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Abstract. In this paper, we consider absorbing Markov chains Xn admitting a
quasi-stationary measure μ on M where the transition kernel P admits an eigenfunction
0 ≤ η ∈ L1(M , μ). We find conditions on the transition densities of P with respect to
μ which ensure that η(x)μ(dx) is a quasi-ergodic measure for Xn and that the Yaglom
limit converges to the quasi-stationary measure μ-almost surely. We apply this result
to the random logistic map Xn+1 = ωnXn(1 − Xn) absorbed at R \ [0, 1], where ωn

is an independent and identically distributed sequence of random variables uniformly
distributed in [a, b], for 1 ≤ a < 4 and b > 4.

Key words: Markov chains with absorption, random dynamical systems, quasi-stationary
measure, quasi-ergodic measure, Yaglom limit
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1. Introduction
Consider a family of transformations F = {fω : E → E}ω∈�, where E is a metric space.
Given a subset M ⊂ E and endowing F with a probability measure, we aim to understand
the statistical behaviour of the random dynamical system

f n(x; ω1, . . . , ωn) := fωn ◦ · · · ◦ fω1(x)

conditioned upon remaining in M.
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Such a problem can be naturally modelled via the Markov chain Xn = fn(Xn−1) with
fn ∈ F absorbed at ∂ := E \ M , that is, Xn ∈ ∂ implies Xn+1 ∈ ∂ . Statistical information
for the above (conditioned) random dynamical system is then obtained by certain limiting
distributions for the paths Xn. In the literature, such limiting distributions appear mainly
in two forms. The first is the so-called Yaglom limit

lim
n→∞ P[Xn ∈ A | X0 = x, τ > n], (1.1)

where x ∈ M , τ = min{n ∈ N | Xn ∈ ∂} and A is a measurable subset of M. The second
one is the so-called quasi-ergodic limit

lim
n→∞ E

[
1
n

n−1∑
i=0

1A ◦ Xn

∣∣∣∣ X0 = x, τ > n

]
. (1.2)

There are several contexts in which the Yaglom limit converges to a quasi-stationary
measure. We recall that a probability measure μ on M is called a quasi-stationary measure
for Xn on M if for every n ∈ N, μ(dx) := P[Xn ∈ dx | X0 ∼ μ, τ > n]. However, the
limit in equation (1.2) is related to the existence of a quasi-ergodic measure for Xn on M.
A measure ν on M is called a quasi-ergodic measure for Xn on M if for every measurable
subset A of M, equation (1.2) converges to ν(A) for ν-almost every x ∈ M .

In the literature [3, 4, 7–9, 29], various sufficient conditions are presented for the
existence and uniqueness of quasi-stationary measures μ and quasi-ergodic measures
ν. These conditions imply that ν 	 μ and that the Radon–Nikodym derivative
η(x) = ν(dx)/μ(dx) is an eigenfunction of P , where P is the transition kernel of Xn. The
uniform convergence of the sequence {Pn(·, M)/λn}n∈N, where λ := ∫

M
P(y, M)μ(dy),

to the eigenfunction η plays a crucial role in the proofs.
In this paper, we take a different approach. We set out to derive a quasi-ergodic measure

starting from a quasi-stationary measure. The existence of quasi-stationary measures is
a well-established problem (see [26] for a bibliography). Quasi-stationary measures arise
as positive eigenmeasures of the operator μ 
→ ∫

M
P(x, ·)μ(dx) and extensive literature

exists on how to solve such eigenvalue problems [22, 24, 25]. Since quasi-ergodic measures
do not admit such an approach, they are less well understood. Quasi-ergodic measures are
important in the analysis of random dynamical systems, for instance, in the context of the
recently established conditioned Lyapunov spectrum [6, 11].

Inspired by these results, where quasi-ergodic measures can be expressed as a density
over the quasi-stationary measures, we obtain natural conditions on the transition kernel
P such that the existence of a quasi-ergodic measure becomes equivalent to solving an
eigenvalue problem for P in L1. As a result, we considerably simplify the procedure
of finding a quasi-ergodic measure. Furthermore, we also obtain, under aperiodicity
conditions, that the Yaglom limit in equation (1.1) converges to the quasi-stationary
measure μ-almost surely (a.s.)

As an application of our results, we characterize the limits in equations (1.1) and (1.2)
for the random logistic map Yn+1 = ωnYn(1 − Yn) absorbed at R \ [0, 1], with {ωn}n∈N
an independent and identically distributed (i.i.d.) sequence of random variables such that
ω0 ∼ Unif([a, b]), with 1 ≤ a < 4 and b > 4, where Unif([a, b]) denotes the continuous
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uniform distribution in [a, b]. The analysis of this system is challenging since its transition
kernel presents a change of behaviour on the points 0 and 1. In particular, for every
x ∈ (0, 1),

P(x, dy) = P[Yn ∈ dy | Y0 = x] 	 Leb(dy),

while P(0, dy) = P(1, dy) = δ0(dy). This implies that the transition densities P(x, dy)

explode when x approaches the points 0 and 1. Consequently, the results in the literature
[3, 4, 7, 8, 29] cannot be applied, since P does not act as a compact operator on C0(M)

and Lp(M), with p ≥ 1. Hence, a more refined analysis is needed.
To overcome this issue, we consider AM-compact operators (see [16, Appendix A]),

a generalization of compact operators. Inspired by the novel results on positive integral
operators in [14–16], we analyse the action of P on L1(M , μ). Since P is an integral
operator, it is AM-compact, and we can establish its peripheral spectrum from which the
asymptotic behaviour of Yn follows.

This paper is divided into six sections. In §2, the basic concepts of the theory of
absorbing Markov chains are briefly recalled, the main underlying hypotheses of this
paper are defined (Hypotheses H1 and H2) and the main results of this paper are stated
(Theorems 2.1, 2.2, 2.3 and 2.4). In §3, it is shown that Hypothesis H1 implies that P/λ

is a mean ergodic operator. Section 4 is dedicated to a brief presentation of Banach lattice
theory, the definition of an AM-compact operator and the proof of Theorem 2.2. In §5, we
combine the results of the previous sections to prove Theorems 2.3 and 2.4. Finally, in §6,
we analyse the asymptotic behaviour of the random logistic map Yn, introduced above, and
prove Theorem 2.1.

2. Main results
Let E be a metric space and M a subspace of E. We aim to study Markov chains on E
conditioned upon remaining in the set M. With this objective in mind, we denote as EM

the topological space M � ∂ generated by the topological basis

T = {A ∩ M; A is an open set of E} � ∂ ,

where � denotes disjoint union. In this paper, we assume that

X := (
, {Fn}n∈N0 , {Xn}n∈N0 , {Pn}n∈N0 , {Px}x∈EM
)

is a Markov chain with state space EM , in the sense of [27, Definition III.1.1], that is, the
pair (
, {Fn}n∈N) is a filtered space; Xn is an Fn-adapted process with state space EM ; Pn

a time-homogeneous transition probability function of the process Xn satisfying the usual
measurability assumptions and Chapman–Kolmogorov equation; {Px}x∈EM

is a family of
probability function satisfying Px[X0 = x] = 1 for every x ∈ EM ; and for all m, n ∈ N0,
x ∈ EM , and every bounded measurable function f on EM ,

Ex[f ◦ Xm+n | Fn] = (Pmf )(Xn) Px-a.s.
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We assume that Xn is a Markov chain that is absorbed at ∂ , meaning that P(∂ , ∂) = 1.
In view of the above definitions, it is natural to define the stopping time

τ(ω) := inf{n ∈ N; Xn(ω) �∈ M}.
Throughout the paper, the following notation is used.

Notation 2.1. Given a probability measure μ on M and p ∈ [1, ∞], we denote
Lp(M , B(M), μ) as Lp(M , μ) and M(M) as the set of Borel signed-measures on
M . Moreover, we denote Pμ(·) := ∫

M
Px(·)μ(dx).

We denote as C0(M) := {f : M → R; f is continuous} and Fb(M) as the set of
bounded Borel measurable functions on M. Given f ∈ Fb(M), write

Pnf (x) := Pn(1Mf )(x) =
∫

M

f (y)Pn(x, dy),

and by abuse of notation, denote

f ◦ Xn :=
{

f ◦ Xn if Xn ∈ M ,

0 if Xn /∈ M .

Given a sub σ -algebra F of B(M) and f ∈ L1(M , μ), we denote Eμ[f | F ] ∈
L1(M , F , μ) as the conditioned conditional expectation of f given F , that is, the unique
function in L1(M , F , μ) such that∫

F

f (x)μ(dx) =
∫

F

Eμ[f | F ]μ(dx) for every F ∈ F .

