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ABSTRACT. A joint dynamical system compnsmg both 
an eroding glacier and an eroded bed is considered to 
describe the formation of cirques and stepped longitudinal 
profiles of trough valleys. A glacier is modelled as a layer 
of a very viscous incompressible fluid flowing down an 
inclined bed. The rate of erosion is assumed to be 
determined by the basal shear stress. The dynamics of small 
longitudinal perturbations are studied. The analysis shows 
that the perturbations propagate up the glacier bed with 
velocities that are different for the perturbations of 
different spatial scales. As a result, a perturbation of a 
specific spatial scale stands out against the others and 
develops into the morphological forms considered here . 

INTRODUCTION 

Cirques and stepped longitudinal profiles of trough 
valleys are common features of glaciated, and only glaciated , 
mountain relief. Therefore, it is glacial erosion that causes 
these morphological forms. Davis wrote as far back as 1906 
"that it savors of extreme conservatism any longer to deny 
the efficacy of glacial erosion". However, extreme 
conservatism is extremely conservative - after decades we 
have to demonstrate the statement again. 

Modern estimates (Serebryannyy and Orlov, 1982; 
Gros'vald and Glazovskiy, 1983) suppose that the rate of 
glacial erosion is sufficiently high to create considerable 
morphological forms. But the next question arises: why 
glacial erosion is not homogeneous along the glacial bed , 
localizes in particular zones, and thus generates cirques and 
stepped longitudinal profiles within trough valleys. The main 
object of this paper is to demonstrate the reasons for 
self-organization of the longitudinal glacial trough profiles 
in principle. So some statements are only mentioned without 
detail. 

According to widespread OpinIOn, heterogeneities of 
glacial erosion occur because of a variety of different 
non - glacial and ad hoc reasons: pre-glacial bed 
configuration, lithological differences of bedrock, and others 
(see Colman's (1976) critical review). An alternative 
approach is to connect the heterogeneities of glacial erosion 
to heterogeneities of glacier flow . Clark and Lewis (1951) 
used the rotational flow of glaciers. Nye and Martin (1968) 
proposed the connection between the heterogeneities of 
glacial erosion and the active and passive flow of glaciers 
(Nye, 1952). However, both approaches require a particular 
pre-glacial relief to generate rotational or active and passive 
glacier flow, and therefore spatial scales of the erosional 
forms are prescribed in advance . 

A glacier bed does not only vary under the impact of 
glacial erosion: glacier flow, in turn, varies according to 
changes in the bed. Therefore, we encounter a purely 
glaciological self-supported process for the generation of 
heterogeneities of glacier flow and bed configuration. It 
appears adequate to connect the dynamics of an eroding 
glacier and eroded bed to describe the genesis process. 
According to synergetic ideology (Haken, 1978), we should 
investigate the dynamics of small random perturbations 
against the background of a homogeneous glacier flow and 
a homogeneous glacier bed . 

The approach proposed here has been used for 
transverse perturbations to explain the generation of 
ice-sheet ice streams and associated large-scale trough 
valleys (Mazo, 1987). In this case, the heterogeneities are 
due to the instability of the perturbations of larger scales 
and the stability of the perturbations of smaller scales, or 
due to negative or positive dissipation. 

In this paper, the same approach is applied for 
longitudinal perturbations to investigate the formation of 
cirques and stepped longitudinal profiles within glacial 
troughs. The analysis below shows that, in contrast to the 
transverse perturbations, the longitudinal ones dampen out 
for all spatial scales: this attenuation is small for the 
perturbations of larger scales and is rapid for those of 
moderate and smaller scales. However, for the longitudinal 
perturbations, there exists another mechanism that creates 
the heterogeneities: the longitudinal perturbations propagate 
with non-zero velocities up the glacier bed and these 
velocities are different for the perturbations of different 
spatial scales. In other words, velocity dispersion arises. 
Moreover, for a certain spatial scale stationary phase 
(Whitham, 1974) occurs. The result is that the longitudinal 
perturbations of this spatial scale stand out against the 
others. 

