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1. Introduction
We shall extend some of the results of (7) to the case of multiple alleles,

our primary concern being that of polyploidy combined with multiple alleles.
Generalisations often tend to make the computations more involved as is
expected. Fortunately here, the attempt to generalise has led to a new method
which not only handles the case of multiple alleles, but is an improvement over
the method used in (7) for the special case of polyploidy with two alleles. This
method which consists essentially of expressing certain elements of the algebra
in a so-called " factored " form, gives greater insight into the structure of a
polyploidy algebra, and avoids a great deal of the computation with binomial
coefficients, e.g. see (7), p. 46.

In a subsequent paper we plan to consider mutations and overlapping of
generations.

2. Characterisation of gametic multiple allelic algebras
If the gametic types are Du D2, ..., Dn, then the multiplication table of

this well-known algebra is: DtDj = %(Dt + DJ). This is a special train algebra;
in fact, the ideal consisting of all elements of zero weight has its square equal
toO.

Note that if c and d are any two elements of the algebra of weight one,
then cd = \(c+d). Let

n n n n

c = £ xfit and d = £ yfit where £ xt = £ yt = 1.
i = 1 i = 1 i = 1 i = 1

Then

It follows that the algebra has the following interesting property: Every
linear mapping of the algebra into itself which preserves weight also preserves
multiplication. We now show that the gametic multiple allelic algebras are
characterised by this property.

Theorem 2 .1 . Let A be a baric algebra with basis (au a2, ••-, an) where
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the a's have weight one and with the property that every linear mapping of the
algebra into itself which preserves weight also preserves multiplication. Then

Proof. Any linear mapping which preserves weight on the basis preserves
weight on all of A. Hence the mapping which sends each of the a's into a(

for fixed i preserves weight. Thus it preserves multiplication. It follows that
the image is closed under multiplication, i.e. af = xat for some scalar x. By
comparing weights we see that x must be one.

Now consider the mapping which sends each a into ifa+aj). As in the
first part of the proof [i(«i+a,)]2 = iCflj+Oy). Hence

Using the fact that af = at and a] - aj, this gives aflj = £(fli+<*/)• Q.E.D.

Note. The full strength of the fact that multiplication is preserved was not
needed in the proof. We required only the consequence that the image is
closed under multiplication.

3. Zygotic multiple allelic algebras
In this case the basis consists of the pairs D{Dj with multiplication table:

{PiD^(pkDl) = KDiDt + DiD^DjDk + DjDJ. According to (5) we may write
at = D1-Di(i ,* 1) and use as a basis B1D1, D^a^, afls where i,j # 1. We
then have the table: (D^J2 = A A . (A-DiX-Di**) = 4A«.-> iP^^Dyaj)
= \afl}, (a-fi^x = 0 for all x. This is clearly a special train algebra.

4. Sex linkage with multiple alleles
We denote the genotypes of the homogametic sex by pairs DtDj and of

the heterogametic sex by individual symbols Dt. The multiplication table is:

(DiDjXDJ = UDfo + DjDt + Dt + Dj), (Dfi^D.D,) = (DftDj) = 0.

The table is obtained from the gametic case by a process analogous to duplica-
tion (5); cf. end of (4). However, caution is required since the process is
more complicated; for example, change of basis does not work as simply
here as in the case of duplication.

As a new basis we choose DtDu D^a^ ataj, Du ah where i, j =£ 1; and
DxUi = D1D1-D1Di, afij = D1Dl-D^Di-D^^Dfij and a, = D^-D^
The multiplication table is:

Ot+ad, M ( A ) = 0,
a, = 0,

and all other products are 0.
The space {DiDt +DU D^i, aflj, a j is an ideal of deficiency one which

contains the product of any two elements in the original ring. Furthermore
this ideal is a special train algebra. In it the ideal / of elements of zero weight
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is {D^t, aflj, a,}, I2 = {aflj), and I3 = 0. Note that the powers of / are ideals
in the original ring.

We feel that this notation is an improvement over the notation used in the
special case treated in ((7), section 4), since it appears to make the structure of
the multiplication table more lucid.

5. Polyploidy with multiple alleles
We shall first consider the gametic case. Assume n alleles Du D2, •••, Dn

and r-ploidy. Thus the basis consists of all monomials in the D's of degree r

and hence has I I elements. The multiplication table is defined as

follows:

/2A"1

2...X2r) = I r I 2 XjlXj2...Xjr

where each x is one of the D's and the setsy'i, •••,jr run through all combina-
tions of r integers from the set 1, 2, ..., 2r.

Note that on the lines of the present notation Dt in ((7), section 6) would
have been written D'R"'1 and that the table there is obtained by collecting
terms. We realise now that this has led to superfluous computation since
the present form of the table leads to a simpler way of obtaining the structure
of the algebra.

r / n \
We attach significance to the symbol J~[ I £ aijDj) a s follows. It is

merely a convenient way of expressing the element £ ^ijfi2h--a'j Dj1Dj2...Dj
j

where ji,j2, • ••>jr
 tun through all r-tuples such that 1 ^jt^n for all i. This is

of course what one would obtain by ordinary multiplication if the Z>'s were
regarded as ordinary indeterminates. However, a formal definition is needed
here since the individual S a^Dj have no meaning within the original algebra.
For convenience we also allow the use of juxtaposition and the exponential
notation in the obvious way. For example, cs in ((7), section 6) may be written
W-^D-RJ.