We define the sets

M+(M) = {μ ∈ M(M); μ(A) ≥ 0 for every A ∈ B(M)},
and

L
p
+(M , μ) = {f ∈ Lp(M , μ); f ≥ 0 μ-a.s.} for every p ∈ [1, ∞].

Finally, given a Banach space E, we say that the sequence {xn}n∈N ⊂ E converges in the
weak topology to x ∈ E if for every bounded linear functional φ ∈ E∗, limn→∞ φ(xn) =
φ(x). Moreover, we say that the sequence {φn}n∈N ⊂ E∗ converges in the weak∗ topology
to φ if limn→∞ φn(x) = φ(x) for every x ∈ E.

Since stationary measures do not capture the behaviour of Xn before absorption, they
become irrelevant when dealing with absorbing Markov chains. Due to this issue, it is
necessary to extend the concept of stationary measures to quasi-stationary measures.
Below, we recall the definition of a quasi-stationary measure.

Definition 2.2. A Borel measure μ on a metric space M is to be a quasi-stationary measure
for the Markov chain Xn if

Pμ[Xn ∈ · | τ > n] = μ(·) for all n ∈ N.

We call λ = ∫
M

P(x, M)μ(dx) the survival rate of μ.
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Observe that if Xn admits a quasi-stationary measure μ on M with survival rate λ, then
P may be seen as a bounded linear operator in L∞(M , μ). Moreover, since∫

M

P(x, A)μ(dx) = λμ(A) for every A ∈ B(M), (2.1)

and L∞(M , μ) is dense in L1(M , μ), the operator P can be naturally extended as a
bounded linear operator in L1(M , μ).

While we have that ergodic stationary measures can be described in terms of Birkhoff
averages for classical Markov chains, this is not true any longer when dealing with
absorbing Markov chains, meaning that quasi-stationary measures cannot be described
in terms of conditioned Birkhoff averages. This obstruction motivates the definition of
quasi-ergodic measures.

Definition 2.3. A measure ν on M is called a quasi-ergodic measure if for every f ∈
Fb(M),

lim
n→∞ Ex

[
1
n

n−1∑
i=0

f ◦ Xi

∣∣∣∣ τ > n

]
=

∫
M

f (y)ν(dy) for ν-almost every x ∈ M .

One of the main objectives of this paper is to study the statistical asymptotic behaviour
of the Markov chain Y

a,b
n+1 := ωnY

a,b
n (1 − Y

a,b
n ) absorbed at R \ [0, 1], where {ωn}n is an

i.i.d. sequence of random variables such that ω0 ∼ Unif([a, b]) with 1 ≤ a < 4 and b > 4.
We mention that in the case where Y

a,b
n does not escape from the interval [0, 1], that

is, 1 ≤ a < b ≤ 4, [2, Theorem 2] and [30, Proposition 9.5] show that Y
a,b
n admits a

unique stationary measure μa,b for Y
a,b
n on [0, 1] such that μa,b((0, 1)) = 1. For dynamical

considerations of random logistic maps and an analysis of the case were the sample space
is finite, see [1].

The following theorem describes the asymptotic distribution of Y
a,b
n conditioned upon

survival when 1 ≤ a < 4 < b, also establishing the existence of quasi-stationary and
quasi-ergodic measures for Y

a,b
n on [0, 1].

THEOREM 2.1. Consider M = [0, 1], 1 ≤ a < 4 < b, the Markov chain Y
a,b
n on RM

absorbed at ∂ = R \ M and τa,b(ω) = min{n ∈ N; Y
a,b
n ∈ R \ [0, 1]}. Then we have the

following.
(i) Y

a,b
n admits a quasi-stationary measure μa,b with survival rate λa,b such that

supp(μa,b) = [0, 1] and μa,b 	 Leb, where Leb denotes the Lebesgue measure on
[0, 1].

(ii) There exists ηa,b ∈ L1(M , μ) such that Pηa,b = λa,bηa,b, ‖ηa,b‖L1(M ,μ) = 1 and
ηa,b > 0 μa,b-a.s.

(iii) For every h ∈ L∞(M , Leb) and x ∈ (0, 1),

lim
n→∞ Ex

[
1
n

n−1∑
i=0

h ◦ Y
a,b
i

∣∣∣∣ τa,b > n

]
=

∫
M

h(y)ηa,b(y)μa,b(dy).
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(iv) For every h ∈ L∞(M , Leb) and x ∈ (0, 1),

lim
n→∞ Ex[h ◦ Y

a,b
i | τa,b > n] =

∫
h(y)μa,b(dy).

Theorem 2.1 is proved in §6.1. Later, we generalize the above result allowing values
of a in the interval (0, 1) (see Theorem 6.15). However, this result relies on the technical
assumption of (a, b) being an admissible pair (see Definition 6.1). We were not able to
show the existence of quasi-stationary and quasi-ergodic measures for all values of a ∈
[0, 1), which can be seen from technical details in the inequalities of Proposition 6.17 that
is used in Step 2 of Lemma 6.7. This technical obstruction is explained in Remark 6.10.

We use a more general setup for the proof of the above theorem. We present two
incrementally restrictive hypotheses, Hypothesis H1 and H2, which are satisfied by Y

a,b
n

for every (a, b) ∈ [1, 4) × (4, ∞), and implies results similar to Theorem 2.1 in different
modes of convergence (see Theorems 2.2, 2.3 and 2.4).

In the following, we recall the definition of an integral operator.

Definition 2.4. Let p, q ∈ [1, ∞) and (
1, F1, μ1), (
2, F2, μ2) be measure spaces. We
say that the bounded linear map T : Lp(
1, F1, μ1) → Lq(
2, F2, μ2) is an integral
operator if there exists a measurable function κ : 
2 × 
1 → R, called kernel function,
such that for every f ∈ Lp(
1, F1, μ1),

κ(x, ·)f (·) ∈ L1(
1, μ1) for μ2-almost every x ∈ 
2,

and

Tf (x) =
∫


1

f (y)κ(x, y)μ1(dy) for μ2-almost every x ∈ 
2.

For a large class of Markov processes, it is common for the existence of a probability
function ρ on M such that

P(x, dy) 	 ρ(dy) for ρ-almost every x ∈ M .

In such systems, it is natural to seek quasi-stationary measures that are absolutely
continuous with respect to ρ. In this situation and assuming that μ 	 ρ, we have from
equation (2.1) that P : L1(M , μ) → L1(M , μ) is an integral operator.

It is also natural to assume that the absorbing Markov chain Xn is irreducible, that is,
if there exists A ∈ B(M) such that μ({P(·, A) > 0}�A) = 0, then either μ(A) = 0 or
μ(X \ A) = 0, where � denotes the symmetric difference of sets. In cases where Xn is
not irreducible, it is always possible to separate the state space into irreducible regions and
analyse each region separately.

The conditions discussed above are summarized in Hypothesis H1.

HYPOTHESIS H1. Let Xn be an absorbing Markov chain on EM absorbed at ∂ . We say
that Xn fulfils Hypothesis H1 if the following conditions are met.
(H1a) There exists a quasi-stationary measure μ ∈ M+(M) for the Markov chain Xn

with survival rate λ.
(H1b) There exists η ∈ L1+(M , μ) such that Pη = λη and ‖η‖L1(M ,μ) = 1.
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(H1c) The transition kernel P : L1(M , μ) → L1(M , μ) is an integral operator with
kernel function κ : M × M → R+.

(H1d) For every A ∈ B(M) such that 0 < μ(A) < 1,∫
M\A

∫
A

κ(x, y)μ(dy)μ(dx) > 0,

that is, if there exists A ∈ B(M) such that

μ({P1A > 0}�A) = 0,

then either μ(M \ A) = 0 or μ(A) = 0.

We mention that given an absorbing Markov chain Xn satisfying Hypothesis H1, we
obtain from [22, Lemma 4.2.9 and Example (i) on p. 262] that η(x) > 0 for μ-almost
every x ∈ M .

The theorem below implies that under Hypothesis H1, η(x)μ(dx) is the only candidate
for the quasi-ergodic measure for Xn on M . Moreover, it is also shown that such a
hypothesis implies the existence of a maximal m ∈ N, with the following properties:
• there exists measurable sets C0, . . . , Cm−1 ⊂ M such that M = C0 � · · · � Cm−1;
• for every n ∈ N, Xn ∈ Ck (mod m), then Xn+1 ∈ Ck+1 (mod m).

THEOREM 2.2. Let Xn be an absorbing Markov chain fulfilling Hypothesis H1 then the
following assertions hold.

