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REPERCUSSIONS OF A PROBLEM OF 
ERDÔS AND ULAM ON DENSITY IDEALS 

WINFRIED JUST 

By P(UJ) we denote the Boolean algebra of all subsets of the set UJ of natural 
numbers. We identify each natural number with the set of its predecessors and 
define: 

L ,- #(«HA) „ 
11 = (A C UJ: l i m s u p = 0 

I n—>-oo ^ 

the ideal of sets of density zero, and 

log = \ A C UJ : lim sup 
Inn »} 

the ideal of sets of logarithmic density zero. 
In the 1940's, P. Erdôs and S. Ulam investigated the problem whether the quo­

tient algebras P(UJ)/ I\ and P(UJ)/I\og are isomorphic. They thought they had a 
proof that these algebras are not isomorphic, but the proof was eventually lost. 
P. Erdôs asked the mathematical community to either rediscover the proof or show 
that it must have been wrong (see [1], p. 38-39). 

This request led to interesting developments. In [6], Adam Krawczyk and I de­
fined the following generalization of the ideals I\ and /iog. 

1. DEFINITION. A function/: UJ —+ 5R+ is called an EU-function iff: 
(i) Eneujfin) = oo 
(ii) lim^oo ^ g ^ = 0. 

For an EU-function/ we define the ideal 

fy = A C UJ: lim sup —— = 0 

It is easily seen that I\ is If for the EU-function / = 1, and /iog is Ig for the EU-

m+l ' function g that sends m to l 
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In [6] it was shown that the Continuum Hypothesis implies that the algebras 
P(UJ)I If and P{UJ)/Ig are isomorphic for every pair of EU-functions / , g. This 
settles the question of Erdôs: the joint proof with Ulam must have been wrong. 

But were Erdôs and Ulam altogether wrongl The result of [6] is only a consis­
tency result; could there perhaps be some model of ZFC in which the two algebras 
might be non-isomorphic? The latter question led me to develop methods sensitive 
enough to capture the subtle difference between I\ and /iog. In my doctoral disserta­
tion at the University of Warsaw [2], I formulated a statement which I abbreviated 
CSP and proved its relative consistency with ZFC. This statement implies that the 
algebras P(UJ)/ I\ and P(LO)/ I\og are not isomorphic. It also decides some questions 
in general topology (see [3], [4]) which at first glance don't betray any kinship to 
the problem of Erdôs and Ulam. The purpose of the present paper is to make a 
proof of the following theorem available to the mathematical community. 

2. THEOREM [2].CSP=*P(u)/I{ ~P(uj)/I[og. 

The method of the proof of the above theorem can be used to show that CSP 
implies that P{UJ)/If ~ P(UJ)/ Ig for more pairs of EU-functions than the one 
considered here. However, I do not know a nice characteristization of those pairs. 
Therefore, I decided to present the proof of the special case only, albeit in such 
a form that it can be easily modified to prove similar results for other pairs of 
EU-functions. 

Throughout this paper, the letters ij, k, /, m, n,p, r, s, t denote natural numbers; 
the letters a, b, c, d, u, v, w, x, v, z (with indices if necessary) are reserved fox finite 
subsets of UJ . Potentially infinite subsets of u are denoted by letters A, B, C, D, X, Y 
or Z (possibly with indices). 

By 5R+ we denote the set of positive reals, i. e. not including zero. Letters 
a,/?,7,£,e,/z,i/ denote positive reals. 

The interval [n, m) is the set {/ G w: n < i < m}. 
Instead of ea we write exp(a). 
Whenever we use Landau's symbols o(l) or 0(1) it is understood that the inde­

pendent variable approaches +oo. E. g., instead of: "37 G 3t+ Vn > 0 

I £ ; U ^ T - l n « l < 7" we write: "E^= 0 ^ ~ l n " = W -
Fin denotes the ideal of finite subsets of UJ . We write A =/ B to indicate that the 

symmetric difference A AB G /. 
The difference of two sets will be denoted by A \ B. Note that e. g., 5 — 3 = 2, 

b u t 5 \ 3 = [3,5) = {3,4}. 
Before we plunge into the technical details of the proof of Theorem 2, let us try 

for a moment to prove in ZFC that P(CJ)/I\ ^ P(u)/I\og. It will be instructive 
to see where we fail. We could try to split u into two sequences of consecutive 
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intervals ([rc^Mfc+i)). and ([m^m^+i)), such that 

