p| f
(p,d)=1

((1− χ(p)−1 p−r) = LQ,Sml
(r, χ−1)

where Sml is the set of finite primes of F which divide ml. However, when n = 0, this
expression differs from LQ,Sml

(r, χ−1) by a factor (1 − χ−1(l)l−r) which is an l-adic
unit when r = −1,−2,−3, . . . .
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Define µ1−r(E) to be the Z[G]-module given by

µ1−r(E) = lim−→
M/Q

(µ(M)⊗
1−r

)G(M/E)

where the limit is taken over Galois extensions M/Q containing E. Hence µ1(E) =

µ(E) = Tors K1(OE) and the Quillen–Lichtenbaum conjectures in algebraic K-theory
predict that µ1−r(E) = Tors K1−2r(OE) [25, 42].

Assume now that E is totally real and that r = −1,−3,−5, . . . . Inspired by Stick-
elberger’s Theorem [57, p. 94], the Coates–Sinnott conjecture [10] (see also [11])

asserts that for any prime l

Θ
Dir
E/Q (1− r) · annZl[G](µ1−r(E)⊗ Zl) ⊆ annZl[G](K−2r(OE)⊗ Zl).

Actually the conjecture in [10] incorporated an extra factor denoted by wn+1(Q)
which we have omitted because it was unnecessary (at least when l is odd; see [49,

§1]). Also the annihilator of µ1−r(E) is known ([47, Proposition 7.2.5]; [9]).
When r = −2,−4,−6, . . . and E is a CM field a similar conjecture is posed in

[10] in which K−2r(OE)⊗Zl and ΘDir
E/Q

(1− r) are replaced by e−r ·K−2r(OE)⊗Zl and

e−r ·ΘDir
E/Q

(1− r), respectively.

The higher-dimensional analogue of the Brumer conjecture, posed and discussed
in [47, Ch. 6, 7], asserts for r = −1,−2,−3, . . . and E/F, S,ΘE/F,S(1 − r) as in §2.2

that
annZ[G](Tors K1−2r(OE,S ′)) ·ΘE/F,S(1− r) ⊆ annZ[G](K−2r(OE,S ′))

where S ′ is the set of primes of E above those in S and OE,S ′ denotes the S ′-integers

of E. When F = Q this is equivalent to the conjecture of [10] mentioned above (see
also [1]). Note that K−2r(OE,S ′) = Tors K−2r(OE,S ′), being a finite group.

4 The Canonical Fractional Ideal

4.1 As in §2.2, let E/F be a Galois extension of number fields with abelian Galoup group
G. Let S be a finite set of primes of OF including those which ramify in E/F. Through-
out this section we shall assume that the higher-dimensional Stark conjecture of §3.1

is true. Therefore, by Proposition 2.1, we have an element

R fr,E
∈ HomΩQ

(R(G),Q
∗
) ∼= Q[G]∗

which depends upon the choice of a Q[G]-isomorphism fr,E in §3.1 where r =

−1,−2,−3, . . . .
The following result is an observation concerning the naturality of the Stark con-

jecture.

Proposition 4.1 Suppose that E/F is an abelian extension for which the higher-di-

mensional Stark conjecture §3.1 holds and suppose that E/F1 is a subextension. If we
choose for F1 the set of primes S1 over those of S then the conjecture holds for E/F1 also.

Let M/F be an intermediate Galois extension of E/F. Then the conjecture is also true
for M/F and S if it is true for E/F and S in §3.1.
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Proof Let χ denote a character of G. We may choose the same fr,E for F and F1 then

LF1,S1
(r,ResG

Gal(E/F1)(χ)) = LF,S(r, χ⊗ IndG
Gal(E/F1)(1))

and

HomGal(E/F1)(ResG
Gal(E/F1)(χ)∨,Yr(E)) ∼= HomG((χ⊗ IndG

Gal(E/F1)(1))∨,Yr(E)).

Therefore, since (Rr
E · f −1

r,E )∗ is the same for F and F1, we find that

R fr,E
(ResG

Gal(E/F1)(χ)) = R fr,E
(χ⊗ IndG

Gal(E/F1)(1)).

Therefore the conjecture of §3.1 holds for E/F1 if it holds for E/F because

ResG
Gal(E/F1) : R(G) −→ R(Gal(E/F1))

is surjective.

The proof for intermediate extensions M/F is similar and will be left to the reader.

4.2 DetP(α)

Here is a simple, probably familiar, algebraic construction. Let l be a prime and G a
finite abelian group. For a, b ∈ Ql[G] write a ≃ b in Ql[G] if and only if a = ub for
some u ∈ Zl[G]∗. Suppose that P is a finitely generated projective Zl[G]-module and

that α ∈ EndQl[G](P ⊗ Ql). Choosing a finitely generated Zl[G]-module R such that
P⊕ R is free and taking the determinant of α⊕ 1 with respect to a Zl[G]-basis yields
a well-defined element

DetP(α) ∈ Ql[G]/ ≃ .
Sometimes it will be convenient to replace Zl[G], Ql and Ql[G] by Z[1/2][G], Q and
Q[G], respectively, in the construction of DetP(α). Write e±r = ((1 ± (−1)rc0)/2).
The proof of the following result is straightforward.

Theorem 4.2

(i) In §7.1 DetP(α) depends only on α.
(ii) If α is an automorphism then detP(α) defines an element of

Ql[G]∗/Zl[G]∗ ∼= K0(Zl[G],Ql)

corresponding to [P, α, P]. Here the isomorphism is the one described in §7.1.
(iii) If l is an odd prime and c0 ∈ G has order two with P = e±r ·Zl[G]n ∼= (Zl[G]/e∓r )n

then under the canonical map

Ql[G]/ ≃−→
(

(Ql[G]/((1 ∓ c0)/2))/≃
)

×
(

Ql[G]/((1 ± c0)/2))/≃
)

DetP(α) maps to (det(α), 1), where det(α) is the determinant of α computed with
respect to a (Zl[G]/((1 ∓ c0)/2))-basis for P.
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(iv) Parts (i) and (iii) remain true if Zl[G], Ql and Ql[G] are replaced by Z[1/2][G],
Q and Q[G], respectively.

Definition 4.3 (The fractional ideal Jr
E) Let E/F be a Galois extension of number

fields with abelian Galois group G. When r = −1,−2,−3, . . . the lattice Yr(E) is
a free Z[G]-module as is seen by identifying Yr(E) with the G(L/E)-fixed elements

of Yr(L) for some Galois extension of the rationals L containing E. If c ∈ G(C/R)
denotes complex conjugation acting on Yr(E) =

∑

Σ(E) (2πi)−rZ by acting simulta-

neously on Σ(E) and on (2πi)−rZ then Yr(E) becomes a Z[G × G(C/R)]-module.
Therefore Yr(E)+ ⊗ Z[1/2] is a finitely generated, projective Z[1/2][G]-module. By
the construction of §4.2, each Q[G]-endomorphism of Yr(E)+ ⊗ Q gives rise to an
element DetYr(E)+⊗Z[1/2](α) ∈ Q[G] which is well defined up to multiplication by a

unit of Z[1/2][G].
Define I fr,E

to be the (finitely generated) Z[1/2][G]-submodule of Q[G] generated
by all the elements DetYr (E)+⊗Z[1/2](α) where α ∈ EndQ[G](Yr(E)+ ⊗ Q) satisfies the
integrality condition

α · fr,E(K1−2r(OE)) ⊆ Yr(E)+.