(i) There exist a natural number m ∈ N and sets Cm := C0, C1, . . . , Cm−1 ∈ B(M)

such that μ(Ci) = 1/m for every i ∈ {0, 1 . . . , m − 1} and

{P1Ci
> 0} ⊂ Ci+1 for every i ∈ {0, 1, . . . , m − 1}.

(ii) For every f ∈ L1(M , μ),

1
n

n−1∑
i=0

1
λn

Pnf
n→∞−−−→ η

∫
M

f (y)η(y)μ(dy),

in L1(M , μ) and μ-a.s.
(iii) The following limit holds

1
λn

Pn(x, M)
n→∞−−−→ η(x) in L1(M , μ).

(iv) If, in addition, we assume that M is a Polish space, then for every h ∈ L∞(M , μ),(
x 
→ Ex

[
1
n

n−1∑
i=0

h ◦ Xi | τ > n

])
n→∞−−−→

∫
M

h(y)η(y)μ(dy) (2.2)

in the L∞(M , μ)-weak∗ topology (see [5, Ch. 3.4] for the definition and the main
properties of the weak∗ topology), in particular, we obtain that (2.2) also converges
weakly in L1(M , μ).

Theorem 2.2 is proved in §4.
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It is observed that Theorem 2.2(iv) gives us L∞(M , μ)-weak∗ convergence of equation
(2.2), and to guarantee such convergence in L∞(M , μ), we require an additional regularity
hypothesis (Hypothesis H2) on the kernel functions of the operator P .

HYPOTHESIS H2. Let Xn be a Markov chain Xn on EM absorbed at ∂ . We say that Xn

fulfils Hypothesis H2 if:
(1) Xn fulfils Hypothesis H1; and
(2) for μ-almost every point x ∈ M , κ(x, ·) ∈ L∞(M , μ). Equivalently, since μ is an

inner regular measure [28, Proposition A.3.2], there exists a sequence of nested
compact sets {Ki}i∈N such that μ(

⋃
i∈N Ki) = 1, and for every i ∈ N,

ess supμ⊗μ

(x,y)∈Ki×M

‖1Ki
(x)κ(x, y)‖ < ∞.

We mention that, in practice, once (H1a) and (H1b) are verified, then (H1c), (H1d) and
Hypothesis H2 can be readily verified. We exemplify this in §6 considering the absorbing
Markov chain Y

a,b
n (see the proof Theorem 6.15).

In addition to quasi-stationary measures, the so-called Yaglom limit

lim
n→∞

Pn(x, A)

Pn(x, M)
for x ∈ M and A ∈ B(M),

provides an alternative perspective on the asymptotic behaviour of the paths Xn condi-
tioned on survival. Observe that for the Yaglom limit to exist, it is necessary that M does
not exhibit a cyclic decomposition under Xn, that is, that m = 1 on item (i) of Theorem 2.2.

The following two results provide conditions that ensure the existence of a quasi-ergodic
measure for Xn on M and the convergence of the Yaglom limit.

THEOREM 2.3. Let Xn be an absorbing Markov chain fulfilling Hypothesis H1. If any of
the following items hold:
(a) there exists K > 0 such that μ({K < η}) = 1 a.s.;
(b) there exists g ∈ L1(M , μ) such that

1
λn

Pn(·, M) ≤ g for every n ∈ N;

(c) the absorbing Markov chain Xn fulfils Hypothesis H2,
then for every h ∈ L∞(M , μ),

lim
n→∞ Ex

[
1
n

n−1∑
i=0

h ◦ Xi

∣∣∣∣ τ > n

]
=

∫
M

h(y)η(y)μ(dy) for μ-almost every x ∈ M . (2.3)

If, additionally, m = 1 in Theorem 2.2(i), then

lim
n→∞ Ex[h ◦ Xn | τ > n] = lim

n→∞
Pnh(x)

Pn(x, M)
=

∫
M

h(y)μ(dy) for μ-almost every x ∈ M .

(2.4)

Theorem 2.3 is proved in §5.
The following theorem is a refinement of the previous theorem, allowing us to

characterize the set where the convergence of equations (2.3) and (2.4) hold.
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THEOREM 2.4. Let Xn be an absorbing Markov chain fulfilling Hypothesis H2. Then,
given h ∈ L∞(M , μ), equation (2.3) holds for every x ∈ ⋃

i∈N Ki , where {Ki}i∈N is the
nested sequence of compact sets given by the second part of Hypothesis H2.

In the case where m = 1 in Theorem 2.2(i), equation (2.4) holds for every x ∈ ⋃
i∈N Ki .

Theorem 2.4 is proved in §5.

Remark 2.5. Notice that Theorems 2.3 and 2.4 also hold in a non-escape context. This
means that if Xn is a Markov chain on the metric space M without absorption, satisfying
the following properties:
• μ is ergodic stationary measure for Xn on M;
• the transition kernel P : L1(M , μ) → L1(M , μ) is an integral operator; and
• Xn is aperiodic, that is, m = 1 in Theorem 2.2(i),
then for every h ∈ L∞(M , μ), limn→∞ Pnh = ∫

h dμ, μ-a.s. In particular, from [20,
Theorem 1(ii)], we obtain that Xn is a weak-mixing Markov chain.

3. Mean-ergodic operators
For classical dynamical systems and Markov processes, mean-ergodic operators provide a
vast array of tools and techniques for analysing their statistical properties [10, Chs. 7, 8 and
10]. This section shows that this is also true for absorbing Markov chains.

In the following, we recall the definition of a mean ergodic operator.

Definition 3.1. Let (E, ‖ · ‖) be a Banach space, we say that T : E → E is a mean-ergodic
operator if there exists a projection P : E → E such that

lim
n→∞

∥∥∥∥1
n

n−1∑
i=0

T ix − Px

∥∥∥∥ = 0 for every x ∈ E.

Let M be a metric space, ρ a Borel probability measure on X, and T : L1(M , ρ) →
L1(M , ρ). We denote

I(T , ρ) = σ(A ∈ B(M); T ∗1A = 1A),

where T ∗ : L∞(M , ρ) → L∞(M , ρ) is the dual operator of T , that is, the unique bounded
automorphism on L∞(M , ρ) such that∫

M

(Tf )(x)h(x) ρ(dx)

=
∫

f (x)(T ∗h)(x) ρ(dx) for every f ∈ L1(M , ρ) and h ∈ L∞(M , ρ).

Our results are highly dependent on the following two propositions.

PROPOSITION 3.1. ([18, Theorem 3.3.5] and [25, Corollary V.8.1]) Let M be a metric
space and ρ be a probability measure on M, and T : L1(M , ρ) → L1(M , ρ) be a linear
operator such that ‖T ‖ = 1. Assume that there exists η ∈ L1(M , ρ) satisfying T η = η and
ρ({η > 0}) = 1. Then, we have the following.
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(i) For every f ∈ L1(M , ρ),

lim
n→∞

1
n

n−1∑
i=0

T if = η
Eρ[f η | I(T , ρ)]
Eρ[η | I(T , ρ)]

μ-a.s.

(ii) The operator T is mean-ergodic.

While Hypothesis H1 does not imply that P is a compact operator, the proposition
shows that given f ∈ L1(M , μ), the orbit {(1/λn)Pnf }n∈N is weakly precompact.

PROPOSITION 3.2. Suppose that the Markov process Xn satisfies Hypothesis H1, then for
every f ∈ L1(M , μ) the sequence{

1
λi

P if

}
i∈N

is weakly-L1(M , μ) precompact.

Proof. Let f ∈ L1+(M , μ). Note that for every i, m ∈ N,

0 ≤ 1
λi
P if ≤ 1

λi
P i (f − f ∧ mη) + 1

λi
P i (f ∧ mη) ≤ 1

λi
P i (f − f ∧ mη) + mη,

where given two functions f1, f2, we define f1 ∧ f2 := min{f1, f2}. Since ‖(1/λi)P i

f ‖L1(M ,μ) = ‖f ‖L1(M ,μ) for every i ∈ N and mη ∧ f
m→∞−−−−→ f in L1(M , μ) and μ-a.s.,

we can obtain that for every ε > 0, there exists δ > 0 such that

1
λi

∫
A

P if (x)μ(dx) < ε if μ(A) < δ for every i ∈ N.

From [19, p. 87, item 3], we conclude that {(1/λn)Pnf }n∈N is weakly L1(M , μ)

precompact.