, . ^>i=nk
 l , . nk+\ 

hm S—r- = hm 
nk - 1, 

choose a sequence of mappings (Hk)keu where Hk'.P([rik, w*+i)) —-+ /* ([#**, Wfc+i)), 

and define for X C a; : #(X) = U^ 0
 Hk(x H [n*, rc*+i )). 

With some care, we can arrange that there is an isomorphic embedding H_ such 
that the following diagram commutes: 

H: P(u) 

*7i 

K: P(u)/h 

P(u>) 

^ / l o 

P(uj)/h log* 

where 717,, 7T/log are the canonical projections. In the sequel, we shall refer to a 
situation like the above by saying that H is a lifting of H_. 

There remains however one problem: since the intervals [m^m^+i) tend to be 
much longer than the intervals [n^ rik+\), we cannot expect H to be a surjection. 
Well, it doesn't have to be one. Remember that we care about H_ rather than H. All 
we need is that for every e > 0 and sufficiently large k, if y C [ra^m^+i), then 
there is some x C [n*, nk+\) so that 

£/€//*(*) Az .7+1 

filmai — lnmfc 
< e. 

It turns out that the latter is impossible. In a sense, that is what the second half 
of the proof of Theorem 2 (i. e., Lemma 21) is all about. The first half of the proof 
of Theorem 2 is devoted to showing that if CSP holds, then every isomorphism of 
P(oj)/1\ and P(u)/ /jog must resemble the function H_ described above. 

We don't need the full force of CSP here. So we formulate only its consequence 
CSPD and prove the following: 

3. THEOREM. CSPD^> P(LU)/IX ~P(U))/1XO%. 

CSPD is an immediate consequence of both CSP and the statement AT whose 
relative consistency with ZEC is proved in [5]. The definition of the full CSP can 
be found in [5]. 

The statement CSPD can be formulated most conveniently if we treat P(LJ) as a 
metric space with the metric defined by: p(X, Y) — 2~min(XAy). For every A C. u 

https://doi.org/10.4153/CJM-1990-047-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1990-047-5


REPERCUSSIONS OF A ERDÔS AND ULAM PROBLEM ON DENSITY IDEALS 905 

we shall treat P(A) as a metric subspace of P(LU). It thus makes sense to speak 
about continuous functions from P(A) in P(LU), analytic subsets of P(LU), etc. 

4. DEFINITION. By CSPD we abbreviate the following statement: "For every 
pair (f,g) of EU-functions, every homomorphism F:P(LU)/If —> P(LU)/ Ig, and 
every sequence (ak)keu °f pairwise disjoint finite subsets of LU, there exists an 
A C LU which contains infinitely many of the sets ak and such that the restrictions 
of F to P(A)/ If has a continuous lifting." 

5. REMARK. Obviously, a lifting of F\P(A)/If is a function F: P(A)-^ P(LU). 

The remainder of this paper is devoted to the proof of 3. As indicated above, 
the first part of this proof will be presented in a more general fashion than strictly 
necessary. 

6. DEFINITION. Let/ be an ££/-function, A C LU, and n G LU. We denote: 

(a) Sf(n) = Hm<nf(m), 

(b)ldf(A,n)=^fm\ 
(c) Cf(A) — sup{ldf(A,n) : n G LU} , 
(d) df(A) = lim s u p ^ ^ ldf(A, n). 
These definitions are best remembered if we think that Id stands for "local den­

sity", c for "concentration", and d for "density". Somewhat abusing terminology 
we shall write S\, ld\, c\, d\, if/ = 1, and Siog, ld\og, c\og, d\og if g is the EU- function 
that sends m to -^. Clearly, I]og = {A C LU : */iog(A) = 0}. 