Define Jr
E to be the finitely generated Z[1/2][G]-submodule of Q[G] given by

Jr
E = I fr,E

· τ (R−1
fr,E

)

where τ is the automorphism of the group-ring induced by sending each g ∈ G to
its inverse. Recall that throughout this section (see §4.1) we are assuming the validity
of the higher-dimensional Stark conjecture of §3.1 in order for R fr,E

∈ Q[G]∗ to be
defined.

Example 4.4 (i) In the situation of §4.1 and Definition 4.3 suppose that E is totally
real and r = −1,−2,−3, . . . . In this case Yr(E)+ is a free Z[G]-module of rank equal
to [F : Q] when r is even and is trivial when r is odd.

Assume for the moment that r = −1,−3,−5, . . . . Bearing in mind that the
determinant of the zero automorphism of the zero module is 1, for each character χ
we have

1 = R(χ, fr,E) = det((Rr
E · f −1

r,E ))∗ = det
(

0 ∈ AutC(HomG(χ−1, 0))
)

.

Next we form

R fr,E
(χ) =

R(χ, fr,E)

L∗
F,S(r, χ)

= LF,S(r, χ)−1,

since LF,S(r, χ) is non-zero.
Therefore Jr

E is the Z[1/2][G]-submodule of Q[G] given by

Jr
E = Z[1/2][G] · τ (R−1

fr,E
) = Z[1/2][G] · (χ 7→ LF,S(r, χ−1)).

Hence Jr
E is the principal Z[1/2][G]-submodule generated by the Stickelberger ele-

ment ΘE/F,S(1− r) of §2.2

Jr
E = Z[1/2][G]〈ΘE/F,S(1− r)〉 ∈ Q[G].
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This fact can also be deduced directly from Theorem 4.2(iii) and (iv).

(ii) In the situation of §4.1 and Definition 4.3 suppose that E is a CM field, F totally

real and c0 ∈ G denotes complex conjugation. Then c0 acts on Yr(E)+ like multiplica-
tion by (−1)r . Hence e−r ·Yr(E)+ = 0. Remembering once again that the determinant
of the zero automorphism of the zero module is 1 or by means of Theorem 4.2(iii)
and (iv) we find that

I f f ,E
· e−r = Z[1/2][G] · e−r .

Therefore, since 1 = R(χ, fr,E) for all characters χ such that χ(c0) = (−1)r+1, we
find that

Jr
E · e−r = I fr,E

e−r · τ (R−1
fr,E

)

= Z[1/2][G]e−r · τ (R−1
fr,E

)

= Z[1/2][G]e−r ·ΘE/F,S(1− r).

Notice that ΘE/F,S(1− r))e−r ∈ Q[G] is characterised by the relation that

χ(ΘE/F,S(1− r))e−r = LF,S(r, χ−1)

for all characters of G satisfying χ(c0) = (−1)r+1 and is zero otherwise.

Proposition 4.5 Let E/F be a Galois extension of number fields with abelian Galois
group G. Then, assuming that the higher-dimensional Stark conjecture of §3.1 holds

for E/F, the finitely generated Z[1/2][G]-submodule of Q[G], Jr
E defined in §4.2, is

independent of the choice of fr,E.

Proof Changing fr,E to another Q[G]-module isomorphism gr,E in §3.1 changes

Rr
E( fr,E)−1 to Rr

E( fr,E)−1 fr,E(gr,E)−1 and

fr,E(gr,E)−1 ∈ AutR[G](Yr(E)+ ⊗ R)

is a scalar extension of a Q[G]-module isomorphism u of Yr(E)+ ⊗Q . Hence

R(V, gr,E) = R(V, fr,E) det(u∗ ∈ AutC

(

HomG(V∨,Yr(E)+ ⊗ C))
)

.

Now suppose that P = Yr(E)+ ⊗ Z[1/2], which is a finitely generated, projec-
tive Z[1/2][G]-module (see Definition 4.3) and suppose that R is another finitely
generated projective Z[1/2][G]-module such that there is a Z[1/2][G]-module iso-
morphism of the form

φ : P ⊕ R
∼=−→ Z[1/2][G]n

as in §4.2. Then

det
(

u∗ ∈ AutC(HomG(V∨,Yr(E)+ ⊗ C))
)

= det
(

(u⊕ 1)∗ ∈ AutC(HomG(V∨, (P ⊕ R)⊗ C))
)

= det
(

(φ(u⊕ 1)φ−1)∗ ∈ AutC(HomG(V∨,Z[1/2][G]n ⊗ C))
)

.
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Now consider the set of elements α ∈ EndQ[G](P ⊗ Q) as in Definition 4.3 such
that

α · fr,E(K1−2r(OE)) ⊆ Yr(E)+ ⊆ Yr(E)+ ⊗Q.

This set is exactly those elements β = α · u such that

β · gr,E(K1−2r(OE)) ⊆ Yr(E)+ ⊆ Yr(E)+ ⊗Q,

since α fr,E = (α · u)(gr,E)−1. Therefore detP(β) = detP(α) detP(u) and by Theorem

4.2(ii) the difference between the images of detP(β) and detP(α) in Q[G]∗

Z[1/2][G]∗
corre-

sponds to the factor

V 7→ det((φ(u⊕ 1)φ−1)∗ ∈ AutC

(

HomG(V,Z[1/2][G]n ⊗ C))
)

under the isomorphismλG of Proposition 2.1. The automorphism τ on Q[G]∗ trans-
forms this function (via λG) to

V 7→ det((φ(u⊕ 1)φ−1)∗ ∈ AutC

(

HomG(V∨,Z[1/2][G]n ⊗ C))
)

so that

Igr,E
· τ (R−1

gr,E
) = I fr,E

det
P

(u)τ (det(u∗)−1)τ (R−1
fr,E

)

= I fr,E
τ (R−1

fr,E
)τ (det(u∗))τ (det(u∗)−1)

= I fr,E
τ (R−1

fr,E
),

as required. Here we have used the fact that λG is the inverse of the reduced norm
homomorphism which is sends the group-ring element u to the function det(u∗), as
explained in [14, II pp. 332–333].

5 Annihilators, A New Conjecture

5.1 As in §2.2, let E/F be a Galois extension of number fields with abelian Galois group
G. Let S be a finite set of primes of OF including those which ramify in E/F and let S ′

denote the primes of E above those of S. Throughout this section we shall assume that
the higher-dimensional Stark conjecture of §3.1 is true. Therefore from §4.2 we have
a “fractional ideal” (that is, a well-defined, finitely generated Z[1/2][G]-module)

Jr
E ⊆ Q[G]

for each negative integer r = −1,−2,−3, . . . .
Now we come to the most important part of the paper, a conjecture for which

some supporting evidence will be presented in §6.1 and Theorem 6.1.

