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Abstract

We introduce the notions of quasi-Laurent and Laurent families of simple modules over
quiver Hecke algebras of arbitrary symmetrizable types. We prove that such a fam-
ily plays a similar role of a cluster in quantum cluster algebra theory and exhibits a
quantum Laurent positivity phenomenon similar to the basis of the quantum unipo-
tent coordinate ring Aq(n(w)), coming from the categorification. Then we show that
the families of simple modules categorifying Geiß–Leclerc–Schröer (GLS) clusters are
Laurent families by using the Poincaré–Birkhoff–Witt (PBW) decomposition vector of
a simple module X and categorical interpretation of (co)degree of [X]. As applications
of such Z-vectors, we define several skew-symmetric pairings on arbitrary pairs of sim-
ple modules, and investigate the relationships among the pairings and Λ-invariants of
R-matrices in the quiver Hecke algebra theory.
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1. Introduction

A cluster algebra and its non-commutative version quantum cluster algebra, were introduced
by Berenstein, Fomin and Zelevinsky [FZ02, BZ05] in an attempt to provide an algebraic and
combinatorial framework for investigating the upper global basis of the quantum group.

The quantum cluster algebra Aq is a non-commutative Z[q±1/2]-subalgebra in the skew field
Q(q1/2)(Xi)i∈K generated by the cluster variables, which are obtained from the initial cluster
{Xi}i∈K via the sequences of procedures, called mutations. Even though mutations involve non-
trivial fractions, Aq is still contained in Z[q±1/2][X±1

i ]i∈K with amazing reductions of fractions
which is referred to as the quantum Laurent phenomenon [BZ05]. The famous conjecture, which
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Laurent family

is not completely proved yet at this moment, is the quantum Laurent positivity conjecture which
asserts that every cluster variable is an element in Z�0[q±1/2][X±1

i ]i∈K for any cluster {Xi}i∈K.
Note that the conjecture is proved in [Dav18] (see also [LS15, GHKK18]) when Aq is of skew-
symmetric type and is widely open when it is of non-skew-symmetric type.

The notion of monoidal categorification of (quantum) cluster algebra was introduced by
Hernandez and Leclerc in [HL10] (see also [KKKO18]) as the categorical framework for proving
the conjecture as follows: a monoidal category C with an autofunctor q is a monoidal categori-
fication of Aq, if (a) A ⊗Z[q±1] K(C) (A := Z[q±1/2]) is isomorphic to Aq and (b) the cluster
monomials of Aq are the classes of real simple objects of C. Once C is a monoidal categorifica-
tion of Aq, then the conjecture for Aq follows since it can be interpreted as the existence of a
Jordan–Hölder series of an object. In [KKKO18], it is proved that the category Cw over symmet-
ric quiver Hecke algebra R is a monoidal categorification of the quantum unipotent coordinate
ring AA(n(w)) associated with an element w of the Weyl group W by using the Z-invariant
Λ(M,N) of a pair of simple objects M,N ∈ Cw.

For non-symmetric cases, the monoidal categorification is still out of reach. We know that Cw

categorifies AA(n(w)) as an algebra [KL09, KL11, Rou08, Kim12] and AA(n(w)) has a quantum
cluster algebra structure [GLS13a, GY17] in every symmetrizable case. The quantum cluster
algebra structure is skew-symmetric if the corresponding generalized Cartan matrix is symmetric.
However, we cannot prove that Cw is a monoidal categorification of AA(n(w)) in non-symmetric
cases due to the obstacle that we do not know whether every simple module M ∈ Cw admits an
affinization [KP18] or not. Note that the existence of affinizations guarantees that one can define
R-matrices and the Z-invariant Λ(M,N).

In this paper, we study the quantum Laurent positivity for AA(n(w)) of not necessarily
symmetric type in the view point of the monoidal categorification. More precisely, we show that
the basis of AA(n(w)) corresponding to the simple modules in Cw exhibits a quantum Laurent
positivity phenomenon with respect to any quasi-Laurent family, which is a central notion we
introduce in this paper and plays the similar role of a cluster in the quantum cluster algebra
theory.

The quasi-Laurent family (respectively, Laurent family) M = {Mj}j∈J consists of mutually
commuting affreal simple modules in Cw satisfying additional conditions (Definition 3.2). Among
others, the most important condition is that if a simple module X commutes with all Mj , then
there are monomials (i.e. convolution products) M(a) and M(b) in {Mj}j∈J such thatX ◦M(a)
is isomorphic to M(b). We say the family M is Laurent if M is maximal in the sense that, if a
simple module X commutes with all Mj , then X is isomorphic to a monomial M(b) in {Mj}j∈J .

The main results of this paper are the following.

(A) We show that if M is a quasi-Laurent family in Cw, then the class [X] in the Grothendieck
ring K(Cw) of any simple object X in Cw can be written as a Laurent polynomial in
{[Mj ]}j∈J whose coefficients belong to Z≥0[q±1] (Proposition 3.6).

(B) If M is a monoidal seed in Cw, then M is a Laurent family.
(C) In particular, for any reduced sequence i of w, we show that the family Mi :=

{M(wi
�k�ik , �ik)} is a Laurent family and, hence, any class [X] of a module X in Cw

can be written as a Laurent polynomial in the unipotent quantum minors D(wi
�k�ik , �ik)

with coefficients in Z≥0[q±1]. Note that D(wi
�k�ik , �ik) = [M(wi

�k�ik , �ik)] and we call
{D(wi

�k�ik , �ik)} the GLS seed associated with i (Proposition 4.5).
(D) We show that if M is a quasi-Laurent family, then the class [X] of a simple module X

in Cw is pointed and copointed with respect to the partial order �M. That is, the set of
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degrees of the monomials appearing in the Laurent expansion of [X] with respect to M has
a unique maximal element and a unique minimal element with respect to �M. We define
vectors gR

M(X) and gL
M(X) ∈ Z⊕J as the maximal and the minimal element, respectively.

(E) Each quasi-Laurent family M also induces new Z-values GR
M(X,Y ) and GL

M(X,Y ) for any
pair of simple modules X and Y which coincides with Λ(X,Y ) provided X,Y commutes
and one of them is affreal.

To the best of the authors’ knowledge, the positivity result in part (C) is new. We can
understand result (A) that a quasi-Laurent family is a generalization of a cluster in the categorical
view point, and that the positivity conjecture can be extended to elements corresponding to
simple modules in all skew-symmetrizable types.

In [FZ07, Qin17], Fomin-Zelevinsky and Qin defined a pointed (respectively, copointed) ele-
ment x in a cluster algebra and its degree degS(x) ∈ Z⊕K (respectively, codegree codegS(x) ∈
Z⊕K) depending on the choice of a seed S (see also [Qin20] for codegree and [Tra11] for degree
elements in a quantum cluster algebra). With a fixed choice of a seed, it is proved in [Tra11]
that every cluster monomial is pointed, and in [DWZ10, GHKK18] that cluster monomials are
determined by their degrees.

For a given quasi-Laurent family M and a simple module X ∈ Cw, we define vectors
gR
M(X),gL

M(X) ∈ Z⊕J in Definition 3.7 by using the Z⊕J
�0 -vectors in Lemma 3.3 and guaran-

teeing its well-definedness in Lemma 3.1. We then prove that, for every simple module X ∈ Cw,
the element [X] in AA(n(w)) is (co)pointed with respect to the GLS seed Si and that gR

Mi (X)
and gL

Mi (X) coincide with degSi ([X]) and codegSi ([X]), respectively.
Utilizing the vectors gR

M(X) and gL
M(X), we define skew-symmetric Z-valued forms

GR
M(−,−) and GL

M(−,−) on the pairs (X,Y ) of simple modules. Then we compare GR
M(X,Y )

and GL
M(X,Y ) with the Z-invariant Λ(X,Y ) when the pair of simple module (X,Y ) admits the

Z-invariant Λ(X,Y ). It is proved in Proposition 5.3 that GR
M(X,Y ) and GL

M(X,Y ) give lower
bounds of Λ(X,Y ), and in Proposition 5.4 that GR

M(X,Y ) = GL
M(X,Y ) = Λ(X,Y ) when (X,Y )

is a commuting pair. Here we would like to emphasize that (1) GR
M(X,Y ) and GL

M(X,Y ) are
defined even for pairs (X,Y ) we do not know whether they admit Λ(X,Y ) or not, and (2) the
Z-values GR

M(X,Y ) and GL
M(X,Y ) do depend on the choice of M as (co)degree does on the one

of seeds (Remark 5.5).
This paper is organized as follows. In § 2, we give preliminaries. In § 3, we define the notions

of quasi-Laurent and Laurent families, and investigate their properties. Then we define gR
M(X)

and gL
M(X), and prove that gR

M(X) and gL
M(X) determine the isomorphism class of X. In § 4, we

prove that Mi is Laurent by studying PBW decomposition vectors of simple modules. In § 5, we
define the skew-symmetric pairings on pairs of simple modules and investigate the relationships
among the pairings and Λ-invariants.