4. AM-compact operators
Observe that under Hypothesis H1, the operator (1/λ)P : L1(M , μ) → L1(M , μ), is well
behaved in a functional analytical point of view. Namely, 1

λ
P is a positive integral operator

whose orbits are weakly compact. The theory of Banach lattices provides powerful tools
for studying the spectrum of such operators. In the following two paragraphs, we recall the
definition of a Banach lattice (we follow the definitions provided in [22, Ch. 2] and [25,
Ch. 2]).

Given (L, ≤) a partially ordered set and a set B ⊂ L, we define, if exists,

sup B = min{� ∈ L; b ≤ � for all b ∈ B}
and

inf B = max{� ∈ L; � ≤ b for all b ∈ B}.
With the above definitions, we say that L is a lattice if for every f1, f2 ∈ L,

f1 ∨ f2 := sup{f1, f2}, f1 ∧ f2 := inf{f1, f2}
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exists. Additionally, in the case where L is a vector space and the lattice (L, ≤) satisfies

f1 ≤ f2 ⇒ f1 + f3 ≤ f2 + f3 for all f3 ∈ L, and

f1 ≤ f2 ⇒ αf1 ≤ αf2 for all α > 0,

then (L, ≤) is called a vector lattice. Finally, if (L, ‖ · ‖) is a Banach space and the vector
lattice (L, ≤) satisfies

|f1| ≤ |f2| ⇒ ‖f1‖ ≤ ‖f2‖,

where |f1| := f1 ∨ (−f1), then the triple (L, ≤, ‖ · ‖) is called a Banach lattice. When
the context is clear, we denote the Banach lattice (L, ≤, ‖ · ‖) simply by L.

In this paper, we use two fundamental notions from Banach lattice theory. The first one
is that of an ideal of a Banach lattice and the second one is that of an irreducible operator
on a Banach lattice. A vector subspace I ⊂ L is called an ideal if for every f1, f2 ∈ L such
that f2 ∈ I and |f1| ≤ |f2|, we have f1 ∈ I . Finally, a positive linear operator T : L → L

is called irreducible if {0} and L are the only T-invariant closed ideals of T.
The theory of AM-compact operators provides a generalization to the theory of compact

operators. AM-compact operators are considerably more general than compact operators
and possess a sufficient degree of regularity. In the following, we recall the definition of
an AM-compact operator.

Definition 4.1. Let E be a Banach lattice and Y a Banach space. A linear operator T :
E → Y is called AM-compact if for every x1, x2 ∈ E, T ([x1, x2]) is precompact in Y,
where [x1, x2] := {y ∈ E; x1 ≤ y ≤ x2}.

The following result shows us that all positive integral operators are AM-compact.

THEOREM 4.1. [14, Proposition A.5] Let (
1, μ1) and (
2, μ2) be the σ -finite measure
spaces and p, q ∈ [1, ∞). Let T : Lp(
1, μ1) → Lq(
2, μ2) be a positive bounded
integral operator, then T is an AM-compact operator.

Given f ∈ L1(M , μ), the key to our results is to understand the asymptotic behaviour
of the sequence {(1/λn)Pnf }n∈N. It turns out that the behaviour of this sequence
has a strong connection with the peripheral spectrum of P . In this way, we denote
L1(M , μ; C) := L1(M , μ) ⊕ iL1(M , μ) and linearly extend the operator P to the Banach
space L1(M , μ; C).

Here, we summarize the spectral properties implied by Hypothesis H1.

PROPOSITION 4.2. Let Xn be an absorbing Markov chain satisfying Hypothesis H1. Then:
(i) for every f ∈ L1(M , μ),

1
n

n−1∑
i=0

1
λi
P if

n→∞−−−→ η

∫
M

f (y)η(y)μ(dy),

in L1(M , μ) and μ-a.s.;
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(ii) there exists a decomposition L1(M , μ; C) = Erev ⊕ Eaws, such that Erev and Eaws
are P-invariant,

Erev = span
{
f ∈ L1(M , μ; C);

1
λ
Pf = e2πji/mf for some j ∈ {0, 1, . . . , m − 1}

}
,

and

Eaws =
{
f ∈ L1(M , μ; C);

1
λi
P if

n→∞−−−→ 0, in L1(M , μ)

}
.

Moreover,

dim ker
(

1
λ
P − e2πji/mId

)
= 1 for every j ∈ {0, 1, . . . , m − 1}.

Proof. (i) From Proposition 3.1, it is enough to show that if A ∈ I(P/λ, μ), then either
μ(A) = 0 or μ(A) = 1. To see this, let A ∈ B(M) such that 1

λ
P∗1A = 1A, then

0 = μ(A ∩ (M \ A)) =
∫

M

1A(x)1M\A(x)μ(dx) = 1
λ

∫
M

P∗1A(x)1M\A(x)μ(dx)

= 1
λ

∫
M

1A(x)P1M\A(x)μ(dx) = 1
λ

∫
A

∫
M\A

κ(x, y)μ(dy)μ(dx).

From Hypothesis H1, we obtain that either μ(A) = 1 or μ(A) = 0.
(ii) From Propositions 3.2 and 4.1, we have that the semigroup {(1/λn)Pn}n∈N fulfils

the standard assumptions of [16, §6]. Combining [16, Proposition 4.3, Theorem 2.2] and
[10, Proposition 16.27 and Corollary 16.32], we obtain that

Erev =
{
f ∈ L1(M , μ; C);

1
λ
Pf = e2iπθf for some θ ∈ R

}
,

and
Eaws = {f ∈ L1(M , μ; C);

1
λi
P if → 0 in L1(M , μ)}.

Applying [16, Theorem 6.1(a)], we obtain that if λe2iπθ ∈ σpnt(P), then θ ∈ Q. Observe
Hypothesis H1 implies that P/λ is an irreducible operator [22, Example (i), p. 262]. From
[16, Theorem 6.1(b)], we obtain that P/λ has only finitely many unimodular eigenvalues.
Finally, from [22, Theorem 4.2.13(iii)] (taking x′ = 1), the proof is finished.

Let σpnt((1/λ)P) := {̃λ ∈ C; there exists h ∈ L1(M), (1/λ)Ph = λ̃h} be the point
spectrum of the operator (1/λ)P . In [7, 23], it is shown that the cardinality of
S1 ∩ σpnt((1/λ)P) is intrinsically connected with the existence a possible periodic
behaviour of Xn in a suitable partition of M. This remains true under Hypothesis H1,
and such periodic behaviour is established in Lemmas 4.3 and 4.4.

Definition 4.2. Given an absorbing Markov chain Xn that satisfies Hypothesis H1, we
define m(Xn) := #(S1 ∩ σpnt(

1
λ
P)), which is finite from Proposition 4.2.

From now on, we denote m(Xn) simply as m.
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LEMMA 4.3. Let Xn be a Markov chain satisfying Hypothesis H1. Then there exist
eigenfunctions g1, . . . , gm−1 ∈ L1+(M , μ) of Pm such that ‖gj‖L1(M ,μ) = 1 for every
j ∈ {0, 1, . . . , m − 1}, and spanC({gi}m−1

i=0 ) = ker(Pm − λmId).
Moreover, the eigenfunctions g0, g1, . . ., gm−1 can be chosen in a way such that they

have disjoint support, that is, defining Ci = {gi > 0} for all i ∈ {0, . . . , m − 1}, then
μ(Ci ∩ Cj ) = 0 for all i �= j .

Furthermore, the family of sets {Ci}m−1
i=0 satisfies

μ(M \ (C0 � C1 � · · · � Cm−1)) = 0.

Proof. The proof follows from similar arguments and computations laid out in [7,
Proposition 6.9] with the following two adaptations:
(1) the space C0(M) is replaced by L1(M , μ); and
(2) the set equalities are replaced by the relation ∼ . Namely, the given A, B ∈ B(M)

are said to be equivalent, that is, A ∼ B if μ(A�B) = 0, where A�B := (A \ B) ∪
(B \ A).

The proof of the following lemma is analogous to the proof [7, Lemma 6.15].

LEMMA 4.4. Let {gi}m−1
i=0 ⊂ L1+(M , μ), as in Proposition 4.3. Then, there exists a cyclic

permutation σ : {0, 1, . . . , m − 1} → {0, 1, . . . , m − 1} of order m such that for every
i ∈ {0, 1, . . . , m − 1}, Pgi = λgσ(i). In particular, this implies that

{P(x, Ci) > 0} ⊂ Cσ(i) for every i ∈ {0, 1, . . . , m − 1}.

The following two lemmas are the last ingredients needed for the proof of Theorem 2.2.