Conjecture 5.1 Let l be an odd prime. Then, in the situation and notation of §5.1,

(

annZl[G](Tors K1−2r(OE,S ′)⊗ Zl) · Jr
E

)

∩ Zl[G] ⊆ annZl[G]

(

K−2r(OE,S ′)⊗ Zl

)

.
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Remark 5.2 In Conjecture 5.1 when E is totally real and r = −1,−3,−5, . . . then,
by Example 4.4(i),

Jr
E = Z[G]〈ΘE/F,S(1− r)〉.

In addition, the Quillen–Lichtenbaum conjecture (see §6.1 and the footnote follow-

ing Conjecture 1.1 in the Introduction) predicts that

µ1−r(E)⊗ Zl
∼= Tors K1−2r(OE,S ′)⊗ Zl

so that

annZl[G](Tors K1−2r(OE,S ′)⊗ Zl) · Jr
E

is expected to contain

Θ
Dir
E/Q (1− r) · annZl[Gal(E/Q)](µ1−r(E)⊗ Zl)

of §3.2. By [17] (see also [9]) this finitely generated Zl[G]-submodule of Ql[G] actu-

ally lies in Zl[G].

In any case, this discussion shows that Conjecture 5.1 coincides with one of the
well-known conjectures of §2.2 when E is totally real and r = −1,−3,−5, . . . .

On the other hand, if E is totally real in §5.1 and r = −2,−4,−6, . . . then µ1−r(E)

is trivial because the action of complex conjugation on the Zl-module µ(M)⊗
1−r ⊗Zl

of §3.2 is multiplication by (−1)1−r . In this case the Quillen–Lichtenbaum conjecture
predicts that Tors K1−2r(OE,S ′)⊗ Zl is trivial and Conjecture 5.1 reduces to

Jr
E ∩ Zl[G] ⊆ annZl[G](K−2r(OE,S ′)⊗ Zl).

Question 5.3 (Integrality) Perhaps, by analogy with the totally real case when r is

odd,

annZl[G](Tors K1−2r(OE,S ′)⊗ Zl) · Jr
E ⊳ Zl[G]

in general? That is, perhaps the intersection with Zl[G] is unnecessary in Conjecture
5.1? Perhaps

Jr
E ⊆ annZl[G](K−2r(OE,S ′)⊗ Zl)

when E is totally real in §5.1 and r = −2,−4,−6, . . . ?

6 Supporting Evidence

6.1 Throughout this section let l be an odd prime, m a positive integer prime to l and r =

−1,−2,−3,−4,−5, . . . . We are going to study Conjecture 5.1 for the cyclotomic

extension Q(ξmls+1 )/Q where s ≥ 0 and ξt = e2π
√
−1/t . We shall study the case where

OE,S is equal to Z[ξmls+1 ][1/ml], to get from this case to a larger set S is straightforward

using the localisation exact sequence.

For ǫ = 1, 2 there are étale cohomology Chern classes [15, 16] of the form

K2−2r−ǫ(Z[ξmls+1 ][1/ml])⊗ Zl
c1−r,ǫ−→ Hǫ

ét

(

Spec(Z[ξmls+1 ][1/ml]); Zl(1− r)
)
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which the Quillen–Lichtenbaum conjecture predicts to be isomorphisms. This was
proved for K2 in [52] and for K3 in [31, 36]. As a corollary of the fundamental re-

sults of Voevodsky [54, 55], the corresponding Chern classes when l = 2 are nearly
isomorphisms in all dimensions [42]. Voevodsky’s method requires the existence of
suitable “norm varieties” which is not yet established for all odd primes (however, see
footnote following Conjecture 1.1 in the Introduction).

Observe that, if c1−r,1 is an isomorphism, we have

Tors(K1−2r(Z[ξmls+1 ])⊗ Zl) ∼= Tors H1
ét

(

Spec(Z(ξmls+1 )[1/ml]); Zl(1− r)
)

∼= H0
ét

(

Spec(Z(ξmls+1 )[1/ml]); (Ql/Zl)(1− r)
)

∼= µ1−r(Q(ξmls+1 ))

where µ1−r(E) is as in §3.2 and Question 5.2.

We are now almost ready to state our main result. Since we are studying cyclo-
tomic fields I shall follow the example of [10] and state the result in terms of Dirichlet
L-functions. We shall need to recall the corresponding higher Stickelberger elements
and leading terms.

Suppose that L/Q is a finite Galois extension of number fields with abelian Ga-
lois group, G. Recall from §3.2, if c0 denotes complex conjugation and e±r = (1 ±
(−1)rc0)/2, for each negative integer r = −1,−2,−3, . . . , there is a unique element
of the rational group-ring (cf. §2.2)

Θ
Dir
L/Q (1− r) ∈ e−1

r ·Q[G]

characterised by the relation

χ(ΘDir
L/Q (1− r)) = L(r, χ−1)

∏

p prime, p| f
(p,d)=1

(1− χ(p)−1 p−r).

Here χ : G → C∗ is a character whose conductor, considered as a Dirichlet charac-
ter, is equal to d, f is the conductor of the abelian field L and L(s, χ−1) denote the

Dirichlet L-function of χ−1.
We have 0 = L(r, χ−1) precisely when χ(c0) = (−1)r , c0 being complex conjuga-

tion as in Question 5.2. In this case there is a zero of order one and the leading term
is defined by the formula

L∗(r, χ) =
d

dz
L(z, χ)|z=r ·

∏

p prime p|ml,
(p, f (χ))=1

(1− χ(σp)−1 p−r).

Now let fr,Q(ξmls+1 ), I fr,Q(ξ
mls+1 )

and R(χ, fr,Q(ξmls+1 )) be as in §2, §4.1 and Definition

4.3. Imitating Definition 4.3, set

RDir
fr,Q(ξ

mls+1 )
(χ) =

R(χ, fr,Q(ξmls+1 ))

L∗(r, χ)
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and
Jr

Dir,Q(ξmls+1 ) = I fr,Q(ξ
mls+1 )
· τ ((RDir

fr,Q(ξ
mls+1 )

)−1).

It is important to realise that, although in general the fractional ideal of Definition
4.3 was constructed under the assumption of the higher-dimensional Stark conjec-
ture of §3.1, in the case of abelian extensions of the rationals the calculations of [3]
(see also [6] and [24]) show that the higher-dimensional Stark conjecture is true (see

the proofs of Theorem 7.6 and [49, Theorem 4.9]).

Theorem 6.1 Let l be an odd prime. Then, in the situation and notation of §6.1,

(annZl[G](µ1−r) · Jr
Dir,Q(ξmls+1 )) ∩ Zl[G]

⊆ annZl[G]

(

H2
ét

(

Spec(Z[ξmls+1 ][1/ml]); Zl(1− r)
))

where µ1−r = µ1−r(Q(ξmls+1 ))⊗ Zl as in §6.1.

Remark 6.2 It is possible to deduce from Theorem 6.1 the corresponding result
in which Jr

Dir,Q(ξmls+1 ) is replaced by Jr
Q(ξmls+1 ), in the spirit of Conjecture 5.1. The

passage from Dirichlet L-functions to Artin L-functions uses the relation between
LQ,Sml

(r, χ−1) and L(r, χ−1) which is explained in §3.2.