Convention. Throughout this paper, we use the following convention.

(i) For a statement P, we set δ(P) to be 1 or 0 depending on whether P is true or not. As a
special case, we use the notation δi,j := δ(i = j) (Kronecker’s delta).

(ii) For integers a, b ∈ Z, we set

[a, b] := {x ∈ Z | a � x � b}.
We refer to the subset as an interval and understand it as an empty set if a > b.

(iii) Let x = (xj)j∈J be a family parameterized by an index set J . Then for any j ∈ J , we set

(x)j := xj .

1918
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2. Preliminaries

In this preliminary section, we briefly review the basic material of this paper. We refer the reader
to [BZ05, FZ07, KL09, Rou08, Kim12, GLS13a, KKKO18, GY17, KiOy21, KP18, KKOP18,
KK19, GHKK18] for more details.

2.1 Quantum cluster algebras
Fix a finite index set K = Kex � Kfr with a decomposition into the set Kex of exchangeable indices
and the set Kfr of frozen indices. Let L = (lij)i,j∈K be a skew-symmetric integer-valued matrix
and let q be an indeterminate. We set A := Z[q±1/2] where q1/2 denotes the formal square root
of q.

Definition 2.1. We define the quantum torus T (L) to be the A-algebra generated by a finite
family of elements {X±1

k }k∈K subject to the following defining relations:

XjX
−1
j = X−1

j Xj = 1 and XiXj = qlijXjXi for i, j ∈ K.

For a = (ai)i∈K ∈ ZK, we define the element Xa of T (L) as

Xa = q(1/2)
∑

i>j aiaj lij

−→∏
i∈K

Xai
i .

Here
−→∏

i∈KX
ai
i :=X

ai1
i1

· · ·Xair
ir

, where K = {i1, . . . , ir} with a total order i1 < · · · < ir. Note
that Xa does not depend on the choice of a total order < on K. Then {Xa | a ∈ ZK} forms an
A-basis of T (L). Since T (L) is an Ore domain, it is embedded into the skew field of fractions
F(T (L)).

Let B̃ = (bij)i∈K,j∈Kex be an integer-valued K × Kex-matrix whose principal part B =
(bij)i,j∈Kex is skew-symmetrizable, i.e. there exists a diagonal matrix D with a positive inte-
ger entries such that DB is skew-symmetric. Such a matrix B̃ is called an exchange matrix. We
say that a pair (L,B) is compatible if∑

k∈K

bkilkj = diδi,j for any i ∈ Kex and j ∈ K

for some positive integers {di}i∈Kex . We call the triple S = ({Xk}k∈K, L, B̃) a quantum seed in
the quantum torus T (L) and {Xk}k∈K a quantum cluster.

For k ∈ Kex, the mutation μk(L, B̃) := (μk(L), μk(B)) of a compatible pair (L, B̃) in a direc-
tion k is defined in a combinatorial way (see [BZ05]). Note that (i) the pair (μk(L), μk(B))
is also compatible with the same positive integers {di}i∈K and (ii) the operation μk is
an involution, i.e. μk(μk(L, B̃)) = (L, B̃). We define an isomorphism of Q(q1/2)-algebras
μ∗k : F(T (μkL)) ∼−−→F(T (L)) by

μ∗k(Xj) :=

{
Xa′

+Xa′′
if j = k,

Xj if j �= k,

where

a′
i =

{
−1 if i = k,

max(0, bik) if i �= k,
and a′′

i =

{
−1 if i = k,

max(0,−bik) if i �= k.

Then the mutation μk(S) of the quantum seed S in a direction k is defined to be the triple
({Xi}i�=k � {μ∗k(Xk)}, μk(L), μk(B̃)).
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For a quantum seed S = ({Xk}k∈K, L, B̃), an element in F(T (L)) is called a quantum cluster
variable (respectively, quantum cluster monomial) if it is of the form

μ∗k1
· · ·μ∗k�

(Xj) (respectively, μ∗k1
· · ·μ∗k�

(Xa))

for some finite sequence (k1, . . . , k�) ∈ K�
ex (� ∈ Z�0) and j ∈ K (respectively, a ∈ ZK

�0). For a
quantum seed S = ({Xk}k∈K, L, B̃), the quantum cluster algebra Aq(S) is the A-subalgebra of
F(T (L)) generated by all the quantum cluster variables. Note that Aq(S) 	 Aq(µ(S)) for any
sequence µ of mutations.

The quantum Laurent phenomenon, proved by Berenstein and Zelevinsky in [BZ05], says
that the quantum cluster algebra Aq(S) is indeed contained in T (L).

For a quantum seed S with a compatible pair (L, B̃), an element x ∈ T (L) is called pointed
(respectively, copointed) if it is of the following form:

x = qaXgR
+

∑
c∈Z

Kex
�0 \{0}

pcX
gR+B̃c

(
respectively, x = qaXgL

+
∑

c∈Z
Kex
�0 \{0}

pcX
gL+B̃c

)
(2.1)

for some a ∈ 1
2Z, gR ∈ ZK (respectively, gL ∈ ZK) and pc ∈ A. In this case, we call gR the

degree (respectively, codegree) of the pointed (respectively, copointed) element x and denote
it by degS(x) (respectively, codegS(x)). The degree (respectively, codegree) is often the
called g-vector (respectively, dual g-vector) of x (see [Qin17, Definition 3.1.4] and [Qin20,
Definition 3.1.3]). It is worth remarking that the notion of g-vector (respectively, dual g-vector)
does depend on the compatible pair (L, B̃) and, hence, on the seed S. It is proved in [Tra11,
Theorem 5.3] that every quantum cluster monomial in Aq(S) is pointed.

We say that an A-algebra R has a quantum cluster algebra structure if there exists a quantum
seed S and an A-algebra isomorphism Ω : Aq(S) ∼−−→R. In the case, a quantum seed of R refers

to the image of a quantum seed in Aq(S), which is obtained by a sequence of mutations.

2.2 Quantum unipotent coordinate rings
Let I be an index set. A Cartan datum (A,P,Π,P∨,Π∨) consists of:

(a) a symmetrizable Cartan matrix A = (ai,j)i,j∈I , i.e. DA is symmetric for a diagonal matrix
D = diag(di | i ∈ I) with di ∈ Z>0;

(b) a free abelian group P, called the weight lattice;
(c) Π = {αi | i ∈ I} ⊂ P, called the set of simple roots;
(d) Π∨ = {hi | i ∈ I} ⊂ P∨ := Hom(P,Z), called the set of simple coroots;
(e) a Q-valued symmetric bilinear form (·, ·) on P;

satisfying the standard properties (see [KKKO18, § 1.1] for instance). Here we take D = diag(di |
i ∈ I) such that di := (αi, αi)/2 ∈ Z>0 (i ∈ I) in this paper.

For i ∈ I, we choose �i ∈ P such that 〈hi, �j〉 = δij for any j ∈ I and call it the ith
fundamental weight . The free abelian group Q :=

⊕
i∈I Zαi is called the root lattice and

we set Q+ =
∑

i∈I Z�0αi ⊂ Q and Q− =
∑

i∈I Z�0αi ⊂ Q. We denote by Δ the set of roots
and by Δ± the set of positive roots (respectively, negative roots). For β ∈

∑
i∈I miαi ∈ Q+,

we set |β| :=
∑

i∈I mi, supp(β) := {i ∈ I | mi �= 0} and Iβ := {ν = (ν1, . . . , ν|β|) ∈ I |β| | αν1 +
· · · + αν|β| = β}. Note that the symmetric group S|β| = 〈r1, . . . , r|β|〉 acts on Iβ by the place
permutations.

Let g be the Kac–Moody algebra associated with the Cartan datum (A,P,Π,P∨,Π∨), and
W the Weyl group of g. It is generated by the simple reflections si ∈ Aut(P) (i ∈ I) defined by
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si(λ) = λ− 〈hi, λ〉αi for λ ∈ P. For a sequence i = (i1, . . . , ir) ∈ Ir, we call it a reduced sequence
of w ∈ W if si1 . . . sir is a reduced expression of w. For w, v ∈ W, we write w � v if there is a
reduced sequence of v which appears in a reduced sequence of w as a subsequence.

For λ, μ ∈ P, we write λ � μ if there exists a sequence of real positive roots βk (1 � k � l) such
that λ = sβl

· · · sβ1
μ and (βk, sβk−1

· · · sβ1
μ) > 0 for 1 � k � l. When Λ ∈ P+ and λ, μ ∈ WΛ the

relation λ � μ holds if and only if there exist w, v ∈ W such that λ = wΛ, μ = vΛ and v � w.
Let Uq(g) be the quantum group of g over Q(q1/2), generated by ei, fi (i ∈ I) and qh (h ∈ P∨).