Now we summarize basic properties of the newly defined functions. 

7. PROPOSITION. Let f be an EU-function. 

(a) The function ldf(-, n) is a probability measure for every n. 

(b) IfX C Y, then cf(X) < cf(Y). 

(c) If(uk)k(Eu) is a sequence of pairwise disjoint finite subsets of LU, and A C LU, 
then d(A) > lim s u p ^ ^ c/(A* D Uk). 

(d) IfAk C LU for every k, then c/(U£0
 A*> ^ ^ o cMk\ 

(e) If ak is a finite subset of LU for every k, and E ^ 0
 cf(ak) < +°°> tnen 

df(UT=oak) = 0. 

Proof. Only (e) requires a proof. For every e > 0 there exists such a number 
/(e) such that Y%Li{e) Cf(ak) < e. Let e be fixed and denote: b = U l̂o"1 ak and 
max b — I. 

If n is large enough so that Sf(n) > ^ ^ , then: ldf(Vj*LQak,ri) < ldf(b,n) + 
ldf(l)kLi(€) ak, n) < ldf(l+l,n)+Y%Li(e) Cf(ak) < 2c. Since e was chosen arbitrarily, 
(e) follows. 
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8. LEMMA. Suppose f,g are EU-functions, F:P(u)/ If —* P(u)/ Ig is an iso­
morphic embedding, A E u, and F:P(A) —• P(uo) is a continuous lifting of 
F\P(A)/ Ig. Moreover, let (yi)ieu} be a sequence ofpairwise disjoint finite subsets 
of A. Then there exist: sequences (uk)keuj,(vk)k(EuJ ofpairwise disjoint finite subsets 
ofuo, and a sequence (Hk)keu} such that: 

(l)Vk3luk = yi 

(2)Hk:P(uk)^P(vk) 
(3) Hk(uk) = vk 

(4) If we define B = U^o w* and /7*: p(B) ~> p^) ^ ** W = U^ 0 # * ( * n «*), 
then F*(X) =Ig F(X)for all X C B. 

Proof First observe that P(A) is compact. The continuous function F is therefore 
uniformly continuous. This means that there are increasing sequences of natural 
numbers (nk)k(Eu,(mk)k(Euj,

 anc* a sequence of functions (Gk)keuJ such that 

Gk: P(nk D A) —> P(mk) for every k, 

Gk+\(x) H mk = Gk(x Pi nk) for every and x C nk+\ Pi A, 
oo 

and F(X) = (J G*(X H n*) for every X C A. 
fc=0 

Passing to a subsequence if necessary, we may without loss of generality assume 
that for every k there is an 1 such that v/ C [nk, nk+\). 

We fix such sequences throughout the proof of 7. 

9. DEFINITION. Let e > 0, and k < k+. A set c c [nk,nk+) n A is called 
an (e,k,k+ystabilizer, if for every 7 > /c+, arbitrary a,Z? C nk D A, and J C 
[rcfc+, «/) H A, the following inequality holds for every p > mk+:ldg(Gj(a U c U 
d)AGj(bU cU d\p) < e. 

10. PROPOSITION. For every e > 0 am/ /: G UJ there exists a number k+ > k 
and an (e, &, k+)-stabilizer c. 

Proof Assume that for certain ko and e no such objects exist. Then there are 
increasing sequences (ki)ieuj, (Pi)ieco such that for every /: 

(a) dt C [n^n^), 
(b) dt C di+i C A, 
(c) di+x H nkM = dt, 
(d)ai9bi C ^ , 
(e) mk. < pi < mkM, 
(f) ldg(GkM(ai U di)AGki+](bi U 4),/?,) > e. 
By Dirichlet's pigeonhole principle, we may without loss of generality assume 

that at = a and bt = fr for all i and fixed a,b C n^. 
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It follows that 

oo oo 

dg(F(aU \Jdi)AF(bU \jdtj) 
/=o /=o 

= dg(Jj(GkM{aU dt)AGki+](bU </,-))) 

> limsupldg(Gki+](a U di)AGki+lib U di),pn 
/—>00 

> € . 