Proof of Theorem 6.1 Arguing as in Example 4.4(ii) we have

Jr
Dir,Q(ξmls+1 ) = Z[1/2][G] · e−r ·ΘDir

Q(ξmls+1 )/Q (1− r) + I fr,Q(ξ
mls+1 )
· e+

r · τ (RDir
fr,Q(ξ

mls+1 )
)−1.

Furthermore it is shown in the proof of Theorem 7.6 that fr,Q(ξmls+1 ) may be chosen
so that

RDir
fr,Q(ξ

mls+1 )
· e+

r = e+
r .

Making this choice ensures that

Jr
Dir,Q(ξmls+1 ) = Z[1/2][G] · e−r ·ΘDir

Q(ξmls+1 )/Q (1− r) + I fr,Q(ξ
mls+1 )
· e+

r .

Since c0 acts on µ1−r like multiplication by (−1)r+1, we have

annZl[G](µ1−r) = Zl[G] · e+
r + annZl[G](µ1−r) · e−r

and therefore
(annZl[G](µ1−r) · Jr

Dir,Q(ξmls+1 )) ∩ Zl[G]

is generated by

e−r ·ΘDir
Q(ξmls+1 )/Q(1− r) annZl[G](µ1−r)) ∩ Zl[G]

and
(I fr,Q(ξ

mls+1 )
· e+

r ) ∩ Zl[G]

which both lie in annZl[G](H2
ét(Spec(Z[ξmls+1 ][1/ml]); Zl(1 − r))), by §7.2 and Theo-

rem 7.6.
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7 Annihilators and K0(Z[G],Ql)

The results of this section extend the results for the totally real subfield of a cyclotomic
field, proved in [49], to the full cyclotomic field in order to establish the results which
were required in the proof of Theorem 6.1.

7.1 Let l be a prime, G a finite group and let f : Zl[G] → Ql[G] denote the homomor-
phism of group-rings induced by the inclusion of the l-adic integers into the fraction

field, the l-adic rationals. Write K0(Zl[G],Ql) for the relative K-group of f , denoted
by K0(Zl[G], f ) in [51, p. 214] (see also [47, Definition 2.1.5]). By [51, Lemma 15.6]
elements of K0(Zl[G],Ql) are represented by triples [A, g,B], subject to relations de-
scribed in [51], where A,B are finitely generated, projective Zl[G]-modules and g is

a Ql[G]-module isomorphism of the form g : A ⊗Zl
Ql

∼=−→ B ⊗Zl
Ql. This group fits

into a localisation sequence of the form [41, §5 Theorem 5] (see also [20, p. 233])

K1(Zl[G])
f∗−→ K1(Ql[G])

∂−→ K0(Zl[G],Ql)
π−→ K0(Zl[G])

f∗−→ K0(Ql[G]).

Assume now that G is abelian. In this case K1(Ql[G]) ∼= Ql[G]∗ because Ql[G] is
a product of fields and K1(Zl[G]) ∼= Zl[G]∗ [14, I, p. 179, Theorem (46.24)]. Under
these isomorphisms f∗ is identified with the canonical inclusion.

The homomorphism, K0(Zl[G])
f∗−→ K0(Ql[G]), is injective for all finite groups G

[45, Theorem 34, p. 131], [14, II, p. 47, Theorem 39.10]. Thus the localisation se-
quence yields an isomorphism of the form

K0(Zl[G],Ql) ∼=
Ql[G]∗

Zl[G]∗

when G is abelian. From the explicit description of ∂ [51, p. 216] this isomorphism
sends the coset of α ∈ Ql[G]∗ to

[

Zl[G], (α · −),Zl[G]
]

. The inverse isomorphism
sends [A, g,B], where A and B may be assumed to be free Zl[G]-modules, to the coset
of det(g) ∈ Ql[G]∗ with respect to any choice of Zl[G]-bases for A and B.

We shall be particularly interested in the following source of elements of

K0(Zl[G],Ql). Let l be a prime and let G be a finite abelian group. Suppose that

0→ Fk
dk−→ Fk−1

dk−1−−→ · · · d2−→ F1
d1−→ F0 → 0

is a bounded complex of finitely generated, projective Zl[G]-modules (i.e., a perfect
complex of Zl[G]-modules), having all its homology groups finite. As usual, let
Zt = Ker(dt : Ft → Ft−1) and Bt = dt+1(Ft+1) ⊆ Ft denote the Zl[G]-modules of
t-dimensional cycles and boundaries, respectively. We have short exact sequences of

the form

0→ Bi
φi−→ Zi → Hi(F∗)→ 0

and

0→ Zi+1
ψi+1−−→ Fi+1

di+1−−→ Bi → 0.
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Applying (−⊗Ql) we obtain isomorphisms

φi : Bi ⊗Ql

∼=−→ Zi ⊗Ql

and we may choose Ql[G]-module splittings of the form

ηi : Bi ⊗Ql → Fi+1 ⊗Ql

such that (di+1⊗ 1)ηi = 1 : Bi ⊗Ql → Bi ⊗Ql. Then, using these splittings, we form

a Ql[G]-module isomorphism of the form

X : ⊕ j F2 j ⊗Ql

∼=−→ ⊕ jF2 j+1 ⊗Ql.

The explicit formula for X on (w0,w2, . . .) ∈ ⊕ jF2 j is given by

X(w0,w2, . . .) =

(

η(w0) + d2(w2), η2

(

w2 − η1(d2(w2))
)

+ d4(w4), . . .

η2t

(

w2t − η2t−1(d2t (w2t ))
)

+ d2t+2(w2t+2), . . .
)

.

This construction defines a class, [⊕ j F2 j ,X,⊕ jF2 j+1], in K0(Zl[G],Ql) which is well

known to be independent of the choices of the splittings used to define X [51, Ch. 15]
(see also [47, Propositions 2.5.35, 7.1.8]).

We shall denote by

det(X) ∈ Ql[G]∗

Zl[G]∗

the element which corresponds to [⊕ jF2 j ,X,⊕ jF2 j+1] ∈ K0(Zl[G],Ql) under the
isomorphism mentioned above. We may modify the Fi to be free finitely gen-

erated Zl[G]-modules without changing the homology modules or the class in
K0(Zl[G],Ql). Then det(X) is explicitly represented by the determinant of the Ql[G]-
isomorphism X with respect to any Zl[G]-basis for F∗.