We denote by U+
q (g) the subalgebra of Uq(g) generated by ei and U+

A (g) the A-subalgebra of
Uq(g)+ generated by eni /[n]i! (i ∈ I, n ∈ Z>0), where

qi := qdi , [k]i =
qk
i − q−k

i

qi − q−1
i

and [k]i! =
k∏

s=1

[s]i.

Set

Aq(n) =
⊕

β∈Q−
Aq(n)β where Aq(n)β := HomQ(q1/2)(U+

q (g)−β ,Q(q1/2)),

where U+
q (g)−β denotes the (−β)-root space of U+

q (g). Then Aq(n) also has an algebra structure
and is called the quantum unipotent coordinate ring of g. We denote by AA(n) the A-submodule
of Aq(n) generated by ψ ∈ Aq(n) such that ψ(U+

A (g)) ⊂ A. Then, Aq(n) is an A-subalgebra with
a U+

A (g)-bimodule structure.
For each λ ∈ P+ :=

∑
i∈I Z�0�i and Weyl group elements w,w′ ∈ W, we can define a specific

homogeneous element D(wλ,w′λ) of AA(n), called a unipotent quantum minor (see, for example,
[KKKO18, § 9]).

For w ∈ W, we denote by AA(n(w)) the A-submodule of AA(n) consisting of elements ψ such
that ei1 · · · ei|β|ψ = 0 for any β ∈ Q+ \ wQ− and (νi1 , . . . , νi|β|) ∈ Iβ . Then it is an A-subalgebra
and we call it the quantum unipotent coordinate ring associated with w.

For a reduced sequence i = (i1, . . . , ir) of w ∈ W and 1 � k � r, define wi
�k = si1 · · · sik

and wi
<k = si1 · · · sik−1

. Then AA(n(w)) is generated by the set of unipotent quantum minors
{D(wi

�k�ik , w
i
<k�ik) | 1 � k � r} as an A-algebra.

It is proved in [GLS13a, GY17, KKKO18, Qin20] that AA(n(w)) has a quantum cluster
algebra structure, one of whose quantum seeds Si can be obtained from a reduced sequence
i = (i1, . . . , ir) of w. To introduce Si , we need preparations.

Let j = (j1, . . . , jl) be a sequence of indices in I. For 1 � k � l and j ∈ I, we set

kj
+ := min({u | k < u � l, ju = jk} ∪ {l + 1}),

kj
− := max({u | 1 � u < k, ju = jk} ∪ {0}).

We also set

kj
min := min{u | 1 � u � k, ju = jk} and kj

max := max{u | k � u � l, ju = jk}.

We sometimes drop j in the above notation if there is no danger of confusion.
Take K = [1, r] as an index set and decompose K into

Kfr = {k | 1 � k � r, ki
+ = r + 1} and Kex := K \ Kfr.
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We define the Z-valued K × Kex matrix B̃i = (bist)s∈K,t∈Kex and the Z-valued skew-symmetric
K × K matrix Li = (list)s,t∈K as follows:

bist =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
±1 if s = ti±,
−ais,it if s < t < si+ < ti+,
ais,it if t < s < ti+ < si+,
0 otherwise,

list = (�is − wi
�s�is , �it + wi

�t�it) for s < t.

Then the quantum seed Si of AA(n(w)) is given as follows:

Si :=
(
{qcikD(wi

�k�ik , �ik)}k∈K, L
i , B̃i

)
, (2.2)

where cis = 1
4(�is − wi

�s�is , �is − wi
�s�is) ∈ Z/2. Note that (Li B̃i )ab = −2dia × δa,b for (a, b) ∈

K × Kex, wt(D(wi
�k�ik , �ik)) = −�is + wi

�s�is , and{
qcikD(wi

�k�ik , �ik) = qcikD(w�ik , �ik) | k ∈ Kfr

}
forms the set of frozen variables of the quantum cluster algebra AA(n(w)). We call Si the GLS
seed (associated with i).

We set D(w) := {qmD(w�,�) | m ∈ Z/2, � ∈ P+}. Then it is well-known that D(w) con-
sists of q-central elements of AA(n(w)) and, hence, forms an Ore set. We denote by AA(nw) the
quotient ring of AA(n(w)) by the Ore set D(w). Then AA(nw) has also the quantum cluster
algebra structure with the invertible frozen variables {qcikD(wi

�k�ik , �ik)}k∈Kfr
in the sense of

[BZ05].

2.3 Quiver Hecke algebras and categorifications
Let k be a base field. For i, j ∈ I, we choose polynomials Qi,j(u, v) ∈ k[u, v] such that (a)
Qi,j(u, v) = Qj,i(v, u) and (b) each Qi,j(u, v) is of the following form:

Qi,j(u, v) = δ(i �= j)
∑

p(αi,αi)+q(αj ,αj)=−2(αi,αj)

ti,j;p,qu
pvq where ti,j;−ai,j ,0 ∈ k×.

For a Cartan datum (A,P,Π,P∨,Π∨) and β ∈ Q+, the quiver Hecke algebra R(β) associated
with (Qi,j)i,j∈I is the Z-graded algebra over k generated by the elements

{e(ν)}ν∈Iβ , {xk}1�k�|β|, {τm}1�m<|β|

subject to certain defining relations (see [KKOP21, Definition 1.1] for instance). Note that the
Z-grading of R(β) is determined by the degrees of following elements:

deg(e(ν)) = 0, deg(xke(ν)) = (ανk
, ανk

), and deg(τme(ν)) = −(ανm , ανm+1).

We say that R(β) is symmetric if Qi,j(u, v) ∈ k[u− v] for i, j ∈ supp(β).
We denote by R(β)-gmod the category of finite-dimensional graded R(β)-modules with

homomorphisms of degree 0. For M ∈ R(β)-gmod, we set wt(M) := −β ∈ Q−. Note that there
exists the degree shift functor, denoted by q, such that (qM)n = Mn−1 for M =

⊕
k∈Z Mk ∈

R(β)-gmod.
Throughout this paper, we usually deal with graded R(β)-modules (β ∈ Q+) and sometimes

skip grading shifts. Thus, we usually say that M is an R-module instead of saying that M is
a graded R(β)-module and f : M → N is a homomorphism if f : qaM → N is a morphism in
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R(β)-gmod. We set
HOMR(β)(M,N) :=

⊕
a∈Z

HOMR(β)(M,N)a

with HOMR(β)(M,N)a := HomR(β)-gmod(qaM,N)a. We write deg(f) := a for an f ∈ HOMR(β)

(M,N)a.
For an R(β)-module M and an R(γ)-module N , we can obtain R(β + γ)-module

M ◦N :=R(β + γ)e(β, γ) ⊗
R(β)⊗R(γ)

(M ⊗N),

where e(β, γ) :=
∑

ν∈Iβ ,ν′∈Iγ e(ν ∗ ν ′) ∈ R(β + γ). Here ν ∗ ν ′ denotes the concatenation of ν and
ν ′, and ◦ is called the convolution product. We say that two simple R-modules M and N strongly
commute if M ◦N is simple. If a simple module M strongly commutes with itself, then M is
called real. A simple R-module M is said to be prime if there are no non-trivial simple R-modules
N1 and N2 such that M 	 N1 ◦N2.

For an R(β)-moduleM , the dual spaceM∗ := Homk(M,k) admits an R(β)-module structure
via

(r · f)(u) = f(ψ(r)u) (r ∈ R(β), u ∈M, f ∈M∗).

Here ψ denotes the k-algebra anti-involution R(β) which fixes the generators of R(β). A simple
R(β)-module M is called self-dual if M∗ 	M .

Set R-gmod :=
⊕

β∈Q+ R(β)-gmod. Then the category R-gmod is a monoidal category with
the tensor product ◦ and the unit object 1 := k ∈ R(0)-gmod. Hence, the Grothendieck group
K(R-gmod) has the Z[q±1]-algebra structure derived from ◦ and the degree shift functors q±1.

For a monoidal abelian subcategory C of R-gmod stable by grading shifts, we set

KA(C) := A ⊗
Z[q±1]

K(C),

where K(C) denotes the Grothendieck ring of C. For a subcategory C of R-gmod, we denote by
Irr(C) the set of the isomorphism classes of self-dual modules in C. Note that Irr(R-gmod) forms
an A-basis of KA(R-gmod).

It is proved in [KL09, KL11, Rou08] that there exists an A-algebra isomorphism

Ω : KA(R-gmod) ∼−−→AA(n). (2.3)

Proposition 2.2 [KKOP18, Proposition 4.1]. For � ∈ P+ and μ, ζ ∈ W� with μ � ζ, there
exists a self-dual real simple R(ζ − μ)-module M(μ, ζ) such that

Ω([M(μ, ζ)]) = D(μ, ζ).

Here, [M(μ, ζ)] denotes the isomorphism class of M(μ, ζ) which is called the determinantal
module associated with D(μ, ζ).

For an R(β)-module M , we define

W (M) := {γ ∈ Q+ ∩ (β − Q+) | e(γ, β − γ)M �= 0},
W ∗(M) := {γ ∈ Q+ ∩ (β − Q+) | e(β − γ, γ)M �= 0}.