Hence, F(a U Ug0 di)AF(b U U£0 4 ) £ /*. This contradicts the fact that F is a 
lifting of a function from P(A)/ If into P(w)/ Ig. 

Proposition 10 guarantees that there exist: an increasing sequence (ki)ieu} and 
a sequence (ct)ieu; such that c/ C [«*,., «*,+,) Pi A is a (2~', kiyki+1 )-stabilizer. To 
simplify the notation, we assume that k( — i for all /. 

Denote: rc_i = m_i = 0 . 
For every k we choose a y^ C [«2*-i>fl2*) H A and put: w* = y\k, v — 

[m2k-\,m2k+\), B = UZou^ C = U£L0
C2*, zk = UfrdO/ u cn)- For a C uk 

we define: Hk(a) = G2k+\(zk U aU cik) H vkn F(A), and let v* = Hk{uk) H v̂ , 
//,(«) = ^(«)nv,. 

Clearly, points (l)-(3) of Lemma 8 are satisfied. We check (4). Let X C B. We 

have to show that F*(X) = Uj£ 0 ^*(* n uk) =Ig F(X). Observe that since c2k-2 

was chosen a (2~2k+2,2k — 2,2k — l)-stabilizer, we have cglG2k+\{(X U Q H 

n2k+l)AG2k+l(zkU(Xn uk)Uc2k) H v*) < 2-2*"2. 

Since (J^0 ^ = a;, it follows from the choice of (Gk)keu; that 

oo 

F(xu c) = (J G2,+,((XU o n Az2,+1) 

=/, U (G2*+i (z* u (xn «*) u c^) n v, . 

Since F is a lifting of a homomorphism, the following holds: F(X) =jg F(X U 
Q H F(A) H F(£ U Q = (JS£o Hk(X n "*) = F* (x)- This concludes the proof of 
Lemma 8. 

11. LEMMA. Let F, F be as in the hypothesis of8, and assume (Hk)k(Eu;, (uk)keuJ, 
(vk)keuj, B and F* satisfy (2)-(4) of 8. Then there are functions L,M,N: 5R+ —• UJ 
and a : !R+ —• 3?+ swc/z that for all e > 0 ûwd fcGw: 

M 7f * > L(e), f/œn cg{Hk($)) < c, 

https://doi.org/10.4153/CJM-1990-047-5 Published online by Cambridge University Press

file:///jdtj
https://doi.org/10.4153/CJM-1990-047-5


908 WINFRIED JUST 

(b) Ifk > M(e), anda9b C uk, then cg((Hk(a)nHk(b))AHk(an b)J < e, 

(c) tfk > N(e), and a C uk is such that Cf(a) > e, then Cg(/4(tf)) > a(e). 

Proof. Point (a) follows immediately from 6(c) and the fact that ^(F*(0)) = 0. 

Point (b) follows from 6(c) and the fact that F*(XH F ) A ( F * ( X ) H F*(Y)) G Ig for 
x, y c B. 

Assume now that (c) fails, i. e., that there are: an e > 0 and sequences (kt)ieu}, 

(Xi)i<Eu SUCn m a t f° r a ^ *: 

(ï)Xi C uki, 
(ii) cf(Xi) > e , 
(iii)c,(//,,te))<2-/. 
Let X = U£o^ a n d F = U g o ^ f e ) - It follows from 7(e) that dg(Y) = 0. 

On the other hand, F*(X)AY = U{ #*($):£ G o; and V, fc ̂  kt} C F*(0) G V 
Hence, F*(X) G /g. But from 7(c) we infer that X £ If. Therefore, Ker(£) ^ 0, 
contradicting our assumption that F is an isomorphic embedding of P(UJ)/ If into 
P(uj)/Ig. 

Before we can formulate the next lemma, we must introduce another bit of ter­
minology. 

12. DEFINITION . Le t / be an ^[/-function, and suppose \x G (0,1). We de­
fine inductively a function acc/(-, /x, •) as follows: acc/(f, //, 0) = f, acc/(f, /i, s + 
1) = min{/?: /d/([acc/(f,/i, 5),/?),/?) > /1}. In particular, acc/-(f,/z, 1) = min{/?: 

13. EXAMPLE. 

(a) acc/(f, 5,5) = r • 2* for all s, f. 