Let us recall [35, Appendix] (see also [58]) the properties of the Fitting ideal (re-

ferred to as the initial Fitting invariant in [39]). Let R be a commutative ring with
identity and let M be a finitely presented R-module. In our applications M will actu-
ally be finite. Suppose that M has a presentation of the form

Ra f−→ Rb → M → 0

with a ≥ b. Then the Fitting ideal of the R-module M, denoted by FR(M), is the ideal

of R generated by all b× b minors of any matrix representing f .
The Fitting ideal FR(M) is independent of the presentation chosen for M and is

contained in the annihilator ideal of M, FR(M) ⊆ annR(M). If M is generated by
n elements then annR(M)n ⊆ FR(M) and if π : M → M ′ is a surjection of finitely

presented R-modules then FR(M) ⊆ FR(M ′).
The following result yields relations between the annihilator ideals and Fitting

ideals of the homology modules in previous example in the special case when each
Hi(F∗) is finite and zero except for i = 0, 1.
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Theorem 7.1 ([49, Theorem 2.4]) Let G be a finite abelian group and l a prime. Sup-
pose that

0→ Fk
dk−→ Fk−1

dk−1−−→ · · · d2−→ F1
d1−→ F0 → 0

is a bounded, perfect complex of Zl[G]-modules, as in Example 2.1, having Hi(F∗) finite
for i = 0, 1 and zero otherwise. Let

[⊕ jF2 j ,X,⊕ jF2 j+1] ∈ K0(Zl[G],Ql) ∼=
Ql[G]∗

Zl[G]∗

be as in §7.1.

(i) If ti ∈ annZl[G](Hi(F∗)),

det(X)(−1)i

tmi

i ∈ annZl[G](H1−i(F∗)) ⊳ Zl[G]

for i = 0, 1. Here m0,m1 is the minimal number of generators required for the
Zl[G]-module H0(F∗),Hom(H1(F∗),Ql/Zl), respectively.

(ii) If the Sylow l-subgroup of G is cyclic, then in (i) annZl[G](H1−i(F∗)) may be re-
placed by FZl[G](H1−i(F∗)).

The following result gives a perfect complex to which we may apply Theorem 7.1.

Theorem 7.2 ([49, Theorem 4.3, Proposition 4.9]) Let l be an odd prime, m a posi-

tive integer not divisible by l, s = 0, 1, 2, . . . and r = −1,−2,−3, . . . . Let Xl,m,s denote
Spec(Z[ξmls+1 ][1/ml]) and G = Gal(Q(ξmls+1 )/Q).

(i) There exists a bounded perfect cochain complex P(r)∗ of Zl[G]-modules such that
Hi(P(r)∗) is finite and is zero when i 6= 1, 2.

(ii) Furthermore, in the notation of Theorem 7.1, the determinant of this complex

satisfies

det(X)−1
= e+

r − e−r ·ΘDir
Q(ξmls+1 )/Q (1− r) ∈ Ql[G]∗

Zl[G]∗
.

(iii) There is a Zl[G]-module isomorphism

H2(P(r)∗) ∼= H2
ét(Xl,m,s,Zl(1− r)).

(iv) There is a short exact sequence

0→ Zl[G]/(e−r )
φ−→ H1

ét(Xl,m,s,Zl(1− r))→ H1(P(r)∗)→ 0.

Elements in the image of φ are usually called “cyclotomic elements”.

Remark 7.3 Here is a sketch of how Theorem 7.2 is derived from [6]. This “de-
scent” construction is quite delicate and is given in considerable detail in [49, Theo-
rem 4.3, Proposition 4.9]. The point of this digressionary remark is to make clear the
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obstructions to passing from perfect complexes over the Iwasawa algebra to perfect
complexes over Z[G] while still controlling their determinant and cohomology.

If ξt = e2πi/t , we have a canonical projection of the form Gal(Q(ξmls+1 )/Q) →
Gal(Q(ξmls )/Q) and, taking the inverse limit over the induced homomorphisms of
l-adic group-rings, we define

Λm = lim←−
n

Zl[Gal(Q(ξmln+1 )/Q)].

Write Q(Λm) for the total quotient ring of Λm [18, p. 60]. In [6, §7 (48)] a bounded

perfect complex of Λm-modules, denoted by Cm(r), is constructed for which
Cm(r) ⊗Λm

Q(Λm) is acyclic [6, Lemma 7.2]. This complex defines a class in
K0(Λm,Q(Λm)). Furthermore, [6, Theorem 7.1] calculates the associated determi-

nant, det(X)−1 ∈ Q(Λm)∗/Λ∗
m. Unfortunately, there is no canonical homomorphism

from Q(Λm)∗/Λ∗
m to Ql[G]∗/Zl[G]∗, because non-divisors of zero in Λm may map

to divisors of zero in Ql[G].

Let Sm ⊂ Λm denote the multiplicative subset of elements whose images in
Zl[Gal(Q(ξmls+1 )/Q)] are non-divisors of zero for all s ≥ 0. In [49, §4.6–4.8] it is

shown that Cm(r) ⊗Λm
ΛmS−1

m is acyclic, which means that the associated determi-
nant det(X)−1 actually lies in (ΛmS−1

m )∗/Λ∗
m.

Furthermore, as explained in [49, Theorem 4.], one may pass to the quotient com-
plex P(r)∗ = Cm(r) ⊗Λm

Zl[G], which is a perfect complex of Zl[G]-modules with
finite cohomology groups, which are calculated in [49, Theorem 4.9]. The coho-

mology calculation is not absolutely straightforward because, of course, taking coho-
mology does not commute with descent. The determinant of P(r)∗ is computed by
naturality from the calculations of [6].

Now we shall apply Theorem 7.1 to the complex P(r)∗ of Theorem 7.2.

Theorem 7.4 Let l be an odd prime, m a positive integer prime to l, and r = −1,−2,
−3,−4,−5, . . . as in §6.1. Then, in the notation of §7.1 and §7.2:

(i) If ti ∈ annZl[G](H2−i(P(r)∗)), the element

(

e+
r −Θ

Dir
Q(ξmls+1 )/Q (1− r)e−r

) (−1)i+1

tmi

i

lies in annZl[G](H1+i(P(r)∗)) for i = 0, 1.
Here m1 = max(m1,+,m1,−) and m0,m1,± is the minimal number of generators

required for the Zl[G]-module

H2(P(r)∗), Hom(H1(P(r)∗)±,Ql/Zl),

respectively, and A± is the±1-eigenspace of complex conjugation.

(ii) If l does not divide m− 1 then in (i) annZl[G](H1+i(P(r)∗)) may be replaced by the
Fitting ideal FZl[G](H1+i(P(r)∗)).

(iii) Furthermore, m1 = 1.
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Proof Without changing det(X), we may replace P(r)∗ by an equivalent perfect
complex of Zl[G]-modules of the form (see [49, §2.10])

0→ P(r)0 → P(r)1 → P(r)2 → 0.

Then we may apply Theorem 7.1 to each of the complexes F∗ = P(r)2−∗,± to prove
parts (i) and (ii) immediately.

It remains to prove part (iii). Since l is odd, it suffices to show that the Pontrjagin
duals Hom(H1(P(r)∗)±,Ql/Zl) of each of the eigenspaces of complex conjugation

are generated as a Zl[G]-module by one element.
From the long exact étale cohomology sequence associated to

Zl(1− r)→ Ql(1− r)→ (Ql/Zl)(1− r)

we see that

Tors H1
ét(Xl,m,s,Zl(1− r)) ∼= H0

ét(Xl,m,s, (Ql/Zl)(1− r)) ∼= µ1−r(Q(ξmls+1 ))⊗ Zl

on which complex conjugation acts as multiplication by (−1)1−r . Dividing out the

short exact sequence of §7.2 by Tors H1
ét(Xl,m,s,Zl(1 − r)) we obtain a short exact

sequence of the form

0→ Zl[G(Q(ξmls+1 )/Q)]/(e−r )
φ−→ H1

ét(Xl,m,s,Zl(1− r))

Tors H1
ét(Xl,m,s,Zl(1− r))

→ H1(P(r)∗)

Tors H1
ét(Xl,m,s,Zl(1− r))

→ 0.