GLACIER FLOW DOWN A PERTURBED BED 

A glacier is modelled here as a layer of a very viscous 
linear incompressible liquid flowing down an inclined bed 
by gravity. The following scales are chosen: spatial scale d, 
time-scale d 2/v, velocity scale d 2g sin 9/ 2v, pressure scale 
pg d, where d is the average thickness of the layer, e is the 
average angle of the bed slope, p and v are the density 
and the kinematic viscosity of the liquid, and g is the 
acceleration of gravity. All equations are cast in terms of 
dimensionless variables. The x-axis is in the ice-flow 
direction , the z-axis is normal to the surface, positive 
upwards, z ; b(x) and z; [(x) are the equations of the 
bed and free surface, hex) ; [(x) - b(x) is the thickness of 
the layer (see Fig. I). 

The ice-layer flow is described by a system of the 

free surface: z - I(x) 

... 

Fig. I. Longitudinal section o[ a glacier . 
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incompressibility and equilibrium equations and boundary 
conditions on the bed and free surface for the pressure and 
x- and z-components of ice flow u and IV. The latter may 
be, in principle, found as a function of the boundaries b 
and f. However, it is difficult because of the complexity of 
the full sys tem and, more important, unnecessary because 
the short- sca le perturbations dampen rapidly and, therefore, 
may be excluded from consideration. We will find the 
pressure, veloci ty components u and IV and, in addition, the 
basal shear stress in long-wave approximation when the 
spatial scales of the perturbations are supposed to be much 
longer than the averaged ice thickness . 

An addi tional boundary condition on the free surface is 
the kinematic equation 

It + ulx ; IV, for z ; I(x), 

which in the long-wave approximation (see 
Equation (A8)) is reduced to the non-linear 
equation of the free- surface relaxation 

Appendix, 
parabolic 

where h ; I - b and the bed is supposed to be given . This 
equation is a convenient tool to describe free-surface 
dynamics of thin layers for given beds. In particular, the 
relaxation eq uation describes propagation of free-surface 
waves which are shown to tend to the steady-state wave 
associated with the given bed wave . 

The steady- state free-surface wave satisfies the 
stationary equation 

sin 9h 3 
; cos 9jl.1.x + sin 9 (I) 

where Ji ; .1. - b (steady-state variables are indicated by 
underlined italics). The steady-state equation may be used 
to solve the inverse problem of reconstructing the bed 
configuration for the given free surface. However, only the 
long-wave perturbations may be reconstructed: in the long­
wave approximation, the inverse problem for short waves is 
incorrec t. 

In the case of small amplitudes (much smaller than the 
average ice thickness) of the bed and, hence, of 
free- surface perturbations, the relaxation and stationary 
equations are reduced. Let us represent the perturbed 
variables I and b as sums of mean variables and 
perturbations 'P and (3. The relaxation equation for small 
perturbations is then the linear parabolic equation 

'Pt + sin 9('P - (3)x = (cos 9/3) 'Pxx ' 

The small free-s urface perturbation, 'P, relaxes to the small 
steady-state pe rturbation..2 sa tisfying the stationary equation 

..2x ; 60£ - 13) (2) 

where 6 ; 3 tan 9. There exist two solutions for Equation 
(2) which dampen out for large x, positive or negative 

x 

~ ; -6 j e6(x - O(3md~ and ~ ; 6 j e6(x - 013(~)d~. 
-<0 X 

Let us suppose that the bed perturbation 13 is localized 
within a section of the x-axis, and select a solution which 
decreases for large x, positive and negative. The first 
solution decreases for large negative x while, generally, it 
increases for large positive x, and hence cannot be used. 
The second solution decreases in both the positive and 
negative directions and therefore can be used. To be more 
exact, the second solution is only non-zero up-stream of the 
local section where the solution decreases exponentially as 
x ~ "", while it is zero everywhere down-stream of the 
section: bed perturbations result in free-surface perturbations 
that are only up-stream of the bed perturbations. 