An ordered pair (M,N) of R-modules is called unmixed [TW16, Definition 2.5] if

W ∗(M) ∩W (N) ⊂ {0}.
For w ∈ W, we denote by Cw the full subcategory of R-gmod whose objects M sat-

isfy W (M) ⊂ Q+ ∩ wQ−. Then the category Cw is the smallest monoidal abelian category of
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R-gmod which (i) is stable under taking subquotients, extensions, grading shifts and (ii) con-
tains

{
Si

k :=M(wi
�k�ik , w

i
<k�ik) | 1 � k � r

}
for any reduced sequence i of w. We call Si

k the
kth cuspidal module associated with i . Defining βi

k := wi
<kαik for 1 � k � r, one can see that

{βi
k | 1 � k � r} = Δ+ ∩ wΔ−, and −wt(Si

k) = βi
k. Then we have [Kim12, § 4]

Ω(KA(Cw)) 	 AA(n(w)).

2.4 R-matrices and affreal simple modules
For β ∈ Q+ and i ∈ I, let

pi,β =
∑

η ∈Iβ

( ∏
a∈[1,|β|]; ηa=i

xa

)
e(η) ∈ Z(R(β)),

where Z(R(β)) denotes the center of R(β).

Definition 2.3 [KP18, Definition 2.2]. For an R(β)-module M , we say that M admits
an affinization if there exists an R(β)-module M̂ satisfying the condition: there exists an
endomorphism z

M̂
of degree t ∈ Z>0 such that M̂/z

M̂
M̂ 	M and:

(i) M̂ is a finitely generated free module over the polynomial ring k[z
M̂

];
(ii) pi,βM̂ �= 0 for all i ∈ I.

We say that a simple R(β)-module M is affreal if M is real and admits an affinization.

It is known that any M ∈ R(β)-gmod admits an affinization if R(β) is symmetric. However,
when R(β) is not symmetric, it is widely open whether an R(β)-module M admits an affinization
or not.

Theorem 2.4 [KKOP21, Theorem 3.26]. For � ∈ P+ and μ, ζ ∈ W� such that μ � ζ, the
determinantal module M(μ, ζ) is affreal.

Proposition 2.5 [KKKO18, KKOP21]. Let M and N be simple modules such that one of them
is affreal. Then there exists a unique R-module homomorphism rM,N ∈ HOMR(M,N) satisfying

HOMR(M ◦N,N ◦M) = k rM,N .

We call the homomorphism rM,N the R-matrix.

Definition 2.6. For simple R-modules M and N such that one of them is affreal, we define

Λ(M,N) := deg(rM,N ),

Λ̃(M,N) := 1
2

(
Λ(M,N) +

(
wt(M),wt(N)

))
,

d(M,N) := 1
2

(
Λ(M,N) + Λ(N,M)

)
.

It is proved in [KKKO18, KKOP21] that the invariants Λ̃(M,N) and d(M,N) in
Definition 2.6 belong to Z�0.

For simple modules M and N , M ∇N and M ΔN denote the head and the socle of M ◦N ,
respectively.

Proposition 2.7 [KKKO15, Lemma 3.1.4] and [KKKO18, Corollary 4.1.2]. Let M and N be
simple R-modules such that one of them is affreal.
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(i) The image of r
M,N

is equal to M ∇N and N ΔM .

(ii) The head M ∇N and socle M ΔN are simple modules and each of them appears exactly
once in the composition series of M ◦N (up to a grading shift).

(iii) Assume that N is affreal.
(a) If a simple subquotient S of M ◦N is not isomorphic to M ∇N , then Λ(S,N) < Λ(M ∇

N,N) = Λ(M,N).
(b) If a simple subquotient S of M ◦N is not isomorphic to M ΔN , then Λ(N,S) <

Λ(N,M ΔN) = Λ(N,M).
(iv) If M and N are self-dual, then qΛ̃(M,N)M ∇N is a self-dual simple module.
(v) The following conditions are equivalent:

(a) M ◦N 	 N ◦M up to a grading shift;
(b) M ◦N is simple;
(c) d(M,N) = 0;
(d) M ∇N 	M ΔN up to a grading shift.

Proposition 2.8 [KKOP21, Corollary 3.18]. Let M be an affreal simple module. Let X be an
R-module in R-gmod. Let n ∈ Z>0 and assume that any simple subquotient S of X satisfies
d(M,S) � n. Then any simple subquotient N of M ◦X satisfies d(M,N) < n. In particular, any
simple subquotient of M◦n ◦X strongly commutes with M .

An ordered sequence of simple modules L = (L1, . . . , Lr) is called almost affreal if all Li

(1 � i � r) are affreal except for at most one.

Definition 2.9. An almost affreal sequence L of simple modules is called a normal sequence if
the composition of R-matrices

r
L

:=
∏

1�i<k�r

r
Li,Lk

= (r
Lr−1,Lr

) ◦ · · · (r
L2,Lr

◦ · · · ◦ r
L2,L3

) ◦ (r
L1,Lr

◦ · · · ◦ r
L1,L2

)

: q
∑

1�i<k�r Λ(Li,Lk)L1 ◦ · · · ◦Lr −−→ Lr ◦ · · · ◦L1 does not vanish.

Lemma 2.10 [KK19, § 2.3] and [KKOP23, § 2.2]. Let L be an almost affreal sequence of simple
modules. If L is normal, then the image of rL is simple and coincides with the head of L1 ◦ · · · ◦Lr

and also with the socle of Lr ◦ · · · ◦L1, up to grading shifts.

Lemma 2.11 [KKKO18, Proposition 3.2.13]. Let (A,B,C) be an almost affreal sequence. Then
we have the following:

(i) Λ(A,B ∇ C) = Λ(A,B) + Λ(A,C) if A and B commute;
(ii) Λ(A∇B,C) = Λ(A,C) + Λ(B,C) if B and C commute.

For a given almost affreal sequence L of R-modules, the sufficient conditions for L being
normal are studied in [KK19, KKOP23]. In this paper, we will use the conditions frequently.

2.5 Commuting families
Let J be an index set. We say that a family of affreal simple modules M = {Mj}j∈J in R-gmod
is a commuting family if

Mi ◦Mj 	Mj ◦Mi up to a grading shift for any i, j ∈ J .

For a commuting family M = {Mj | j ∈ J} in R-gmod, let us take λ : Z⊕J × Z⊕J → Z such
that

λ(ei, ej) − λ(ej , ei) = Λ(Mi,Mj) for any i, j ∈ J . (2.4)
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Here {ej | j ∈ J} is the standard basis of Z⊕J . Then there exists a family {Mλ(a) | a ∈ Z⊕J
�0 } of

simple modules in Cw such that

Mλ(0) = 1, Mλ(ej) = Mj for any j ∈ J,

Mλ(a) ◦Mλ(b) 	 q−λ(a,b)Mλ(a + b) for any a,b ∈ ZJ
�0.

(2.5)

We sometimes omit λ for notational simplicity.

Remark 2.12. Note that λ(ei, ej) = Λ̃(Mi,Mj) satisfies condition (2.4). Moreover, if all the Mi

are self-dual, then Mλ(a) is self-dual for any a ∈ ZJ
�0. We usually take this choice of λ.

Definition 2.13. A commuting family M = {Mj | j ∈ J} is called independent if a,b ∈ Z⊕J
�0

satisfies M(a) 	 qsM(b) for some s ∈ Z, then we have a = b.

The following lemma is obvious.

Lemma 2.14. Let M = {Mj | j ∈ J} be a commuting family. Then it is independent if and only
if the set

{[
M(a)

]
| a ∈ Z⊕J

�0

}
in K(R-gmod) is linearly independent over Z[q±1].

2.6 Localization of Cw

Throughout this subsection, we fix w ∈ W and set

Iw := {i ∈ I | w�i �= �i}.

For notational simplicity, let us write

Ci :=M(w�i, �i) ∈ R-gmod for i ∈ I.

Then {Ω([Ci]) | i ∈ Iw} forms the set of frozen variables of AA(n(w)). For each μ =
∑

i∈I μi�i ∈
P+, we set Cμ = M(wμ, μ), which is a self-dual convolution product qc ◦i∈I C

◦μi
i for some c ∈ Z.

It is proved in [KKOP21, KKOP23, KKOP24a] that there exists a monoidal abelian category
C̃w = Cw[C◦−1

i | i ∈ I] with a tensor product ◦, a degree shift functor q and a monoidal exact
fully faithful functor Φw : Cw → C̃w satisfying the following properties.

(A) The objects Φw(Ci) are invertible objects in C̃w; that is, there
exists an object Φw(Ci)−1 in C̃w such that Φ(Ci) ◦Φw(Ci)−1 	 1 and
Φ(Ci)−1 ◦Φ(Ci) 	 1.