The homomorphism induced by φ of §7.2 is denoted by cm(r) in [6]. Since complex

conjugation acts like multiplication by (−1)r on the left-hand module it must also
act by (−1)r on the central module, since φ induces a rational isomorphism. Hence
if we set

H1
cyclo(Xl,m,s) =

H1(P(r)∗)

Tors H1
ét(Xl,m,s; Zl(1− r))

(the notation arises from the image of φ consisting of the so-called cyclotomic ele-
ments) then H1

cyclo(Xl,m,s) is the (−1)r eigenspace of the finite group H1(P(r)∗) and

the finite cyclic group µ1−r(Q(ξmls+1 ))⊗ Zl is the (−1)1−r-eigenspace. Of course, the
Pontrjagin dual of a finite cyclic group is again a cyclic group, so it remains to show
that

Ext1
Zl

(H1
cyclo(Xl,m,s),Zl) ∼= Hom(H1

cyclo(Xl,m,s),Ql/Zl)

is generated as a Zl[G]-module by one element.

We have a short exact sequence of Zl[G]/(e−r )-modules

0→ HomZl

( H1
ét(Xl,m,s,Zl(1− r))

Tors H1
ét(Xl,m,s,Zl(1− r))

,Zl

)

→ HomZl
(Zl[G]/(e−r ),Zl)→ Ext1

Zl
(H1

cyclo(Xl,m,s),Zl)→ 0
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in which the central Zl[G]-module is generated by one element, because Zl[G]/(e−r )
is self-dual. Hence the right-hand Zl[G]-module is also generated by one element, as

required.
To see that Zl[G]/(1 ± c) ∼= Zl[G](1 ∓ c) is a self-dual Zl[G]-module when G is

abelian, l is an odd prime and c2 = 1, recall that Zl[G] is self-dual as a module over

itself by means of the bilinear form

Zl[G]× Zl[G]→ Zl

which sends (x, y) to the coefficient of the identity element in the product xτ (y) ∈
Zl[G]. Here τ (

∑

g∈G ngg) =
∑

g∈G ngg−1. The submodules

Zl[G](1 + c) and Zl[G](1− c)

are orthogonal complements with respect to this bilinear form, which easily implies
the required self-duality.

Corollary 7.5 In the situation and notation of Theorem 7.4

{tm0

0 | t0 ∈ annZl[G](H2(P∗(r)))} ⊆ zm,r · annZl[G](H1(P∗(r)))

⊆ annZl[G](H2(P∗(r)))

where, in Ql[G]∗,

zm,r = e+
r −Θ

Dir
Q(ξmls+1 )/Q (1− r) · e−r .

7.2 From the proof of Theorem 7.4

H1(P∗(r)) = H1
cyclo(Xl,m,s)⊕ (µ1−r(Q(ξmls+1 ))⊗ Zl)

where complex conjugation acts like multiplication by (−1)r on the first summand
and by (−1)r+1 on the second.

Now suppose that t ∈ annZl[G](µ1−r(Q(ξmls+1 ))⊗ Zl) then

t · e−r ∈ annZl[G](H1(P∗(r)))

and, by Corollary 7.5,

t · e−r
(

e+
r −Θ

Dir
Q(ξmls+1 )/Q(1− r)e−r

)

= −t · e−r ·ΘDir
Q(ξmls+1 )/Q(1− r)

lies in annZl[G](H2(P∗(r))). Therefore

annZl[G](µ1−r(Q(ξmls+1 ))⊗ Zl) ·ΘDir
Q(ξmls+1 )/Q (1− r) · e−r

⊆ annZl[G]

(

H2
ét(Xl,m,s,Zl(1− r))

)

.
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Similarly, if t ′ ∈ annZl[G](H
1
cyclo(Xl,m,s)) then

t ′ · e+
r ∈ annZl[G]

(

H1(P∗(r))
)

and
t ′ · e+

r

(

e+
r −Θ

Dir
Q(ξmls+1 )/Q (1− r)e−r

)

= t ′ · e+
r

lies in annZl[G](H2(P∗(r))). Therefore

annZl[G](H
1
cyclo(Xl,m,s)) · e+

r ⊆ annZl[G]

(

H2
ét(Xl,m,s,Zl(1− r))

)

.

The following result explains the relation between the fractional ideal of Defini-
tion 4.3 and the annihilator ideal of H1

cyclo(Xl,m,s).

Theorem 7.6 In the notation of §4.2 and Theorem 7.4, Corollary 7.5 and §7.2

Jr
Dir,Q(ξmls+1 ) ∩ Zl[G] · e+

r ⊆ annZl[G](H
1
cyclo(Xl,m,s)).

Proof First we show that fr,Q(ξmls+1 ) may be chosen so that

RDir
fr,Q(ξ

mls+1 )
· e+

r = e+
r

in (Q[G]/(e−r )∗.
It is known that K1−2r(Xl)⊗Q is the free Q[G]/(e−r )-module on the Beilinson ele-

ment, which is denoted by (−r)! (mls+1)−rbr(mls+1) in the notation of [6]. Therefore

we may choose fr to satisfy

fr((−r)! (mls+1)−rbr(mls+1)) = yr ∈ Yr(Q(ξmls+1 ))+ ⊗Q

where, in the notation of [6, §8]), Yr(Q(ξmls+1 ))+ ⊗ Z[1/2] is a free Z[1/2][G]/(e−r )-
module of rank one with a generator yr .

However, as recapitulated in [6, §4.2], Beilinson proved [38, Part I, Theorem
4.3(ii); Part II, Theorem 1.1] that

Rr
Q(ξmls+1 )+ ( f −1

r (yr)) = Rr
Q(ξmls+1 )+ ((−r)!(mls+1)−rbr(mls+1))

=

∑

χ(c0)=(−1)r

L∗
Q (r, χ−1)eχyr

which establishes the claim concerning RDir
fr,Q(ξ

mls+1 )
· e+

r .

For the remainder of the proof, assume that fr,Q(ξmls+1 ) has been chosen in this

manner. Hence

H1
cyclo(Xl,m,s) =

H1
ét(Xl,m,s,Zl(1− r))

Tors H1
ét(Xl,m,s,Zl(1− r)) + Im(cm(r))

∼= H1
ét(Xl,m,s,Zl(1− r)) · e+

r

Im(cm(r))
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and, by Definition 4.3,

Jr
Dir,Q(ξmls+1 ) · e+

r = I fr,Q(ξ
mls+1 )
· e+

r

is generated as a Z[1/2][G]-module by the elements α ∈ Q[G] · e+
r such that

α · fr,Q(ξmls+1 )(K1−2r(Xl,m,s)) ⊆ Yr(Q(ξmls+1 ))+.