LEMMA 4.5. Suppose the absorbing Markov chain Xn satisfies Hypothesis H1. Then,

1
λn

Pn(x, M)
n→∞−−−→ η(x) in L1(M , μ). (4.1)

Proof. We divide the proof into three steps.
Step 1. We show that μ(Ci) = 1/m for every i ∈ {0, 1 . . . , m − 1}.
Observe that Proposition 3.1 implies that for every i ∈ N,

1
n

n−1∑
j=0

1
λj

Pj1Ci

n→∞−−−→ μ(Ci)η

and

1
n

n−1∑
j=0

1
λmj

(Pm)j
(

1
λi
P i1M

)
n→∞−−−→ η

Eμ[(1/λi)P i (·, M) | I((1/λm)P i , μ)]
Eμ[η | I((1/λm)P i , μ)]

,

in L1(M , μ) and μ-a.s.
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However, from [12, Theorem E, p. 29], we obtain that for μ-almost every x ∈ M ,

μ(Ci) = lim
n→∞

∑n
j=0 Pj (x, Ci)∑n
j=0 Pj (x, M)

≤ lim
n→∞

∑n
j=0(1/λi+mj )P i+mj (x, M)∑nm

j=0(1/λj )Pj (x, M)

= limn→∞(1/nm)
∑n

j=0(1/λi+mj )P i+mj (x, M)

limn→∞(1/mn)
∑nm

j=0(1/λj )P i (x, M)

= 1
m

Eμ[(1/λi)P i (·, M) | I((1/λm)P i , μ)]
Eμ[η | I((1/λm)P i , μ)]

.

Therefore,

μ(Ci) = μ(Ci)

∫
M

Eμ

[
η | I

(
1

λm
P i , μ

)]
μ(dx)

≤ 1
m

∫
M

Eμ

[
1
λi
P i (·, M) | I

(
1

λm
P i , μ

)]
(x)μ(dx)

≤ 1
m

for all i ∈ {0, 1, . . . , m − 1}.

Since

1 = μ(M) = μ(C0) + · · · + μ(Cm−1) ≤ 1
m

+ · · · + 1
m

= 1,

we obtain that

μ(Ci) = 1
m

for every i ∈ {0, 1, . . . , m − 1}.

Step 2. We show that for every i ∈ {0, 1, . . . , m − 1}, there exists fi ∈ Eaws such that

1Ci
= 1

m
gi + fi .

From the decomposition L1(M , μ) = Erev ⊕ Eaws (see Proposition 4.2(ii)), there exist
α1, . . . , αm ∈ R and fi ∈ Eaws such that

1Ci
=

m−1∑
i=0

αigi + fi .

Since fi ∈ Eaws, it follows that
∫
M

fi(y)μ(dy) = 0. Therefore, α0, . . . , αi−1, αi+1, . . . ,
αm = 0 and 1Ci

= αigi + fi . Since μ(Ci) = 1/m, we obtain that αi = 1/m.
Step 3. We conclude the proof of the proposition.
From Step 2, we obtain that

1M =
m−1∑
i=0

1Ci
= 1

m
(g1 + · · · + gm) + (f1 + · · · + fm) = η + (f1 + · · · + fm).

Since f := f1 + · · · + fm ∈ Eaws, this shows that (1/λn)Pn(·, M)
n→∞−−−→ η in L1(M , μ).
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LEMMA 4.6. Let Xn be an absorbing Markov chain satisfying Hypothesis H1, then for
every h ∈ L∞(M , μ),

1
n

n−1∑
i=0

1
λi
P i

(
h(·) 1

λn−i
Pn−i (·, M)

)
n→∞−−−→ η

∫
M

h(y)η(y)μ(dy), in L1(M , μ). (4.2)

Proof. Let h ∈ L∞(M , μ), from a direct computation

In
h :=

∥∥∥∥1
n

n−1∑
i=0

1
λi

P i

(
h(·) 1

λn−i
Pn−i (·, M)

)
− 1

n

n−1∑
i=0

1
λi
P i (hη)

∥∥∥∥
L1(M ,μ)

≤ 1
n

n−1∑
i=0

∥∥∥∥ 1
λi
P i

(
h ·

(
1

λn−i
Pn−i (·, M) − η

))∥∥∥∥
L1(M ,μ)

≤ ‖h‖∞
n

n−1∑
i=0

∥∥∥∥ 1
λi
P i

∣∣∣∣ 1
λn−i

Pn−i (·, M) − η

∣∣∣∣∥∥∥∥
L1(M ,μ)

≤ ‖h‖∞
n

n−1∑
i=0

∥∥∥∥ 1
λn−i

Pn−i (·, M) − η

∥∥∥∥
L1(M ,μ)

n→∞−−−−→
Lem 4.5

0.

The theorem follows by combining the above equation with Proposition 4.2 (i).

Now, we prove Theorem 2.2.

Proof of Theorem 2.2. Items (i), (ii) and (iii) follows directly from respectively Proposi-
tions 4.4, 4.2(i) and Lemma 4.5.

In the following, we prove item (iv). Given h ∈ L∞(M , μ), define

gn(x) := Ex

[
1
n

n−1∑
i=0

h ◦ Xi | τ > n

]
= λn

Pn(x, M)

1
n

n−1∑
i=0

1
λi
P i

(
h(·) 1

λn−i
Pn−i (·, M)

)
(x).

It is clear that ‖gn‖L∞(M ,μ) ≤ ‖h‖L∞(M ,μ) for every n ∈ N. Since M is a Polish space,
from the Banach–Alaoglu theorem, we obtain that the space

B‖·‖L∞(M ,μ)
(0, ‖h‖∞) := {g ∈ L∞(M , μ); ‖g‖L∞(M ,μ) ≤ ‖h‖L∞(M ,μ)}

is a compact metric space when endowed with the L∞(M , μ)-weak∗ topology. Let
{gnk

}n∈N be a L∞(M , μ)-weak∗ convergent subsequence of {gn}n∈N, and denote its limit
as g.

We show that g = ∫
M

hη dμ μ-a.s., which implies item (iv). Observe that given A ∈
B(M), from Lemmas 4.5 and 4.6, we obtain that∫

A

g(x)η(x)μ(dx) = lim
k→∞

∫
M

gnk
(x)

1
λnk

Pnk (x, M)1A(x)μ(dx)

= lim
n→∞

∫
M

1
n

n−1∑
i=0

1
λi
P i

(
h(·) 1

λn−i
Pn−i (·, M)

)
(x)1A(x)μ(dx)

=
∫

A

η(x)μ(dx)

∫
M

h(x)η(x)μ(dx).

Since μ({η > 0}) = 1, it follows that g = ∫
M

h(x)η(x)μ(dx) μ-a.s.
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5. Almost-sure convergence
In this section, we strengthen the L∞(M , μ)-weak∗ convergence given in Theorem 2.2 to
L∞(M , μ) convergence.

Note that for every n ∈ N, x ∈ M and A ∈ B(M),

Ex

[
1
n

n−1∑
i=0

1A ◦ Xi

∣∣∣∣ τ > n

]
= λn

Pn(x, M)

1
n

n−1∑
i=0

1
λi

P i

(
1A(·) 1

λn−i
Pn−i (·, M)

)
(x).

Therefore, to prove Theorem 2.3, it is enough to find conditions where equations (4.1) and
(4.2) converge almost surely.

To prove Theorem 2.3, we need the following three propositions.

PROPOSITION 5.1. [22, Proposition 3.3.3] Let T : L1(M , μ) → L1(M , μ) be a positive
bounded integral operator. Then if {fn}n∈N ⊂ L1(M , μ) is a L1(M , μ)-order bounded
sequence satisfying fn → 0 in μ-measure as n → ∞, then Tfn → 0 as n → ∞ μ-almost
everywhere.

PROPOSITION 5.2. Let Xn be an absorbing Markov chain satisfying Hypothesis H1.
Suppose that one of the following items holds:
(a) there exists K > 0 such that μ({K < η}) = 1 almost surely;
(b) there exists g ∈ L1(M , μ) such that

1
λn

Pn(x, M) ≤ g for every n ∈ N;

(c) the absorbing Markov chain Xn fulfils Hypothesis H2.

Then for every h ∈ L∞(M , μ)

lim
n→∞

1
n

n−1∑
i=0

1
λi
P i

(
h(·) 1

λn−i
P(n−i)(·, M)

)
(x)

n→∞−−−→ η(x)

∫
M

h(y)η(y)μ(dy) μ-a.s.

(5.1)

In addition, if

1
λn

Pnh
n→∞−−−→ η

∫
M

h(x)μ(dx) in L1(M , μ), (5.2)

then (1/λn)Pnh
n→∞−−−→ η

∫
M

h(x)μ(dx) μ-a.s.