(B) The category C̃w is universal to Cw in the following sense: for any
monoidal functor Ψ: Cw → T to another monoidal category T in
which Ψ(Ci) is invertible for every i ∈ I, there exists a monoidal func-
tor Ψ′ : C̃w → T such that Ψ 	 Ψ′ ◦ Φw. Moreover, Ψ′ is unique up to
a unique isomorphism.

(C) There exists a commuting family of simple objects {C̃μ | μ ∈ P}
such that C̃μ 	 Φw(Cμ) for every μ ∈ P+ and C̃μ ◦ C̃μ′ 	 qH(μ,μ′)C̃μ+μ′

for every μ, μ′ ∈ P. Here H denotes the bilinear form on P given by
H(μ, μ′) = (μ,wμ′ − μ′).

(D) Every simple object in C̃w is isomorphic to Φw(S) ◦ C̃μ for some simple
object S ∈ Cw and μ ∈ P.

(2.6)

(For the precise properties, see [KKOP21, KKOP23, KKOP24a].)
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Theorem 2.15 ([KKOP21] (see also [KKOP23, Remark 3.6])). There exists an A-algebra
isomorphism

Ω̃ : KA(C̃w) := A ⊗
Z[q±1]

K(C̃w) ∼−−→AA(nw) such that Ω̃|KA(Cw) = Ω.

Here K(C̃w) denotes the Grothendieck ring of C̃w.

A pair (ε : X ⊗ Y → 1, η : 1 → Y ⊗X) of morphisms in a monoidal category with a unit
object 1 is called an adjunction if the following two conditions hold.

(a) The composition X 	 X ⊗ 1
X⊗η−−−→ X ⊗ Y ⊗X

ε⊗X−−−→ 1 ⊗X 	 X is the identity.

(b) The composition Y 	 1 ⊗ Y
η⊗Y−−−→ Y ⊗X ⊗ Y

Y ⊗ε−−−→ Y ⊗ 1 	 Y is the identity.

In the case when (ε, η) is an adjunction, we say that X is a left dual to Y , Y is a right dual to
X and (X,Y ) is a dual pair.

Theorem 2.16 [KKOP21, KKOP23]. The monoidal category C̃w is rigid; i.e. every object of
C̃w has a right dual and a left dual in C̃w.

2.7 Determinantal modules and monoidal clusters
In this subsection, we denote by C the category of Cw or C̃w. Recall that

A = KA(C) has a quantum cluster algebra structure via an isomorphism

Ω = Ω or Ω̃.

Let i = (i1, . . . , ir) be a reduced sequence of w ∈ W. For k such that 1 � k � r, set

M i
k = M(wi

�k�ik , �ik)

(see Proposition 2.2 for the notation).

Proposition 2.17 [KKOP18, Theorem 4.12]. Let i = (i1, . . . , ir) be a reduced sequence of
w ∈ W. For s < t ∈ K, we have

−Λ(M i
s,M

i
t ) = (�is − wi

�s�is , �it + wi
�t�it) = list = (Li)st.

We say that a commuting family M = {Mi}i∈K in C is a monoidal cluster if there exists a
quantum seed ({Xi}i∈K, L = (li,j)i,j∈K, B̃ = (bi,j)i∈K,j∈Kex) of A such that

Xi = Ω(q1/4(wt(Mi),wt(Mi))[Mi]) and li,j = −Λ(Mi,Mj).

Note that every monoidal seed is independent since the quantum cluster monomials in a
cluster are linearly independent over A by the definition.

With Proposition 2.2 and (2.2), Proposition 2.17 says that

Mi := {M i
k}1�k�r is a monoidal cluster in Cw, (2.7)

for any reduced sequence i = (i1, . . . , ir) of w. We call Mi the GLS cluster (associated with i).

3. Quasi-Laurent family and Laurent family

In this section, we introduce the notions of quasi-Laurent families and Laurent families, which
allow us to associate two vectors in ZJ with each simple module.
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3.1 Definition
Let J be a finite index set. Let C be a full monoidal subcategory of R-gmod stable by taking
subquotients, extensions and grading shifts.

Lemma 3.1. Let M = {Mj | j ∈ J} be an independent commuting family of affreal simple
objects in C and X a simple module in C .

(i) If a, a′, b, b′ ∈ ZJ
�0 satisfy X ∇M(a) 	 M(b) and X ∇M(a′) 	 M(b′) up to grading

shifts, then one has b − a = b′ − a′.
(ii) If a, a′, b, b′ ∈ ZJ

�0 satisfy M(a) ∇X 	 M(b) and M(a′) ∇X 	 M(b′) up to grading
shifts, then one has b − a = b′ − a′.

Proof. Since the proof are similar, we prove only part (i). We have

M(b + a′) 	 M(b) ∇M(a′) 	 (X ∇M(a)) ∇M(a′) 	 hd(X ◦M(a′) ◦M(a))

	 (X ∇M(a′)) ∇M(a) 	 M(b′ + a),

and, hence, we have a′ + b = a + b′ since M is independent. �

Definition 3.2. We say that a commuting family M = {Mj | j ∈ J} of affreal simple objects
of C is a quasi-Laurent family in C if M satisfies the following conditions:

(a) M is independent; and
(b) if a simple module X commutes with all Mj (j ∈ J), then there exist a,b ∈ ZJ

�0 such that

X ◦M(a) 	 M(b) up to a grading shift.

If M satisfies part (a) and part (c) below, then we say that M is a Laurent family :

(c) if a simple module X commutes with all Mj (j ∈ J), then there exists b ∈ ZJ
�0 such that

X 	 M(b).

Note that a Laurent family is a quasi-Laurent family.

Lemma 3.3. Let M = {Mj | j ∈ J} be a quasi-Laurent family in C . Then we have the
following:

(i) for any simple module X ∈ C , there exist a,b ∈ ZJ
�0 such that X ∇M(a) 	 M(b) up to a

grading shift;
(ii) for any simple module X ∈ C , there exist a′,b′ ∈ ZJ

�0 such that X Δ M(a′) 	 M(b′) up to
a grading shift.

Proof. Since the proofs are similar, we shall only prove the first statement. Let us take a(1) ∈ ZJ
�0

such that a(1)
j � 0 for all j ∈ J . Then Proposition 2.8 says that the simple module Y :=X ∇

M(a(1)) commutes with all Mj . Since M is a quasi-Laurent family, there exists a(2),b ∈ ZJ
≥0

such that Y ◦M(a(2)) 	 M(b). Hence, by taking a = a(1) + a(2), we have

X ∇M(a) 	 M(b),

as desired. �

By applying the similar argument as in the lemma above to composition factors of X ◦M(a),
we have the following corollary.
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Corollary 3.4. Let M be a quasi-Laurent family in C . Then, for any X ∈ C , there exist
a ∈ Z�0, a finite index set S, c(s) ∈ Z and b(s) ∈ ZJ

�0 (s ∈ S) such that

[X ◦M(a)] =
∑
s∈S

qc(s)[M(b(s))]. (3.1)

Remark 3.5. The above corollary says that for every module X in C and a quasi-Laurent family
M = {Mj | j ∈ J}, the isomorphism class [X] of X in K(C ) can be expressed as an element in
the Laurent polynomial ring Z[q±1][[Mj ]±1 | j ∈ J ] with positive coefficients.

Proposition 3.6. Assume that KA(C ) has a quantum cluster algebra structure, and let M =
{Mk | k ∈ K} be a monoidal cluster in C . Then the commuting family M is a quasi-Laurent
family. In particular, the isomorphism class [X] of X in K(C ) can be expressed as an element
in the Laurent polynomial Z[q±1][ [Mj ] | j ∈ J ] with positive coefficients.

If, moreover, every [Mk] is prime in K(C )|q=1, then M is a Laurent family.

Note that if K(C )|q=1 is factorial, then every [Mk] is prime in K(C )|q=1 (see [GLS13b]).

Proof. Let X be a simple module in C commuting with all Mk (k ∈ K). The quantum Laurent
phenomenon states that there exists a ∈ ZK

�0 such that

[X] =
∑

s∈S c(s)[M(b(s))]
[M(a)]

⇐⇒ [X ◦M(a)] =
∑
s∈S

c(s)[M(b(s))] (3.2)

for some � ∈ Z�1, b(s) ∈ ZK
�0 and c(s) ∈ Z[q±1/2]. Since X ◦M(a) is simple, the right-hand side

of (3.2) must coincide with qcM(c) for some c ∈ ZJ
�0 and c ∈ Z. Hence, M is a quasi-Laurent

family.
Let us show that M is a Laurent family. If X ◦M(a) 	 M(b), then we have ak � bk for

all k, since each [Mk] is a prime element of K(C )|q=1. Hence, setting c = b − a ∈ ZK
≥0, we have

X ◦M(a) 	 M(c) ◦M(a), which implies that X 	 M(c). Hence, M is a Laurent family. �
Definition 3.7. For a simple module X ∈ C and a quasi-Laurent family M = {Mj | j ∈ J},
take a,b,a′,b′ ∈ ZJ

�0 such that X ∇M(a) 	 M(b) and X Δ M(a′) 	 M(b′) up to grading
shifts. Then we define

gR
M(X) := b − a and gL

M(X) := b′ − a′ ∈ ZJ .