(b)acclog(r,M, 1) = min{/7: ^ ^ > /1} +0(1) = min{/?:/? > r ^ } +0(1). 

It follows that acciog(r, /i, 5) is of the order of magnitude of exp((y^—/ • In r). 

14. LEMMA. Suppose F, F are as in the hypothesis of Lemma 8, and that 
(Hk)keuj> (uùiceu» (vk)k£u;> B and F* satisfy (2)-(4) of Lemma 8. Let t G LU, and 
assume that every uk is of the form \tk,dJZCf(tk, \jkY\- Then there exist // G R+ 

and ko, r G u such that for every k > ICQ there exists wk C v̂  such that min wk > 
aceg(t911,8\) and cg(wk) > /1, where 8k = L^/2["~1J ~~ *• 

Proof Let a, L, M, N be functions which satisfy (a)-(c) of Lemma 11. Let /1 = 

^-^ and ft = —^—2 • Furthermore, we denote: a*,/ = [acc/(^, ^, /), acc/(fy, {,i+ 

1)) and ^ = Hk(ak4) for i < tk. We fix a number / > max{L(f ),M(f ), W(±)} 
such that min v̂  > f whenever & > /. 
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15. CLAIM. Ifk > 1 and i <j < tk, then 
(a) cf(akj) > \y 

(b) cg(bkJ) > 2/x, 
(c)cg(bk4nbkJ)<p. 

Proof. Point (a) follows from the définition of a^u point (b) from the fact that 
k > I > N(^) and a(^) = 2p. The following inequalities prove (c): 

cg(bKi D bkJ) = cg[Hk(akJ) H Hk(akJ)) 

< cgi (Hk(akJ) fl Hk(akJ)AHk(akJ H akJj) U Hk(akJ n akJ) 

< cg(bkJ H bkJAHk0)) + cg(Hk(<t») 

< * + £ . 
- 2 2 

By 15(b), we may define for k G u and / < tk:pkj — min{ n: ldg(bkj, n) > 2-/i}. 
To keep the notation transparent, we assume that pkj < pkj for i < j < tk. Let r 
denote 2\ - ] . 

16. CLAIM. Let k > I and i < tk — r. Then there is an index j such that 
ldg(bkj\Pk,hPkj) > M-

Proof. Fix k > I and i < tk — r. Instead of bkj,pkj we write &/, /?/. By 7(a), the 
function z/(-) = ldg(-,pi) is a probability measure on P(u). If i/(bj) > /x for all 
j E [/, / + r], then we obtain a contradiction, as 

l>H\Jbj) 

7=1 i<j<j'<i+r 

y'=l i<j<f<i+r 

(1) > ( r + l ) / i - ^ M / 3 

(2) 
( r + l ) r M 

= /x(r + 1) — - 2 
2 ( r + l ) z 

> /xr 

= , .2 f i l 
> 2 . 
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Inequality ( 1 ) follows from 15(c), and equality (2) from the definitions of r and 

a-
Fix now 7 G [/, i + r] such that v(bj) < \i. Since v{bt) > 2/x, by our choice of/?,, 

wemusthavey > /andhence,pj >/?/.Therefore,\x > ldg(bj,pi) > ldg(bj(~)pi,pj). 
On the other hand, ldg(bj \ Pi,pj) > 2p. Since ldg(-,pj) is a measure, the desired 
inequality ldg(bj \ pt,Pj) ^ /i follows. 

17. COROLLARY. //"& > / and i < tk — r, thenp^i+r > accg(pkJ,p, 1). 

18. COROLLARY. Ifk > I and i < tk~ r, then pkjk-r > accg(p*,o> M» |_ -̂J — 1). 

Since pkjo > t by the choice of /, we can replace the right hand side of 17 by 

acc g ( f , /z ,L£J-D. 
For k > / let7 G [tk — r, tk) be such that 

ldg(bkj \ pk%tk-r-UPkjk-r-\) > M 

and put wk — bkj. Then wk is as required in Lemma 14. 
From now on we shall consider specifically the ideals I\ and /iog. 