Proof. Observe that item (a) is a particular case of item (b). In fact, note that for every x ∈
M , (1/λn)P(x, M) ≤ 1/K(1/λn)Pnη(x) = η(x)/K which correspond to item (b) when
setting g := η/K . Now, we assume item (b). From Lemmas 4.2 and 4.5, we obtain that
equations (5.1) and (5.2) converge in probability. Moreover, item (b) implies that for every
n ∈ N and for μ-almost every x ∈ M ,

−‖h‖L∞(M ,μ)g(x) ≤ 1
λn

Pnh(x) ≤ ‖h‖L∞(M ,μ)g(x)
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and

−‖h‖L∞(M ,μ)g(x) ≤ 1
n

n−1∑
i=0

1
λi

P i

(
h(·) 1

λn−i
P(n−i)(·, M)

)
(x) ≤ ‖h‖∞g(x).

Therefore, Proposition 5.1 implies the result.
Now, we assume item (c). Let us consider the set

Km = {x ∈ M; ‖k(x, ·)‖L∞(M ,μ) ≤ m}.
It is clear that the

Gm : L1(M , μ) → L∞(Km, μ),

f 
→ 1
λ
1KmP i (f )

is a bounded linear operator. Therefore, we have for every h ∈ L∞(M , μ),

lim
n→∞

∥∥∥∥1Ki

(
η

∫
M

h(y)μ(dy) − 1
λi

P ih

)∥∥∥∥
L∞(Ki ,μ)

= 0

and

lim
n→∞

∥∥∥∥1Km

1
n

n−1∑
i=0

1
λi

P i

(
h(·) 1

λn−i
P(n−i)(·, M)

)
− 1Knη

∫
M

h(y)η(y)μ(dy)

∥∥∥∥
L∞(Km,μ)

= 0.

Since Hypothesis H2 implies that μ(
⋃

m=1 Km) = 1, we obtain the result.

PROPOSITION 5.3. Let Xn be an absorbing Markov chain satisfying Hypothesis H2 and
m = 1 in Theorem 2.2(i). Then for every h ∈ L∞(M , μ),

1
λn

Pnh → η

∫
M

h(x)μ(dx) in L1(M , μ).

Proof. In the case where m = 1 in Theorem 2.2(i), we obtain that dim(Erev) = 1. Then,
given f ∈ L1(M , μ), there exists α ∈ C and g ∈ Eaws such that

f = αη + g.

From Proposition 4.2, we obtain that

1
λn

Pnf
n→∞−−−→ αη in L1(M , μ).

Finally, integrating over μ in the above limit, we obtain that α = ∫
M

f (x)μ(dx).

Finally, we prove Theorems 2.3 and 2.4.

Proof of Theorem 2.3. Observe that given h ∈ L∞(M , μ), for every n ∈ N and x ∈ M ,
we obtain

Ex

[
1
n

n−1∑
i=0

h ◦ Xi | τ > n

]
= 1/n

∑n−1
i=0 (1/λi)P i (h(·)(1/λn−i )Pn−i (·, M))(x)

(1/λn)Pn(x, M)
. (5.3)
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From Proposition 5.2, we obtain that for μ-almost every x ∈ M ,

lim
n→∞ Ex[h ◦ Xi | τ > n] =

∫
M

η(x)h(x)μ(dx),

which proves the first part of the theorem.
In the case where m = 1 in Theorem 2.2, then #(σpnt(P/λ) ∩ S1) = 1, then combining

Propositions 5.2 and 5.3, we obtain that for μ-almost every x ∈ M ,

lim
n→∞

Pnh(x)

Pn(x, M)
=

∫
M

h(y)μ(dy).

Proof of Theorem 2.4. Observe that under the conditions of Theorem 2.4, we obtain that
for every i ∈ N, the operators

Gi : L1(M , μ) → C0(Ki , )

g 
→ 1Ki
Pg

are bounded linear operators, since

1
n

n−1∑
i=0

1
λi
P i

(
h(·) 1

λn−i
P(n−i)(·, M)

)
(x)

n→∞−−−−−→
L1(M ,μ)

η(x)

∫
M

h(y)η(y)μ(dy) (5.4)

and

lim
n→∞

1
λn

Pn(x, M)
n→∞−−−−−→

L1(M ,μ)
η(x). (5.5)

Composing Gi on both sides, we obtain that equations (5.4) and (5.5) hold pointwise
in Ki for every i ∈ N. From equation (5.3), we obtain that for every x ∈ ⋃

x∈N Ki and
h ∈ L∞(M , μ),

lim
n→∞ Ex

[
1
n

n−1∑
i=0

h ◦ Xi | τ > n

]
=

∫
M

h(y)η(y)μ(dy).

Note that if m = 1 in Theorem 2.2, we obtain that #(σpntP/λ ∩ S1) = 1. Therefore, h ∈
L∞(M , μ)

lim
n→∞

Pnh

Pn(x, M)
=

∫
M

h(y)μ(dy) for every x ∈
⋃
m∈N

Km.

6. Random logistic map with escape
In this section, we analyse the Markov chain Y

a,b
n+1 = ωnY

a,b
n (1 − Y

a,b
n ) absorbed at

∂ = R \ M , where {ωn}n∈N is an i.i.d. sequence of random variables such that ωn ∼
Unif([a, b]), where 0 < a < 4 < b and M = [0, 1]. As before, for every A ∈ B(M) and
x ∈ M , we denote

P(x, A) := P[Y a,b
1 ∈ A | Y

a,b
0 = x].

Clearly, δ0 is a stationary measure for Y
a,b
n on [0, 1]. In the following, we provide

conditions to show that Y
a,b
n admits a non-trivial quasi-stationary measure on [0, 1],

which we define as a quasi-stationary measure for Y
a,b
n different from δ0. For the sake
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of simplicity and in the interest of readability, we denote Y
a,b
n simply as Yn. Similarly,

when the context is clear, we omit the a, b superscript from future objects that depend on
a and b.

In the following proposition, we explicitly compute the transition functions of Yn.

PROPOSITION 6.1. Let 0 ≤ a ≤ b, and consider the absorbing Markov chain Y
a,b
n .

Moreover, given f ∈ L1(M , Leb),

Pf (x) = 1
(b − a)x(1 − x)

∫ bx(1−x)∧1

ax(1−x)

f (y)dy.

In the case where f ∈ C0(M), then Pf ∈ C0(M) and Pf (0) = Pf (1) = f (0).

Proof. Let f ∈ L1(M , Leb) by a direct computation,

Pf (x) = 1
b − a

∫ b

a

1[0,1](ωx(1 − x))f (ωx(1 − x))dω

= 1
(b − a)x(1 − x)

∫ bx(1−x)

ax(1−x)

1[0,1](y)f (y)dy

= 1
(b − a)x(1 − x)

∫ bx(1−x)∧1

ax(1−x)

f (y)dy.

Now, consider f ∈ C0(M). The above equation implies that Pf is continuous in (0, 1).
For every x ∈ (0, 1), let us define the interval Jx := [ax(1 − x), bx(1 − x) ∧ 1]. It follows
that for every x ∈ (0, 1/b), miny∈Jx f (y) ≤ Pf (x) ≤ maxy∈Jx f (y). From the continuity
of f, we obtain that limx→0 Pf = f (0). Since P(x) = P(1 − x) for every x ∈ (0, 1/2), it
follows that limx→1 P(x) = f (0), implying that Pf ∈ C0(M).

The first step to apply Theorem 2.4 to Yn on [0, 1] is to show that Yn admits a
quasi-stationary measure different from δ0 on [0, 1].

Consider a measure μ ∈ M(M) such that μ 	 Leb(dx) and define g := μ(dx)/Leb(dx).
Note that

P∗(μ)(A) =
∫

M

P(x, A)g(x) dx

=
∫

M

1
(b − a)x(1 − x)

∫ 1

0
1[ax(1−x),bx(1−x)](y)1A(y)g(x) dy dx

=
∫

A

∫
M

1[ax(1−x),bx(1−x)](y)
g(x)

(b − a)x(1 − x)
dxdy

=
∫

A

( ∫ α+(y)

α−(y)

g(x)

(b − a)x(1 − x)
dx −

∫ β+(y∧a/4)

β−(y∧a/4)

g(x)

(b − a)x(1 − x)
dx

)
dy,

where

α±(x) := 1
2

± 1
2

√
1 − 4

b
x and β±(x) := 1

2
± 1

2

√
1 − 4

a
x.
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The above observation motivates the definition of the stochastic transfer operator,

L : L1([0, 1], Leb) → L1([0, 1], Leb), (6.1)

g 
→
(

x 
→
∫ α+(x)

α−(x)

g(y)

(b − a)y(1 − y)
dy

−
∫ β+(x∧a/4)

β−(x∧a/4)

g(y)

(b − a)y(1 − y)
dy

)
,

note that L is a well-defined linear operator since for every g ∈ L1([0, 1], Leb),

‖L(g)‖L1(M ,Leb) :=
∫ 1

0
|Lg(x)| dx ≤

∫
M

P(x, M)|g(y)|dy ≤ ‖g‖L1(M ,Leb).