Remark 3.8.

(1) For a quasi-Laurent family M in C , gR
M and gL

M are well-defined by Lemma 3.1.
(2) For a reduced sequence i of w and its quasi-Laurent family Mi , we write gR

i and gL
i instead

of gR
Mi and gL

Mi , respectively.
(3) The map gR

i and gL
i for the quasi-Laurent family Mi can be extended to the set Irr(C̃w) of

the isomorphism classes of self-dual simples in C̃w.

The following lemma can be proved by the same arguments in [KK19].

Lemma 3.9. Let M be a quasi-Laurent family in C and X a simple module in C .

(i) If a,b ∈ ZJ
�0 satisfy b − a = gR

M(X) (respectively, b − a = gL
M(X)), then we have

X ∇M(a) 	 M(b) (respectively, X Δ M(a) 	 M(b)) up to a grading shift.

(ii) For any a ∈ ZJ
�0, we have

gR
M(X ∇M(a)) = gR

M(X) + a and gL
M(X Δ M(a)) = gL

M(X) + a.

(iii) The maps gR
M and gL

M from Irr(C ) to ZJ are injective.
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4. PBW decomposition vector and GLS seed

In this section, we recall the PBW basis, and we investigate the relationship between the g-vectors
and the PBW decomposition vectors.

4.1 PBW decomposition vector
Let us take w ∈ W and its reduced sequence i = (i1, . . . , ir). Recall the following.

(a) We take an index set K = [1, r] with a decomposition

Kex � Kfr where Kex = {k ∈ K | k+ � r}.
(b) For each 1 � k � r, we set βi

k ∈ Δ+ ∩ wΔ− and define simple modules Si
k =

M(wi
�k�ik , w

i
<k�ik) and M i

k = M(wi
�k�ik , �ik). Note that

M i
k 	 Si

k ∇M i
k− and Mi := {M i

k | k ∈ K} forms a commuting family. (4.1)

For any a = (ak)1�k�r ∈ ZK
�0, the convolution product

Pi (a) := q(1/2)
∑r

k=1 ak(ak−1)dikSi
r
◦ar ◦ · · · ◦Si

1
◦a1

has a self-dual simple head. Conversely, every self-dual simple module in Cw is isomorphic
to hd(Pi (a)) for some a ∈ ZK

≥0 in a unique way (see [McN15, Theorem 3.1] and [TW16,
Theorem 2.19]). We call {Pi (a) | a ∈ ZK

≥0} the PBW basis of Cw associated with i .
For a simple module X such that X 	 hd(Pi (a)), we set

PBWi (X) := a = (a1, . . . ,ar).

The following lemma says that the operation PBWi (−∇Mi (a)) on the set of simple modules
behaves very nicely, where Mi (a) is defined in (2.5).

Lemma 4.1 (cf. [KK19, Lemma 3.11 and Proposition 3.14]). For M = Mi(a) with a ∈ ZK
≥0 and

a simple module X, we have

PBWi(X ∇M) = PBWi(X) + PBWi(M).

In particular, c := PBWi

(
Mi(a)

)
is given by ck =

∑
j aj where j ranges over j ∈ [1, r] such that

j � k and ij = ik.

Proof. It is enough to show it when M = M i
k . Note that

X 	 hd
(

→◦
1�k�r

Si
k
◦nk

)
= Si

r
◦nr ∇ Y,

where n = (n1, . . . ,nr) = PBWi (X), Y 	 hd
( →◦

1�k�r−1
Si

k
◦nk

)
and

→◦
p�k�q

Xk denotes the ordered

convolution product Xq ◦Xq−1 ◦ · · ·Xp+1 ◦Xp for Xk in R-gmod.
If r > k, then (Si

r
◦nr ,M i

k) is unmixed and, hence, Si
r
◦nr ◦Y ◦M i

k has a simple head. We have

X ∇M i
k 	 hd(Si

r
◦nr ◦Y ◦M i

k)

	 Si
r
◦nr ∇ (Y ∇M i

k) 	 Si
r
◦nr ∇ hd

(
→◦

1�k�r−1
Si

k
◦ck

)
,

where c = PBWi (Y ) + PBWi (M i
k) by induction on r. Thus, our assertion follows in this case.

If r = k, then M i
r commutes with all the objects of Cw and, hence, we have

X ∇M i
r 	 hd(Si

r
◦nr ◦M i

r ◦Si
r−1

◦nr−1 ◦ · · ·Si
1
◦n1)
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	 hd(Si
r
◦nr ◦M i

r ) ∇ Y 	 hd(Si
r
◦nr ◦(Si

r ∇M i
r−)) ∇ Y

	 hd(Si
r
◦nr+1 ∇M i

r−) ∇ Y 	 Si
r
◦nr+1 ∇ (M i

r− ◦Y ),

where the last isomorphism follows from the commutativity of M i
r− and Y . Then our assertion

follows from the induction hypothesis. �

The lemma above gives a direct proof of the following corollary although it follows
immediately from Proposition 3.6.

Corollary 4.2. For any reduced sequence i for w, the commuting family Mi is independent.

The following proposition is proved in [KK19, Proposition 2.11] for symmetric quiver Hecke
algebra and the same proof also works for the general case.

Proposition 4.3. For any a = (a1, . . . ,ar), b = (b1, . . . ,br) ∈ ZK
�0, the ordered sequence

(Si
r
◦ar
, (Si

r−1)
◦ar−1 , . . . , Si

1
◦a1
,M i

1
◦b1

,M i
2
◦b2

, . . . ,M i
r
◦br)

is a normal sequence.

The statement and proof of following proposition are the same as [KK19, Proposition 3.14]
even though [KK19] dealt only with symmetric quiver Hecke algebras. Here we repeat it in order
to show relations between explicit Z�0-vectors associated with a simple module X in Cw for the
readers’ convenience.

Proposition 4.4. For a simple module X in Cw or C̃w, there exist a,b ∈ ZK
�0 such that

X ∇Mi(a) 	 Mi(b) up to a grading shift.

Proof. In this proof, we sometimes drop i for notational simplicity. It is enough to consider when
X ∈ Cw by part (D) in (2.6). Note that there exists a unique c = (c1, . . . , cr) ∈ ZK

�0 such that

X 	 hd(Pi (c)) 	 hd(Si
r
◦cr ◦ · · · ◦Si

1
◦c1).

Set c+ :=
∑r

k=1 ck+ek =
∑

j∈K ckek− , where {ej | j ∈ K} is the standard basis of ZK such
that c =

∑
j∈K cjej . Then we have Mi (c+) 	M◦c1

1− ◦ · · · ◦M◦cr
r− . By (4.1) and Proposition 4.3,

we have

X ∇Mi (c+) 	 hd(S◦cr
r ◦S◦cr−1

r−1 ◦ · · · ◦S◦c1
1 ◦Mi (c+))

	 hd(S◦cr
r ◦S◦cr−1

r−1 ◦ · · · ◦S◦c2
2 ◦S◦c1

1 ◦M◦c1
1− ◦M◦c2

2− ◦ · · · ◦M◦cr
r− )

	 hd((S◦cr
r ◦S◦cr−1

r−1 ◦ · · · ◦S◦c2
2 ) ◦(S◦c1

1 ∇M◦c1
1− ) ◦(M◦c2

2− ◦ · · · ◦M◦cr
r− ))

	 hd((S◦cr
r ◦S◦cr−1

r−1 ◦ · · · ◦S◦c2
1 ) ◦M◦c1

1 ◦(M◦c2
2− ◦ · · · ◦M◦cr

r− ))

	 hd((S◦cr
r ◦S◦cr−1

r−1 ◦ · · · ◦S◦c2
2 ) ◦(M◦c2

2− ◦ · · · ◦M◦cr
r− ) ◦M◦c1

1 )

	 · · · 	 hd(M◦cr
r ◦ · · · ◦M◦c1

1 ) 	 Mi (c),

which implies our assertion. �

As seen by the proof of the above proposition and Proposition 3.6, we have the following.
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Proposition 4.5. The commuting family Mi is a Laurent family. Moreover, for a simple module
M , two vectors a = PBWi(M) and g := gR

i (M) are related by

gk = ak − ak+ , ak =
∑

j;j�k, ij=ik

gj ,

where ar+1 = 0.

The following corollary can be proved by the same arguments in [KK19].

Corollary 4.6. Let i be a reduced sequence of w.

(i) For a dual pair of simples (L,R) in C̃w, we have

gR
i (L) + gL

i (R) = 0.

(ii) The maps gR
i ,g

L
i : Irr(C̃w) → ZK are bijective.

5. Skew-symmetric pairings

In this section, we study skew-symmetric pairings induced by the Z-vectors associated with
simple modules.