Let us proceed from the perturbations..2 and 13 to their 
Fourier transforms~' and (3' . We find from Equation (2) 

180 

+ i(k / 6) (3' 

+ (k/6)2 

where k is the wave number. Therefore, the ratio of the 
amplitudes of the stationary free-surface to the bed 
perturbations decreases as 

when the wave number k increases: the longer the bed 
perturbations are, the less dampened will be the free-surface 
perturbations. More complex calculations show that the full 
system (not in the long-wave approximation) gives higher 
rates of the dampening of the short-wave perturbations than 
the system in the long-wave approximation: the short-wave 
perturbations indeed dampen out. Also, there is a phase lag 
between the perturbation (tangent of the phase-lag angle is 
k / 6): long perturbations have a smaller lag. 

ERODED BED DYNAMICS 

In order to describe completely the dynamics of the 
joint system comprising both the eroding glacier and the 
eroded bed, an equation controlling the eroded bed changes 
must be added. It is the kinematic equation 

where p and rare x- and z-components of the bed-erosion 
rate (see Fig. 1). The simplest assumption connecting the 
rate of bed erosion to the parameters of ice flow is as 
follows . The direction of the erosion-rate vector is supposed 
to be normal to the bed 

p 

where e is the magnitude of erosion rate. The latter is 
supposed to be proportional to the basal shear stress Tb: 
e ; E Tb' where E is a positive constant. Then the kinematic 
equation for erosion is 

In the long-wave approximation, the equation reduces to 

Erosional changes of bed configuration occur on a 
time-scale s which is much longer than the time-scale I for 
the adjustment of the ice flow. Thus, at any given instant s 
the bed configuration may be taken as the boundary 
condition for ice flow and the previous results for 
stationary ice flow may be used though the bed itself is 
being slowly eroded . It is the parameter E that characterizes 
the ratio of these time-scales: s ; El . So, we may suppose 
that E « 1. 

Using the long-wave formula for the basal shear stress 
Tb (see Appendix, Equation (A9)), and proceeding from the 
shorter time-scale I to the longer one s , we find the final 
form of the erosional kinematic equation 

bs + sin 9Ji ; cos 9!!1x . (3) 

In the case of small amplitudes of the bed and, hence 
free-surface perturbations, the erosional kinematic equation 
is 

1.10£ - 13) (4) 

where 1.1 2sin 9. 

PROPAGATION OF THE LONGITUDINAL BED WAVES 

Two Equations (1) and (2), or (3) and (4) (the latter in 
case of small-perturbation amplitudes) , describe jointly the 
dynamics of the eroded bed and adjusted ice flow . 
Equations (3) and (4) are reduced to the single hyperbolic 
equation 

13sx - 6(3s + jl13x = 0 (5) 

for which Equations (3) and (4) are characteristic. 
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Let us proceed from the perturbation /3 to its Fourier 
transform /3' . The latter varies exponentially with time: 
/3' ; constant exp(-a(k)s), where a(k) is a wave-number­
dependent complex frequency (a(k) = w(k) + iy(k), w(k) is a 
proper freque ncy, and y(k) is a time constant. The time 
constant y(k) d etermines the growth or dampening of the 
perturbation, while the phase velocity c(k) = w(k) /k 
determines the propagation velocity of the perturbation. 
When c(k) varies with k, velocity dispersion occurs. If, in 
addition to a velocity dispersion, the group velocity g(k) = 

dw(k)/ dk is zero for certain wave numbers, then stationary 
phase occurs and the perturbations with these wave numbers 
stand out against the others. 

From Equation (5) rewritten in terms of Fourier 
transforms, we find 

c(k) 
ILl S 

so the phase velocity c(k) is negative. Therefore, all 
longitudinal pe rturbations propagate up-stream. This 
circumstance is exp lained by the lag between the bed and 
free- surface perturbations (see previous discussion) . Also, the 
phase ve loc it y c(k) is different for different wave numbers 
k: thus the waves are dispersive. Moreover, the group 
veloc ity 

g(k) 
I - (k/S)2 

- (jJ./ S) ---'-':"""":"-

is ze ro for wave numbers I k I = S and, therefore , for these 
critical wave numbers stationary phase occurs. 