We next obtain the formula for the product of two elements expressed in
" factored form ".

Theorem 5.1. ( f l £ U^DM f{ £ a^D

i £ «.i)[n t **A
where the outside summation is taken over all subsets (fcx, k2,..., kr) ofr integers
from the set 1, 2, ..., IT and where (lu l2, ..., /r) is the complementary subset.
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Proof. ( fl £ auDj)( ft £ a,jDj)
\ i= 1 j = 1 / \i = r + l j= 1 /

where j \ , j 2 , •••,j2r run through all sequences such that 1 ^jt^n for all /. This
.in turn is

where the inside summation is taken over all subsets {kl, k2, ••., kr} of r integers
from the set 1, 2, ..., 2r. We now interchange the order of summation and
fix ku k2, ..., kr. Let lu l2, •••, lr be the complementary set. The summation
becomes

(2/A"1

r j

= [ r j
r n

The right factor is exactly \\ Y ak,Dj by our notation and the left
i = I / = i

r n

factor is fT Y" at • by ordinary algebra. This proves the result.
• = I j = I

The rough idea is that multiplication of elements expressed in " factored
form " resembles multiplication of the original basis elements except that for
•each " factor " not chosen we must multiply by the sum of its coefficients.

We now specialise the above result to elements of the form

n

where V i.- = r. Note that these elements form a basis to the polyploidy
; = i

.algebra. (The proof is identical to the case of ordinary algebra.)

Theorem 5.2. [D'^D, -D2)
i>...(D1-Dny»jDiKD1 -D2y\..(£)1 -Dny»)]

Proof. Since the sum of the coefficients of Dt — Dt is zero, the only non-
vanishing terms in the product are those containing all the (D^ — Dtfs in the
factors. If it +j\ < r there are no such terms.

If it +ji^r there are I 1 I such terms, this being the number of ways

•of choosing the (it +j\ — r) D/s to bring the number of factors up to r. Of
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course, the sum of the coefficients of each omitted £>t is one. Thus we have

terms each of which isC'V)
This proves the result.

Note that Lemma 6.2 in (7) is a special case.
As an immediate consequence of Theorem 5.2 we obtain the following.

Theorem 5.3. Gametic polyploidy multiple allelic algebras are special train
algebras.

The ideal / of elements of zero weight is the subspace generated by all
the new basis elements other than D\. Ik is the space generated by all basis
elements with at least k factors of the form Dx — D{ for some /. The train

(2r\-l(m\ , _ . . (2r\-1(m\. t ,(2r-m + n-2\
roots are I I I I where 2 r^ /w^r ; I I I I is repeated I - _ I
times. (This is the number of monomials of degree 2r—m in n—1 variables.)

By means of the factored form it is possible to give a very simple proof of
Lemma 6.3 in (7). This states essentially the self-reciprocal relationship between
the old and new bases. Since as a vector space the algebra is isomorphic to
the linear space of polynomials in n variables of homogeneous degree r, it
suffices to prove this for ordinary algebra. But D{ = D± — (Dt — Z>,), hence

This makes the self-reciprocal property evident.
By applying the technique of duplication (5) we can now consider the

zygotic algebra. We identify all pairs

[Di'O>i -D2)
h-...(D1 -A,) ' - , D{<(D1 -D2y\..(D1 -Dny-]

with fixed ik +jk for all k. Thus we may use the symbol

Di
1>(D1-D2)

i\..(Dl-Dj"

to stand for any pair for which the sum of the exponents of Dt — Dk is ik for all
k. This leads to the following theorem:

Theorem 5.4. Zygotic polyploidy multiple allelic algebras are special train
algebras.

In fact, the table has the form

.. .{D, - Dj^DiKD, -D2)».. .{D, -£„)

for ii,ji^r; = 0 otherwise.
Theorems 6.3 and 6.4 in (7) can also be generalised to the case of multiple

alleles. Since no essentially new technique is involved it will suffice to state

E.M.S.—z
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what happens in the gametic case. If y2, y3, •••, yn are arbitrary, then a typical
idempotent has the form

I (-i) r" f l . , / ' .,y'iy'i-ylrDUD,-D^...^-Dn)\
il+i2-in=r l1h2\...ln<

In terms of the original basis this is expressed as

The form of this last expression leads to a result which can be expressed
in the language of classical genetics, namely that if the genotype distribution
is a multinomial distribution, then it is in equilibrium. (Note that some of the
>>'s or 1— y2—y3---—yn may be negative. This is because in the algebraic
theory we are working with the whole algebra, not only with elements which
represent distributions.)
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