The following two propositions summarize the above comments and show that L is well
defined as an automorphism in Lp(M , Leb) for every p ∈ [1, ∞]. For the following result,
see for instance [30, §5].

PROPOSITION 6.2. A probability measure μ ∈ M+(M) \ {δ0} on [0, 1] is a quasi-
stationary measure for Yn if and only if μ(dx) 	 Leb(dx) and there exists 0 < λ < 1,
such that

L μ(dx)

Leb(dx)
= λ

μ(dx)

Leb(dx)
.

PROPOSITION 6.3. For every p ∈ [1, ∞], the operators

P|Lp([0,1],Leb), L|Lp([0,1],Leb) : Lp([0, 1]) → Lp([0, 1])

are well defined and bounded.

Proof. By a direct computation, one can check that

L1M(x) =

⎧⎪⎪⎨⎪⎪⎩
4

b − a

(
tanh−1

(√
1 − 4x

b

)
− tanh−1

(√
1 − 4x

a

))
if 0 ≤ x ≤ a

4
,

4
b − a

tanh−1
(√

1 − 4x

b

)
if

a

4
≤ x ≤ 1,

implying that

‖L‖L∞(M ,Leb) = 4
b − a

tanh−1
(√

1 − a

b

)
.

Since ‖L‖L1(M ,Leb) ≤ 1, by the Riesz–Thorin interpolation theorem [13, Theorem
6.27],

‖L‖Lp(M ,Leb) < ∞ for all p ∈ [1, ∞].

For the operator P , note that for every 0 ≤ f ∈ L1([0, 1]) (1 ≤ p ≤ ∞),∫ 1

0
Pf (x) dx =

∫ 1

0
f (x)L1M(x) dx ≤ ‖L‖L∞(M ,Leb)‖f ‖L1(M ,Leb),
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showing that ‖P‖L1(M ,Leb) ≤ ‖L‖L∞(M ,Leb) < ∞. Using that ‖P‖L∞(M ,Leb) ≤ 1, we have
again by the Riesz–Thorin interpolation theorem that ‖P‖Lp(M ,Leb) < ∞ for all p ∈
[1, ∞].

For every a ∈ (0, 4) and 0 < ε < 3/8, let us define Mε := [4ε(1 − ε)2, 1 − ε] and the
Markov chain Y

a,b,ε
n+1 := Y ε

n+1 = ωnY
ε
n (1 − Y ε

n ) absorbed at ∂ε = R \ Mε, where {ωn}n∈N
is an i.i.d. sequence of random variables and ωn ∼ Unif([a, b]). Moreover, for every ε ∈
(0, 3/8), we denote the transition kernels and transfer operator for the absorbing Markov
chain Y ε

n respectively as

Pεf (x) := 1Mε(x)P(1Mεf )(x) and Lεf (x) := 1Mε(x)L(1Mεf )(x). (6.2)

In the next proposition, we show the existence of a sequence of positive real numbers
{εi}i∈N converging to 0, such that for every i ∈ N, the absorbing Markov chain Y

εi
n admits

a unique quasi-stationary measure μεi
supported on Mεi

. Moreover, these measures will
play an important role in constructing a non-trivial quasi-stationary measure for Yn on M.

PROPOSITION 6.4. Let (a, b) ∈ [1, 4) × (4, ∞) and Y
a,b,ε
n be the Markov chain absorbed

at ∂ε defined above. Then, there exists a sequence of positive numbers {εi}i∈N converging
to 0 such that, for every i ∈ N, the following items hold:
(a) Y

a,b,εi
n admits a unique quasi-stationary measure μa,b,εi

:= με on Mε with survival
rate λεi

> 0;
(b) there exists a continuous function ga,b

ε := gεi
∈ C0(Mεi

) such that μεi
(dx) =

gεi
(x) dx; and

(c) supp(μεi
) = Mεi

.

Proof. From [17, Theorem B and Remark XIII/5], there exists a sequence {ri}i∈N ⊂
[a, 4) converging to 4 such that for every i ∈ N, the logistic map fri : [0, 1] → [0, 1],
fri (x) = rix(1 − x) admits an invariant ergodic measure ρri 	 Leb and supp(ρri ) =
[f 2

ri
(1/2), fri (1/2)].

Consider the sequence {εi = (4 − ri)/4}i∈N. Combining equation (6.2) and Proposition
6.1, we obtain that

Pεi
(x, dy)

Leb(dy)
= 1Mεi

(y)

(b − a)x(1 − a)
1[ax(1−x),bx(1−x)](y) for every i ∈ N. (6.3)

In the following, we show that for every i ∈ N, given x ∈ Mεi
and open interval I ⊂

Mεi
= [f 2

ri
(1/2), fri (1/2)], there exists n0 = n0(x, I ) ∈ N such that Pn0

εi
(x, I ) > 0.

Consider the set J := {y ∈ Mεi
; ωx(1 − x) = y for some ω ∈ [a, b]}. Since J has

non-empty interior, we obtain that ρri (J ) > 0. Since ρri is an invariant ergodic mea-
sure, there exists ω0 ∈ [a, b] such that y := ω0x(1 − x) ∈ J and n1 > 0 ∈ N such that
f

n1
ri (y) ∈ I .

Consider the natural number n0 ∈ N and the continuous function Fx,n0 : [a, b]n0 → R,
Fx,n0(c1, . . . , cn0) := fc1 ◦ fc2 ◦ . . . fcn0

(x). From the last paragraph, we obtain that
Fx,n0(ω0, rεi

, . . . , rεi
) ∈ I . Finally, since Fx,n0 is a continuous function, we obtain that
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Pn0(x, I ) = P[Y a,b,εi
n0

∈ I | X0 = x]

= 1
(b − a)n0

Leb⊗n0({p ∈ [a, b]n0 ; Fx,n0(p) ∈ I }) > 0. (6.4)

From equations (6.2) and (6.4), we conclude that [7, Hypothesis (H)] is fulfilled and
therefore items (a), (b) and (c) follows directly from [7, Theorem A].

Observe that the family of measures given by the previous proposition {μεi
}i∈N can

be naturally extended on [0, 1] by imposing that μεi
([0, 1] \ Mεi

) = 0 for every i ∈ N.
To construct a quasi-stationary measure for the Markov process Yn on [0, 1], we use that
{μεi

}i∈N is precompact in the weak∗ of M([0, 1]), that is,⋂
i∈N

{μεk+i
}k∈N

w∗-M(M) �= ∅, (6.5)

where w∗-M(M) denotes the weak∗ topology of M(M).
The proposition below shows that the elements of equation (6.5) are natural candidates

for quasi-stationary measures for Yn on [0, 1].

PROPOSITION 6.5. Assume that there exists a probability measure μa,b := μ on M, λ > 0,
and subsequences

{μδn}n∈N ⊂ {μεn}n∈N, {λδn}n∈N ⊂ {λεn}n∈N,

such that
μδn → μ, in the weak∗-topology as n → ∞,

lim
n→∞ λδn = λ and lim

n→∞ δn = 0.

Then μ is a quasi-stationary measure for Yn on [0, 1].

Proof. Let

E = {x ∈ [0, 1], μ({x}) > 0},
note that E is, at most, countable. Consider the set

A = {I ∈ B(M); I is an interval, I ⊂ (0, 1) and sup I , inf I �∈ E}.
It is clear that σ(A) = B(M). Note that for every I ∈ A, there exists n0 = n0(I ) such that

A ⊂ Mδn for all n > n0.

This implies that for every n > n0,∫
M

P(x, I )μδn(dx) =
∫

Mε

P(x, I )μεn(dx) = λδnμδn(I ).

Since P(x, I ) is a continuous function, we obtain∫
M

P(x, I )μ(dx) = λμ(I) for every I ∈ A.

Since (4 − b)/(b − a) ≤ P(x, M) for all x ∈ [0, 1], it follows that λ > 0.
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Applying the monotone class theorem, we obtain that μ is a quasi-stationary measure
for Yn on [0, 1].