Let x ∈ H1
ét(Xl,m,s,Zl(1− r)) satisfy c0(x) = (−1)rx, every element in H1

cyclo(Xl,m,s)
may be represented by such an x, and let

α ∈ Jr
Dir,Q(ξmls+1 ) ∩ Zl[G] · e+

r .

We must show that αx ∈ Im(φ) ⊆ H1
ét(Xl,m,s,Zl(1 − r)), where φ is the homomor-

phism of Theorem 7.2(iv). The image of the Chern class

c1−r,1 : K1−2r(Xl,m,s)→ H1
ét(Xl,m,s,Zl(1− r))

(denoted by cr
Q(ξmls+1 ) in [6, Lemma 8.16]) is dense. Choose xm ∈ K1−2r(Xl,m,s) so that

lim−→m
c1−r,1(xm) = x. Then fr,Q(ξmls+1 )(αxm) lies in

Yr(Q(ξmls+1 ))+
= fr,Q(ξmls+1 )(Z[G]〈(−r)! (mls+1)−rbr(mls+1)〉)

so that

αxm ∈ Z[G]〈(−r)! (mls+1)−rbr(mls+1)〉.

However, c1−r,1((−r)!(mls+1)−rbr(mls+1)) is equal to an element ηm(r) which gener-

ates Im(φ) [6, Lemma 8.16]; [24, proof of Theorem 6.4]. Hence lim−→m
αc1−r,1(xm) =

αx ∈ Im(φ), since φ is continuous in the l-adic topology.

8 Concluding Observations

8.1 Galois Descent

Whenever one predicts a new phenomenon concerning Galois actions on some num-
ber theoretic Mackey functor such as a cohomology group or an algebraic K-group,

the question of Galois descent arises. For example, in the case of the Brumer con-
jecture, Hayes, Popescu and Sands have shown that the Stickelberger ideal is natu-
ral with respect to passing from E/F to a subextension E/L (for further details see
[23, 43, 44]).

As explained in [47, Ch. VI–VII, p. 287] the method of proof of Theorem 6.1,
given in §7, would predict nice functorial behaviour for Conjecture 5.1 under all

types of passage to Galois subextensions. This is because the perfect complexes from
which the annihilator relations were derived arose first in the construction of Chin-
burg-type invariants (see [47, Ch. III]) and are natural with respect to change of
fields.
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I do not know very much about the functorial behaviour of the fractional ideal Jr
F .

Here is a modest example of the difficulties.

Consider the special case when E = Q(ξmls+1 )+, F = Q and F1 ⊂ E is quadratic
over Q . Let G = Gal(E/Q) and H = Gal(E/F1). Suppose also that r = −2,−4,
−6, . . . since otherwise the fractional ideal is just one of the higher Stickelberger ide-
als. In this case we may choose fr,E so that R fr,E

(χ) = 1 for all characters χ of G (see

the proof Theorem 7.6). Hence, using the same fr,E for E/F1 we see that R fr,E
is trivial

for E/F1 also.
There exists g ∈ G such that g2 ∈ H and

Yr(E)+
= Z[G]〈σ0〉 ∼= Z[H]〈σ0〉 ⊕ Z[H]〈gσ0〉.

Now suppose that a1,1, a1,2, a2,1, a2,2 ∈ Q[H] are such that for all z ∈ K1−2r(OE) with
fr,E(z) = f1(z)σ0 ⊕ f2(z)gσ0 and fi(z) ∈ Z[H] both y1(z) = a1,1 f1(z) + a1,2 f2(z)
and y2(z) = a2,1 f1(z) + a2,2 f2(z) lie in Z[H]. In other words, the Q[H]-module

endomorphism of Yr(E)+ ⊗Q with matrix
(

a1,1 a1,2

a2,1 a2,2

)

satisfies the integrality condition of Definition 4.3 for the extension F/E1. Therefore
we have

(a1,1a2,2 − a1,2a2,1) f1(z) = a2,2 y1(z)− a1,2 y2(z),

(a1,1a2,2 − a1,2a2,1) f2(z) = −a2,1 y1(z) + a1,1 y2(z).

In this totally real situation, Conjecture 5.1 for E/F1 (see [49, Theorem 4.9]) pre-
dicts, in the notation of Theorem 6.1, that when (a1,1a2,2 − a1,2a2,1) lies in Zl[H], it
annihilates H2

ét(Spec(OE[1/ml]); Zl(1− r)). If we could show for all z that the expres-
sions for (a1,1a2,2 − a1,2a2,1) f1(z) and (a1,1a2,2 − a1,2a2,1) f2(z) both lie in Z[H] then

(a1,1a2,2 − a1,2a2,1) fr,E(K1−2r(OE)) ∈ Yr(E)+ and then (a1,1a2,2 − a1,2a2,1) ∈ Q[G] is
one of the generators for Jr

E for E/Q . Then, by Theorem 6.1, if (a1,1a2,2 − a1,2a2,1) ∈
Zl[G], it would annihilate H2

ét(Spec(OE[1/ml]),Zl(1− r)).
However, such integrality does not happen automatically. Here is a purely alge-

braic example.
Let G = Z/2 = 〈g〉 and let fr ∈ AutQ[G](Q[G]) be fr = ((a + bg)−1 · −) where

a + bg ∈ Z[G] ∩Q[G]∗. Hence we clearly have

I = {α ∈ Q[G] | α fr(〈2, 1− g〉) ⊆ Z[G]} = 〈a + bg, (a + bg)(1− g)/2〉.
Now let β : Q[G] → Q[G] be a homomorphism of Z-modules satisfying
β fr(Z[G]) ⊆ 〈2, 1− g〉 and suppose that

β =

(

u w
v z

)

,

meaning β(1) = u + vg, β(g) = w + zg. Taking the values a = 1, b = 2 with
u = v = 9/2,w = 3/2 = −z one finds that β satisfies the integrality condition
but det(β) = −27/2 which does not lie in I = 〈1 + 2g, (1 + 2g)(1 − g)/2〉 because
Z ∩ I = 3Z.
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8.2 The Non-Abelian Case

Now suppose that we have a tower of number fields F ⊆ K ⊆ L ⊆ E where E/F is
Galois with not necessarily abelian Galois group, which we shall denote by G(E/F).
Suppose that L/K is Galois with G(L/K) abelian. Hence we have a group extension

of the form
{1} → G(E/L)→ G(E/K)

π→ G(L/K)→ {1}.
Let ĝ ∈ G(E/K) and g = π(ĝ) ∈ G(L/K). If TrE/L denotes the transfer on algebraic
K-theory we have a commutative diagram

Ki(E) −−−−→
TrE/L

Ki(L)





y

ĝ∗





y

g∗

Ki(E)
TrE/L−−−−→ Ki(L)

and the composition

Ki(E)
TrE/L−−−→ Ki(L) −→ Ki(E)

is equal to
∑

h∈G(E/L) h∗ : Ki(E) → Ki(E). Since the algebraic K-groups of the S-

integers OE,S embed into those of E in dimensions greater than or equal to one we
may replace Ki(L) and Ki(E) by Ki(OL,S ′) and Ki(OE,S) in the above discussion, where
S is the set of primes of E above those in S ′ and i ≥ 1. Finally, let l be an odd
prime and suppose that S ′ contains all the primes above l. Since the Chern class from

Ke−2r(OE,S) ⊗ Zl to He
ét(Spec(OE,S),Zl(1 − r)) is surjective for r < 0 and e = 1, 2

we may replace Ki(L) and Ki(E) by He
ét(Spec(OL,S ′),Zl(1 − r)) and He

ét(Spec(OE,S),
Zl(1− r)), respectively.