5.1 Skew-symmetric pairing associated with a quasi-Laurent family
Let C be a full monoidal subcategory of R-gmod stable by taking subquotients, extensions and
grading shifts, and let M = {Mj | j ∈ J} be a quasi-Laurent family in C labeled by a finite index
set J .

For X,Y ∈ Irr(C ), let us define

GR
M(X,Y ) :=

∑
a,b∈J

(gR
M(X))a(gR

M(Y ))b Λ(Ma,Mb) and

GL
M(X,Y ) :=

∑
a,b∈J

(gL
M(X))a(gL

M(Y ))b Λ(Ma,Mb). (5.1)

The following lemma immediately follows from Lemma 3.9.

Lemma 5.1. For M = M(a) with a ∈ ZJ
�0 and X,Y ∈ Irr(C ), we have

GR
M(X ∇M,Y ) = GR

M(X,Y ) + GR
M(M,Y ), GR

M(X,Y ) = −GR
M(Y,X),

GL
M(X ΔM,Y ) = GL

M(X,Y ) + GL
M(M,Y ), GL

M(X,Y ) = −GL
M(Y,X).

Proposition 5.2. Let X be a simple module in C . Then for any c ∈ ZJ
≥0, we have

(i) Λ(X,M(c)) = GR
M(X,M(c)) and (ii) Λ(M(c), X) = GL

M(M(c), X).

Proof. If X is also of the form M(d), it is obvious. Set Y = M(c).

(i) Note that there exist a,b ∈ ZJ
�0 such that X ∇M(a) 	 M(b). Then we have

Λ(X,Y ) + Λ(M(a), Y ) = Λ(X ∇M(a), Y ) = GR
M(X ∇M(a), Y )

= GR
M(X,Y ) + GR

M(M(a), Y ).

Since Λ(M(a), Y ) = GR
M(M(a), Y ), our assertion follows.
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(ii) Similarly, there exist a,b ∈ ZJ
�0 such that M(a) ∇X 	 M(b). Then we have

Λ(Y,M(a)) + Λ(Y,X) = Λ(Y,M(a) ∇X) = GL
M(Y,M(a) ∇X)

= GL
M(Y,M(a)) + GL

M(Y,X).

Then our assertion follows from the fact that Λ(Y,M(a)) = GL
M(Y,M(a)). �

Proposition 5.3. For any simple modules X,Y in C such that one of them is affreal, we have

GR
M(X,Y ),GL

M(X,Y ) � Λ(X,Y ).

Proof. Since the proofs are similar, we will consider the case of GR
M. Take a,b ∈ ZJ

≥0 such that
Y ∇M(a) 	 M(b). Then we have

GR
M(X,Y ) + GR

M(X,M(a)) = GR
M(X,Y ∇M(a))

= Λ(X,Y ∇M(a)) � Λ(X,Y ) + Λ(X,M(a))

= Λ(X,Y ) + GR
M(X,M(a)),

which yields our assertion. Here, the inequality follows from [KKKO18, Proposition 3.2.10]. �
Proposition 5.4. If simple modules X and Y in C commute and one of them is affreal, then
we have

Λ(X,Y ) = GR
M(X,Y ) = GL

M(X,Y ).

Proof. Since the proofs are similar, we will only give the proof for GR
M. By the preceding

proposition, we have

0 =
(
Λ(X,Y ) + Λ(Y,X)

)
−

(
GR

M(X,Y ) + GR
M(Y,X)

)
=

(
Λ(X,Y ) − GR

M(X,Y )
)

+
(
Λ(Y,X) − GR

M(Y,X)
)
≥ 0,

which implies Λ(X,Y ) − GR
M(X,Y ) = 0. �

Remark 5.5. The two invariants GR
M(X,Y ) and GL

M(X,Y ) are different in general and depend
on the choice of M.

Let w0 be the longest element of finite type A2. For a reduced sequence i = (1, 2, 1) of w0,
we have

{Si
1 = 〈1〉, Si

2 = 〈12〉, Si
3 = 〈2〉} and Mi = {M i

1 = 〈1〉,M i
2 = 〈12〉,M i

3 = 〈21〉}, (5.2)

while

{Sj
1 = 〈2〉, Sj

2 = 〈21〉, Sj
3 = 〈1〉} and Mj = {M j

1 = 〈2〉,M j
2 = 〈21〉,M j

3 = 〈12〉} (5.3)

for the other reduced sequence j = (2, 1, 2) of w0. Here 〈k〉 (k = 1, 2) is a one-dimensional
R(αk)-module, and 〈12〉 and 〈21〉 are one-dimensional R(α1 + α2)-modules (see [KKK18] for
more details on these modules).

Since A2 is symmetric, M′ := μ1(Mi ) is also a Laurent family given as follows:

M′ = {M ′
1 = μ1(M i

1) 	 〈2〉,M ′
2 = M i

2 	 〈12〉,M ′
3 = M i

3 	 〈21〉}.
Note that M′ = Mj (up to an index permutation). We have

gR
Mi (〈1〉) = gL

Mi (〈1〉) = (1, 0, 0), gR
Mi (〈2〉) = (−1, 0, 1), gL

Mi (〈2〉) = (−1, 1, 0),

gR
M′(〈1〉) = (−1, 1, 0), gL

M′(〈1〉) = (−1, 0, 1), gR
M′(〈2〉) = gL

M′(〈2〉) = (1, 0, 0),
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and

Λ(〈1〉, 〈2〉) = Λ(〈2〉, 〈1〉) = 1, Λ(〈1〉, 〈12〉) = 1,

Λ(〈1〉, 〈21〉) = −1, Λ(〈12〉, 〈2〉) = 1, Λ(〈21〉, 〈2〉) = −1.

Note that Λ(X,X) = 0 for an affreal simple module X. Thus, we have

GR
Mi (〈1〉, 〈2〉) = 1 × Λ(〈1〉, 〈21〉) = −1, GR

M′(〈1〉, 〈2〉) = 1 × Λ(〈12〉, 〈2〉) = 1,
GL

Mi (〈1〉, 〈2〉) = 1 × Λ(〈1〉, 〈12〉) = 1, GL
M′(〈1〉, 〈2〉) = 1 × Λ(〈21〉, 〈2〉) = −1.

Thus, for a non-commuting pair of simple modules (X,Y ) in C , the Z-values GR
M(X,Y ) and

GL
M(X,Y ) do depend on the choice of a quasi-Laurent commuting family M.

5.2 Skew-symmetric pairing associated with the GLS cluster
Let w ∈ W and i = (i1, . . . , ir) a reduced sequence of w. Let Mi be the associated GLS cluster.
For such a Laurent family, we can define GR

Mi in terms of PBW decompositions.
We define a skew-symmetric Z-valued map λi : [1, r] × [1, r] → Z by

λi
a,b := (−1)δ(a>b)δ(a �= b)(βi

a, β
i
b) (5.4)

for 1 � a, b � r.

Remark 5.6. The skew-symmetric map λi in (5.4) is known when g is of finite type and i is
adapted to a Q-datum (see [HL15, Proposition 3.2], [FO21, Proposition 5.21] and [KaOh23,
Theorem 5.4]).

Let us recall the notion of i -box and an affreal simple module M i [a, b] in Cw for an i -box
[a, b], which are introduced in [KKOP24b].

(a) For 1 � a � b � r such that ia = ib, we call an interval [a, b] an i -box.
(b) For an i -box [a, b], we set [a, b]i := {u | a � u � b, ia = iu}.
(c) For an i -box [a, b], we set

M i [a, b] :=M(wi
�b�ia , w

i
<a�ia) 	 hd

( →◦
u∈[a,b]i

Si
u

)
	 Si

b ∇M i [a, b−] 	M i [a+, b] ∇ Si
a,

up to grading shifts. In particular, M i
k = M i [kmin, k] and Si

k = M i [k, k].

Note that M i [a, b] is an affreal simple module in Cw.

Proposition 5.7. For i-boxes [x, y] and [x′, y′] in an interval [1, r], assume that

(a) x > x′− or (b) y+ > y′. (5.5)

Then we have

Λ(M i[x, y],M i[x′, y′]) =
∑

u∈[x,y]i, v∈[x′,y′]i

λu,v. (5.6)

Proof. Since the proof is similar, we shall give only the proof of case (a). Let us divide into
sub-cases as below.

(i) [x = y > x′−] If x > x′, we have

Λ(Si
x,M

i [x′, y′]) = Λ(Si
x,M

i [x′+, y
′] ∇ Si

x′)

=
(1)

Λ(Si
x,M

i [x′+, y
′]) + Λ(Si

x, S
i
x′) = Λ(Si

x,M
i [x′+, y

′]) + λi
x,x′ .
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Here =
(1)

holds by [KKOP23, Proposition 2.12] and the fact that (Si
x, S

i
x′) is an unmixed pair.