Thus, by th e end of an initial transient period, the 
longitudinal bed wave with a wavelength which is 2n/ s '" 
2/ tan e times lo nge r than the ice thickness stands out 
aga inst the others. This length is about the cirque-glacier 
length and seve ral times shorter than the valley-glacier 
length: the lon g itudinal profile of a cirque corresponds to 
one period of the erosional wave and the longitudinal 
profile of a trou g h valley corresponds to several periods of 
the wave. 

Additional calculations show that glacier-sliding 
conditions and / or non-linearity of ice rheology and the 
erosion la w includ ed in the model change the quantitative 
estimations sli ghtl y but do not change qualitative features of 
bed-wave propaga tio n. 
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APPENDIX 

In the model considered, glacier flow is described by 
the equations of incompressibility and equilibrium 

Ux + W z 0, 
-p x + l!.u + sin a 0, 

-Pz + l!.w - cos a ° 
for the x- and z -components of ice velocity v and w, and 
the pressure p, where 

is the Laplacian operator. The boundary conditions are: the 
no-slip conditions on the bed 

U = W = 0, for z = b(x) 

and the zero-stress (normal and shear) conditions on the 
free surface 

I - f~ 2/x 
p + ---(ux - wz ) + ---(uz + IVX ) 0, for z f(x), 

I + /~ I + /~ 

I - f~ 2/x 
---(uz + IV x) - ---(ux - wz ) 0, for z f(x) . 

I + /~ I + /~ 

The additional boundary condition on the free surface is 
the kinematic equation 

w, for z f(x) . (AI) 

Furthermore, the basal shear stress Tb is 

I - b~ 2bx 
Tb ---(uz + wx ) --(ux - wz ), for z b(x) . 

I + b~ I + b~ 

The equation of incompressibility implies that the 
velocity components u and w may be deduced from the 
stream function 1/1: u = I/Iz' IV; -I/Ix. Let us express the 
velocity components u and w in terms of the stream 
function 1/1 and eliminate the pressure p. The equations of 
equilibrium then reduce to the single equation 

I/Izzzz + 21/1zzxx + I/Ixxxx = 0 (A2) 

and the kinematic Equation (A I) may be rewritten as the 
mass-conservation law 

(A3) 

where q =: I/Iz=f(x) is the flux. The equation for basal shear 
stress Tb 10 terms of the stream function 1/1 is 
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4bx I - b~ 
---(I/Izz 
I + b~ 

+ tIIxx ) - ---I/Izx' for z = b(x). (A4) 
1 + b~ 

The problem is to find the stream function 1/1 from 
Equation (A2) and the boundary conditions (except the 
kinematic Equation (A3)) and then substitute 1/1 into the 
kinematic Equations (A3) and (A4) for the basal shear stress 
Tb' 

In the case of the small-amplitude perturbations, 
calculation shows that short-scale perturbations dampen 
rapidly and may be excluded from consideration. So we will 
find the stream function tII in the long-wave approximation 
for which the spatial scales of the perturbations are 
supposed to be much longer than the average ice thickness. 
Here, we follow Benney (1966), whose approach is widely 
used in glaciology (see Hutter (J 983) and papers quoted 
there) . Equation (A2) is thus reduced to 

tIIzzzz = 0 

with the boundary conditions 

1/1 = tIIz = 0, for z = b(x), 
tIIzz = 0, for z = [(x), 

tIIzzz = cos O[ x - sin S, for z = [(x) . 

(A5) 

(A6) 

The kinematic Equation (A3) remains the same. Equation 
(A4) for the basal shear stress Tb is reduced to 

(x) . (A7) 

Solvi'ng the equilibrium Equation (A5), together with 
the boundary conditions (A6), we find 

q = 1/11 z = [(x) = (h3/ 3)(sin S - cos O[ x), 

and hence we have for the kinematic Equation (A3) 

(A8) 

For the basal shear-stress Equation (A 7), we find 

h(sin 0- cos S[ x) . (A9) 
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