19. DEFINITION . The following statement will be abbreviated by ST in the se­
quel. "37, p > 0 Ve > 0 V/ G u 3n > I 3w G Fin 3W C P(w) (i), (ii), (iii), and 
(ivf\ where: 

(i) minw > exp(rc7). 
(ii)ciog(w) > / i . 
(iii) #(W) < 2n. 
(iv) Vz C w 3y G W clog(zAy) < e. 

20. LEMMA. Suppose CSPD holds and the algebras P(u)/1\ and P(LO)/ I\og 

are isomorphic. Then ST holds. 

Proof. Let F:P(u)/1\ —» P(w)/I\og be an isomorphism. By CSPD, there ex­
ists an A C UJ which contains infinitely many sets of the form [t\,t\ • 2tl) (i. e., 
ffi,acci(fi, 5,^1)); see 13(a)), and a continuous lifting F:P(A) —> P{u) of 
F\ P(A)I I\. Apply Lemma 8 to F, F and y\ = [t\, t\ • 2h ) to get sequences (H*)*^ > 
(vk)k£uj' (H^kew a s e t B a nd a function F* that satisfy (l)-(4). Then apply 
Lemma 14 to these objects and t = 3. 

Let p be the constant given by Lemma 14. By 13(b), exp^^z -) *) is a safe 
estimate from below of min wk. It is easily seen that^ > tkj v for a certain positive 
constant v and all k. 

Now ( 5 ^ / ' > ( 2 ^ ) ^ " = exp(f*/i/ -111(2^)) = 4'-7 > n(*)\ where 
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We have thus found /i, 7 as in ST. For every fixed e, /, the w will be one of the 
w*'s given by Lemma 14, n will be the corresponding n{k), and W the correspond­
ing Wk = { //*(*) : JC C [tic, h • 2'*)}. Clearly, (i), (ii) and (iii) are satisfied by these 
choices. 

We show that (iv) also holds for some large enough k. Suppose that for some 
e > 0 and ko G uo we are unable to choose wk for k > ko so that (iv) holds. For 
every k>k0 pick Zk C wk such that ciog(z* Ay) > e for all y G Wk. 

Let Z = U j ^ Zk- Since Z C F*(B), and since F was supposed to be a Boolean 
homomorphism mapping P{uj)j I\ onto P{UJ)/ I\og, there is an X C 5 such that 
F*(X)AZ G /log.Lety* - / /*(xnfo,r r2 '0) .Then^ G ^ ,and/^(X) = U£0y*. 
By 7(c), giog(F*(X)AZn v*) < e for sufficiently large k. But F*(X)AZH vk = 
ykAzk for k > ko. This contradicts our choice of Zk, and thus concludes the proof 
of 20. 

The next lemma is the last brick needed in the proof of 3. 

21. LEMMA. ST is false. 

Proof. Let 7, [i > 0, and choose e = %. Assume that n, w, W are such that (i)-
(iii) hold. It suffices to show that if n exceeds a certain number 1 which depends 
only on 7, M and e, then there exists a z C w such that ciog(zAj) > e for every 

yew. 
Let j C w . The idea is to show that the number of subsets z C w which satisfy 

ciog(yAz) < e is smaller than 2#(vv)-2_A\ But we don't know the number of elements 
of w, so counting these sets, even if possible, would not be of much help. This 
problem is solved in the following way: We treat P(w) as a probability space, and 
assign the same probability 2_#(vv) to every z C w. For m G u we define a random 
variable £m as follows: 

jàï ifmG^Az 
(0 if m f. yAz. 

We let p — min{&: /diog(w,&) > fi} and define a random variable £ on F(w) 

by:£(z) = Emennp Cm(z). 
Note that clog(yAz) > ldlog(yAz,p) > ^ = ^ ^ 

Therefore, Pr({ciog(vAz) < e}) < Pr({£(z) < (e +o(l))lnp}). Hence, we 
shall be done if we show that for sufficiently large n the following inequality holds: 

(1) Pr({£ < ( € + o ( l ) ) l n p } ) < 2 - n . 