Then by the induction hypothesis on |[x′, y′]i |, we have

Λ(Si
x,M

i [x′, y′]) = λi
x,x′ +

∑
v∈[x′

+,y′]i

λi
x,v =

∑
v∈[x′,y′]i

λi
x,v,

as we desired.
Now, the remainder of case (i) can be described as follows:

x′− < x = y � x′ � y′.

Since Si
x commutes with M i [x′, y′] and M i [x′, y′−] by [KKOP21, Proposition 3.27],

Λ(Si
x,M

i [x′, y′]) = −Λ(M i [x′, y′], Si
x) = −Λ(Si

y′ ∇M i [x′, y′−], Si
x)

= −Λ(Si
y′ , Si

x) − Λ(M i [x′, y′−], Si
x)

= (βy′ , βx) + Λ(Si
x,M

i [x′, y′−]) = λi
x,y′ + Λ(Si

x,M
i [x′, y′−]),

then our assertion follows from the induction hypothesis on | [x′, y′]i |.
(ii) [x < y] Assume first that y > y′. Then we have

Λ(M i [x, y],M i [x′, y′]) = Λ(Si
y ∇M i [x, y−],M i [x′, y′])

= Λ(Si
y,M

i [x′, y′]) + Λ(M i [x, y−],M i [x′, y′]).

Note that (Si
y,M

i [x′, y′]) is an unmixed pair. Then, by induction on |[x, y]i |, we have

Λ(M i [x, y],M i [x′, y′]) = Λ(Si
y ∇M i [x, y−],M i [x′, y′])

=
∑

v∈[x′,y′]i

λi
y,v +

∑
u∈[x,y−]i ; v∈[x′,y′]i

λi
u,v,

which yields our assertion for this case.
Now let us assume that y � y′. Then we have

x′− < x < y � y′.

Then for any u ∈ [x, y]i , Si
u commutes with M i [x′, y′] by [KKOP21, Proposition 3.27].

By [KKKO18, Proposition 3.2.13], we have

Λ(M i [x, y],M i [x′, y′]) =
∑

u∈[x,y]i

Λ(Si
u,M

i [x′, y′]).

Then our assertion follows from case (i). �

We say that i -boxes [a1, b1] and [a2, b2] commute if we have either

(a1)− < a2 � b2 < (b1)+ or (a2)− < a1 � b1 < (b2)+.

The following corollary is proved in [KKOP24b, Theorem 4.21] in the quantum affine case.

Corollary 5.8. For commuting i-boxes [a1, b1] and [a2, b2], the modules M i[a1, b1] and
M i[a2, b2] commute.
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Proof. By Proposition 5.7, we have

Λ(M i [a1, b1],M i [a2, b2]) =
∑

u∈[a1,b1]i
v∈[a2,b2]i

λi
u,v = −Λ(M i [a2, b2],M i [a1, b1]),

which implies d(M i [a1, b1],M i [a2, b2]) = 0. Thus, our assertion follows from
Proposition 2.7(v). �

Proposition 5.9. For a commuting pair (M i[x, y],M i[x′, y′]), (5.6) holds.

Proof. If the i -boxes [x, y] and [x′, y′] satisfy (5.5), our assertion holds. Thus, it is enough to
consider when x � x′− and y+ � y′. Since they commute,

Λ(M i [x, y],M i [x′, y′]) = −Λ(M i [x′, y′],M i [x, y]).

If x′ > x− or y′+ > y, Proposition 5.7 says that

Λ(M i [x, y],M i [x′, y′]) = −
∑

u∈[x,y]i ; v∈[x′,y′]i

λi
v,u =

∑
u∈[x,y]i ; v∈[x′,y′]i

λi
u,v,

which implies the assertion. Thus, we may assume that x′ � x−. However, in this case, we have

x′ � x− � x � x′−,

which yields a contradiction. �

Let us define the skew-symmetric pairing Li on Irr(Cw) as follows:

Li (X,Y ) :=
∑

1�a,b�r

(PBWi (X))a(PBWi (Y ))b λ
i
a,b. (5.7)

The following lemma follows from Lemma 4.1 and (5.7).

Lemma 5.10. For M = Mi(a) with a ∈ ZK
≥0, we have

Li(X ∇M,Y ) = Li(X,Y ) + Li(M,Y ) and Li(X,Y ) = −Li(Y,X).

Proposition 5.11. For any simple X,Y in Cw, we have

Li(X,Y ) = GR
Mi(X,Y ).

Proof. Let S be the set of simple modules Y in Cw such that Li (X,Y ) = GR
Mi (X,Y ) for any

simple X ∈ Cw, and let S ′ be the set of simple modules Y in Cw such that Li (Mi (a), Y ) =
GR

Mi (Mi (a), Y ) for any a ∈ ZK
≥0. By Proposition 5.9, we have

Li (M i
s ,M

i
t ) = Λ(M i

s ,M
i
t ) for any s, t ∈ K.

Thus, we have Mi (a) ∈ S ′ by Lemma 5.10. Now, let us show S ′ ⊂ S. Let Y ∈ S ′. For any simple
X, there exist a,b ∈ ZK

≥0 such that X ∇Mi (a) 	 Mi (b). Hence, we have

Li (X,Y ) + Li (Mi (a), Y ) =
(1)

Li (Mi (b), Y ) = GR
Mi (Mi (b), Y )

=
(2)

GR
Mi (X,Y ) + GR

Mi (Mi (a), Y ) = GR
Mi (X,Y ) + Li (Mi (a), Y ).

Here =
(1)

follows from Lemma 5.10 and =
(2)

follows from Lemma 5.1. Hence, we have Li (X,Y ) =

GR
Mi (X,Y ). Thus, we have proved S ′ ⊂ S.
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Since Mi (a) ∈ S ′, we have Mi (a) ∈ S, which implies that

Li (Y,Mi (a)) = GR
Mi (Y,Mi (a))

for any simple Y . Hence any simple Y belongs to S ′ and hence to S. �

5.3 Degree and codegree
In this subsection, we see the relationship between gR

M(X) (respectively, gL
M(X)) and the degree

(respectively, codegree) in the (quantum) cluster algebra theory. For a commuting family M =
{Mj | j ∈ J} labeled by a finite index set J , let us recall the preorder �M on ZJ

�0 given in
[KK19, § 3.3] (see also [Qin17, Definition 3.1.1]):

b′ �M b if and only if (1) wt(M(b)) = wt(M(b′)),

(2) Λ(M(b′),Mj) � Λ(M(b),Mj) for all j ∈ J.

The preorder �M can be extended to the one on ZJ as follows: for b,b′ ∈ ZJ ,

b′ �M b if b′ + a �M b + a for some a ∈ ZJ
�0 such that b + a,b′ + a ∈ ZJ

�0.

We write b′ ≺M b, if b′ �M b holds but b �M b′ does not hold. Hence, b′ ≺M b if and only if
b′ �M b and there exists j ∈ J such that Λ(M(b),Mj) < Λ(M(b′),Mj).

Lemma 5.12 (cf. [KK19, Lemma 3.6]). Let X be a simple module and M = {Mj | j ∈ J} be a
quasi-Laurent family in C . Let a ∈ Z�0, S, c(s) ∈ Z and b(s) ∈ ZJ

�0 (s ∈ S) be as in (3.1). Then
we have the following.

(i) There exists a unique s0 ∈ S such that X ∇M(a) 	 q c(s0)M(b(s0)). Moreover, we have
b(s) ≺M b(s0) for any s ∈ S \ {s0}.

(ii) There exists a unique s1 ∈ S such that X Δ M(a) 	 q c(s1)M(b(s1)). Moreover, we have
b(s1) ≺M b(s) for any s ∈ S \ {s1}.

(iii) If s0 = s1, then S = {s0} and X ◦M(a) 	 M(b(s0)).
(iv) If s0 �= s1 and there exists no c ∈ ZK such that b(s1) − a ≺M c ≺M b(s0) − a, then

[X ◦M(a)] = [X ∇M(a)] + [X Δ M(a)] in K(Cw).

Proof. It follows from Proposition 2.7 and (3.1). �

The following proposition is proved for symmetric quiver Hecke algebras and can be extended
to general quiver Hecke algebras using almost the same argument:

Proposition 5.13 [KK19, Proposition 3.3]. For a monoidal cluster M = {Mk | k ∈ K} associ-
ated with a quantum seed ({Xk}k∈K, L, B̃),

b′ �M b if and only if b − b′ = B̃v for some v ∈ ZKex
≥0 .

In particular, the relation �M is an order on ZK.

Corollary 5.14. Let M = {Mk | k ∈ K} be a monoidal cluster associated with a quantum
seed S = ({Xk}k∈K, L,B). Then [X] is T (L)-pointed and T (L)-copointed for any simple module
X ∈ Cw.

Remark 5.15. For a monoidal cluster M associated with a quantum seed S and a simple module
M ∈ C , the above corollary says that gR

M(M) and gL
M(M) coincide with the degree and codegree

of [M ] ∈ KA(C ) 	 AA(S), respectively.
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