Now let us define a finitely generated Z[1/2][G(E/F)]-submodule of Q[G(E/F)]

by the following procedure. Suppose that the Gross conjecture holds for E/F, which
as shown in Proposition 4.1 implies that the conjecture holds for all intermediate
fields. This means that the fractional ideal Jr

L ⊆ Q[G(L/K)] is defined for each
intermediate extension L/K (as above F ⊆ K ⊆ L ⊆ E) with abelian Galois group. In

fact, write Jr
L/K rather than Jr

L. Now form the two-sided Z[1/2][G(E/F)]-submodule

of Q[G(E/F)] generated by
(

∑

h∈G(E/L)

h
)

π−1(Jr
L/K ) ⊆ Q[G(E/K)] ⊆ Q[G(E/F)].

We would like to say that

Zl[G(E/F)] ∩
(

Jr
E/F · annZl[G(E/F)]

(

Tors H1
ét(Spec(OE,S),Zl(1− r))

))

⊆ annZl[G(E/F)]

(

H2
ét(Spec(OE,S),Zl(1− r))

)

if the same is true for all intermediate Galois extensions with abelian Galois group.

Unfortunately at the moment we do not know the integrality of

Jr
E/F · annZl[G(E/F)]

(

Tors H1
ét(Spec(OE,S),Zl(1− r))

)
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which makes such a result difficult to state. For the moment we shall content our-
selves with the following result.

Theorem 8.1 Let S denote a finite set of primes of F including all Archimedean primes
and all which ramify in E/F and for each intermediate field L let S(L) denote those
primes of L above the ones in S. Suppose also for each intermediate extension L/K, as in

§8.2, with G(L/K) abelian that

Zl[G(L/K)] ∩
(

Jr
L/K · annZl[G(L/K)]

(

Tors H1
ét(Spec(OL,S(L)),Zl(1− r))

))

⊆ annZl[G(L/K)]

(

H2
ét(Spec(OL,S(L)),Zl(1− r))

)

.

If zL/K ∈ Zl[G(E/K)] satisfies

π(zL/K ) ∈ Jr
L/K · annZl[G(L/K)]

(

Tors H1
ét(Spec(OL,S(L)),Zl(1− r))

)

then

(

∑

h∈G(E/L)

h
)

· zL/K ∈ annZl[G(E/F)]

(

H2
ét(Spec(OE,S(E)),Zl(1− r))

)

.

Proof Let j denote the homomorphism on étale cohomology induced by the inclu-

sion of L into E. Take w ∈ H2
ét(Spec(OE,S(E)),Zl(1− r)) so that

(

∑

h∈G(E/L)

h
)

· zL/K · w = j(TrE/L(zL/K w)) = j(π(zL/K ) TrE/L(w)) = 0

by the induction hypothesis.
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Math. 51(1979), 29–59.

[9] J. H. Coates, p-adic L-functions and Iwasawa theory. In: Algebraic Number Fields, L-Functions and
Galois Properties, Academic Press, London, 1977, pp. 269–353.

[10] J. H. Coates and W. Sinnott, An analogue of Stickelberger’s theorem for the higher K-groups. Invent.
Math. 24(1974), 149–161.

[11] , On p-adic L-functions over real quadratic fields. Invent Math. 25(1974), 253–279.
[12] P. Cornacchia and C. Greither, Fittings ideals of class-groups of real fields with prime power

conductor. J. Number Theory 73(1998), no. 2, 459–471.
[13] P. Cornacchia and P. A. Ostvaer, On the Coates–Sinnott conjecture. K-Theory 19(2000), no. 2,

195–209.
[14] C. W. Curtis and I. Reiner, Methods of Representation Theory. vols. I & II, Wiley (1981,1987).
[15] W. G. Dwyer and E. M. Friedlander, Algebraic and étale K-theory. Trans. Amer. Math. Soc.

292(1985), no. 1, 247–280.
[16] W. Dwyer, E. M. Friedlander, V. P. Snaith and R. W. Thomason, Algebraic K-theory eventually

surjects onto topological K-theory. Invent. Math. 66(1982), no. 3, 481–491.
[17] P. Deligne and K. Ribet, Values of abelian L-functions at negative integers over totally real fields.

Invent. Math. 59(1980), no. 3, 227–286.
[18] D. Eisenbud, Commutative Algebra. With a view toward algebraic geometry. Graduate Texts in

Mathematics 150, Springer-Verlag, New York, 1995.
[19] T. Geisser and M. Levine, The Bloch-Kato conjecture and a theorem of Suslin-Voevodsky. J. Reine.

Angew. Math. 530(2001), 55–103.
[20] D. Grayson, Higher algebraic K-theory II (after D.G. Quillen). In: Algebraic K-theory, Lecture Notes

in Math. 551, Springer Verlag. Berlin. 1976, pp. 217–240,
[21] C. Greither, Some cases of Brumer’s conjecture for abelian CM extensions of totally real fields. Math.

Z. 233(2000), no. 3, 515–534.
[22] B. H. Gross, On the values of Artin L-functions. Unpublished preprint, 1981.

http://abel.math.harvard.edu/∼gross/preprints/
[23] D. R. Hayes, Base change for the conjecture of Brumer-Stark. J. Reine. Angew. Math. 497(1998),

83–89.
[24] A. Huber and J. Wildeshaus, Classical motivic polylogarithm according to Beilinson and Deligne.

Doc. Math. 3(1998) 27–133 (electronic).
[25] M. Kolster, T. Nguyen Quang Do and V. Fleckinger, Twisted S-units, p-adic class number formulas

and the Lichtenbaum conjectures. Duke J. Math. 84(1996), 679–717 (erratum Duke J. Math. 90
(1997) 641-643 plus further corrigenda in [2] and [26]).

[26] M. Kolster, T. Nguyen Quang Do, Universal distribution lattices for abelian number fields. McMaster
University preprint (2000).

[27] T. Kubota and H. Leopoldt, Eine p-adische Theorie der Zetawerte. J. Reine. Angew. Math.
214/215(1964), 328–339.

[28] M. Kurihara, Iwasawa theory and Fitting ideals. J. Reine. Angew. Math. 561(2003), 39–86.
[29] S. Lang, Algebra. Second ed. Addison-Wesley, Reading, MA, 1984.
[30] M. Le Floc’h, On fitting ideals of certain étale K-groups. K-Theory 27(2002), 281–292.
[31] M. Levine, The indecomposable K3 of a field. Ann. Sci. École Norm. Sup. 22(1989), 255–344.
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