Namely, if (1) holds, then Pr({3y G W ciog(yAz) < e}) = Pr({\JyeW 

clog(yAz) < c}) < E^Pr ({c l o g ( jAz) < e}) < |W| • Pr({£ < (e + 

0(1))In/?}) < 2 " - 2 - n = 1. 
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The last inequality means that the event which contains all z for which c\og(yAz) 
> e has a positive probability, and is therefore nonempty. That is precisely what 
we need. 

For the proof of (1), it will be convient to consider centralized random variables. 

We put: im = £m- ^ 7 f o r m G w n P> a n d £* = ^mewnP fm- Then E[|w] = 0 

for all m, and hence, E[£] — 0 as well. 
The £m's are independent. Moreover, £ < (e + o(l))ln/? if and only if £m < 

— Emeuci/? 2(m+i) + (e + ^(l))!11/7- ^ follows from the choice of p and e that 

- Eme^p 2(iû) + < e + °^W l n ^ < f l n P + (£ + 0(1)) lnp = - ( e + o(l)) Inp. 
Thus (1) can be reformulated in terms of £ as follows: 

(2) P r ( { | <-(e+o(\))\np})<2-n. 

To be more specific, we show that for sufficiently large n the following strength­
ening of (2) holds: 

(3) P r ( { | < — l n p } ) < 2 - " . 

We need the following. 

22. CLAIM. (Folklore) Let (r)i)r
i=l be a sequence of independent random vari­

ables such that E[r]i\ — 0 and \r\i\ < 8ifor every i. Then for arbitrary (5 > 0 the 
following holds: Pr({ £[=, m > (5 } ) < exp(/32/ (4 £ ^ i «?)). 

Proo/ Let 77;'s be as in the assumption, and let a be an arbitrary positive real. 

Pr ({è^ > 0 » = Pr({^ X > > <* •/?}) 
i=i /=i 

= Pr({ exp(a J ] fy) > exp(a/3 } ) 
/=i 

= A. 

By Markov's inequality, 

A < £[exp(a - E L i ^ ) ] 
~" exp(a/3) 
= ^[nLiexp(a -r?,)] 

exp(a/3) 

= nLi£[exp(ar/ /)] 

exp(a/3) 

= 5. 
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For every 7 G 3?+ the inequality exp(7) < 7 + exp(72) holds. Therefore, 

YY^{E[a - r]i +exp(a2r]f)] 
B< 

< 

exp(a/3) 

nUiaEW + Elexpia2^)}) 

exp(a(3) 

exp(a^) 

n^expÇr2^2) 

exp(a/3) 

-exp(a 2 -X:^ 2 -«/3) 

= C. 

Substituting a = / 3 / ( 2 £ ^ , */2) i n c w e get : c = exp(-/32/ (4E-=i *2))> a s 

desired. 
Now observe the £ is a symmetric random variable, and that the sequence 

(£m)mewnp satisfies the assumptions of 22 with 6m — 2(J+1). Therefore: 

P r ( { l < - x M ) = P r ( { | > Unp}) 

expf- - ( ln /7) 2 / (4 V 1—=)) 

D. 

Let /] be such that j • /, > 1. If n > /i, then/? > minw > exp(n7), so 

j • (In/?) > 1. For n > /| we can thus estimate: 

o<cxp(-i/( £ —l-r2)) 
V /fi6wnp(/n+l)z /y nGvvTl/? ' 

= E. 

Since Emennp ^ i < £ ~ = m i „ w i < / ? = - ^ , and since minw > 
minw 

exp(rc7), we can further estimate: E < exp(— exp(/i7)). 

If / > l\ is such that exp(«7) > n for n > /, then we get for these n: Pr({ £ < 
| In/?}) < exp(—expOz7)) < exp(—n) < 2~n. This proves (3), and simultane­
ously concludes the proofs of Lemma 21 and Theorem 3. 
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