In light of Proposition 6.5, to construct a non-trivial quasi-stationary measure for Yn on
[0, 1], it remains to show that⋂

i∈N
{μεi+k

}i∈Nw∗-M(M) \ {δ0} �= ∅. (6.6)

Note that for every i ∈ N, μεi
(dx) 	 Leb(dx). To show that equation (6.6) holds, we

study the behaviour of the distributions of μεi
with respect to the Lebesgue measure.

The definition below provides conditions on a and b, which implies that equation (6.6)
holds (see Theorem 6.9).

Definition 6.1. A pair (a, b) ∈ (0, 4) × (4, ∞) is called an admissible pair if either
• a ≥ 2; or
• for every x ∈ [(4a2 − a3)/16, a/4],

0 ≤ 1
2

− 1
2

√
1 − 2

b

(
1 −

√
1 − 4x

a

)
≤ a

4
(6.7)

and

2
(

tanh−1 (√
2
√

1 − (4x/b) + b − 2/b
) − tanh−1 (√

a + 2
√

1 − (4x/b) − 2/a
))

2 tanh−1 (√
2
√

1 − (4x/a) + b − 2/b
) + log(a/4 − a)

≤
√

1 − 4x/b√
1 − 4x/a

. (6.8)

In Theorem 6.18, we show that if (a, b) ∈ [1, 4) × (4, ∞), then (a, b) is an admissible
pair. Assuming that (a, b) is an admissible pair, it is possible to show that Y

a,b
n admits

a non-trivial quasi-stationary measure on [0, 1]. To accomplish this goal, we need the
following three technical lemmas.

LEMMA 6.6. Let (a, b) be an admissible pair, with a < 2, and f : [0, 1] → R be a
function continuous by parts with a finite number of discontinuities, such that:
(1) 0 ≤ f (x) for every x ∈ [0, 1];
(2) f is non-decreasing in the interval [0, a/4]; and
(3) f is non-increasing in the interval [a/4, 1].

Then Lf is a continuous function such that:
(1) 0 ≤ Lf (x) for every x ∈ [0, 1];
(2) Lf is non-decreasing in the interval [0, (4a2 − a3)/16]; and
(3) Lf is non-increasing in the interval [a/4, 1].

Proof. Recall that

Lf (x) =
∫ α+(x)

α−(x)

f (y)

(b − a)y(1 − y)
dy −

∫ β+(x∧a/4)

β−(x∧a/4)

f (y)

(b − a)y(1 − y)
dy, (6.9)

https://doi.org/10.1017/etds.2023.69 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.69


On the quasi-ergodicity of absorbing Markov chains 1841

where

α±(x) = 1
2

± 1
2

√
1 − 4

b
x and β±(x) = 1

2
± 1

2

√
1 − 4

a
x.

It is clear that Lf is continuous and a non-negative function. Observe that Lf is
differentiable except for finitely many points. In fact, the derivative of Lf on the points
where the derivative exists is given by

dLf

dx
(x) = −f (α+(x)) + f (α−(x))

(b − a)x
√

1 − 4/bx
+ 1[0,a/4](x)

f (β+(x)) + f (β−(x))

(b − a)x
√

1 − 4/ax
. (6.10)

Since for every x ∈ [a/4, 1],

dLf

dx
(x) = − 1

b − a

f (α+(x)) + f (α−(x))

x
√

1 − 4/bx
≤ 0,

if follows that Lf is non-increasing in [a/4, 1].
Observe that for every x ∈ [0, a/4], we obtain

1
(b − a)x

√
1 − 4/bx

<
1

(b − a)x
√

1 − 4/ax
and

a

4
≤ β+(x) ≤ α+(x).

Since f is non-increasing in [a/4, 1], we conclude that

− f (α+(x))

(b − a)x
√

1 − 4/bx
+ f (β+(x))

(b − a)x
√

1 − 4/ax
≥ 0.

To finish the proof, it is enough to show that f (β−(x)) ≥ f (α−(x)) for every x ∈
[0, (4a2 − a3)/16]. Observe that since f is non-decreasing on [0, a/4], we obtain that for
every x ∈ [0, (4a2 − a3)/16],

β−(x) ≤ α−(x) ≤ a/4,

implying that

f (β−(x)) − f (α−(x)) ≥ 0.

LEMMA 6.7. Let (a, b) be an admissible pair and ε ∈ (0, 3/8) such that [(4a2 −
a3)/16, a/4] ⊂ Mε. Consider that sequence of functions {Ln

ε1Mε }n∈N, then for every
n ∈ N, the following assertions hold:
(1) 0 ≤ Ln

ε1Mε(x) for every x ∈ [0, 1];
(2) Ln

ε1Mε(x) is non-decreasing in the interval [0, (4a2 − a3)/16]; and
(3) Ln

ε1Mε(x) is non-increasing in the interval [a/4, 1].

Proof. Recall that for every ε ∈ (0, 3/8) and f ∈ C0(Mε), Lεf = 1MεL(1Mεf ). We
divide the proof into two steps.

Step 1. We show the result for the case where a ≥ 2.
We show the above result by induction on n. The case n = 0 is immediately verified.

Suppose that items (1), (2) and (3) are true for Ln
ε1Mε . We will show that the same is true

for Ln+1
ε 1Mε .
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Item (1) is trivially fulfilled since Lε is a positive operator. Additionally items (2) and
(3) follow from equation (6.10) and realizing that for every (a, b) ∈ [2, 4) × (4, ∞),

α−(x) ≤ β−(x) ≤ 4a2 − a3

16
≤ a

4
≤ β+(x) ≤ α+(x) for every x ∈

[
0,

4a2 − a3

16

]
.

This proves Step 1.
Step 2. We show that if (a, b) is an admissible pair and a ∈ (0, 2), then:

(1) 0 ≤ Ln
ε1Mε(x) for every x ∈ [0, 1];

(2) Ln
ε1Mε(x) is non-decreasing in the interval [0, a/4]; and

(3) Ln
ε1Mε(x) is non-increasing in the interval [a/4, 1].

We will prove that the above items hold by strong induction on n. For the cases n = 0
and n = 1, the computations can explicitly be done and such a conclusion is achieved.

Now, suppose that the conclusions of Step 2 are true for

1Mε , L1
ε1Mε , . . . , Ln

ε1Mε with n ≥ 1

and we will show that it is also true for Ln+1
ε 1Mε .

From Lemma 6.6, it follows that:
(1) 0 ≤ Ln+1

ε 1Mε(x) for every x ∈ [0, 1];
(2) Ln+1

ε 1Mε is non-decreasing in the interval [0, (4a2 − a3)/16]; and
(3) Ln+1

ε 1Mε is non-increasing in the interval [a/4, 1].
It remains to show that Ln+1

ε Mε is non-decreasing in [(4a2 − a3)/16, a/4]. From the
proof of the previous theorem, it is enough to show that

Ln
ε1Mε(α−(x))√

1 − 4x/b
≤ Ln

ε1Mε(β−(x))√
1 − 4x/a

for every x ∈
[

4a2 − a3

16
,
a

4

]
. (6.11)

Observe that

α−(x) <
a

4
< β−(x) for every x ∈

[
4a2 − a3

16
,
a

4

]
.

Therefore,

Ln
ε1Mε(β−(x)) =

∫ α+◦β−(x)

α−◦β−(x)

Ln−1
ε 1Mε(y)

(b − a)y(1 − y)
dy (6.12)

and

Ln
ε1Mε(α−(x)) =

∫ α+◦α−(x)

α−◦α−(x)

Ln−1
ε 1Mε(y)

(b − a)y(1 − y)
dy −

∫ β+◦α−(x)

β−◦α−(x)

Ln−1
ε 1Mε(y)

(b − a)y(1 − y)
dy

=
∫ β−◦α−(x)

α−◦α−(x)

Ln−1
ε 1Mε(y)

(b − a)y(1 − y)
dy +

∫ α+◦α−(x)

β+◦α−(x)

Ln−1
ε 1Mε(y)

(b − a)y(1 − y)
dy.

Since (a, b) is an admissible pair, equation (6.7) implies that for every x ∈ [(4a2 −
a3)/16, a/4],

β− ◦ α−(x) < α− ◦ β−(x) <
a

4
< α+ ◦ β−(x) ≤ β+ ◦ α−(x).
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This implies that

Ln
ε1Mε(α−(x)) ≤Ln−1

ε 1Mε(β− ◦ α−(x))

b − a

∫ β−◦α−(x)

α−◦α−(x)

1
y(1 − y)

dy

+ Ln−1
ε 1Mε(β+ ◦ α−(x))

b − a

∫ α+◦α−(x)

β+◦α−(x)

1
y(1 − y)

dy

≤Ln−1
ε 1Mε(β− ◦ α−(x)) + Ln−1

ε 1Mε(β+ ◦ α−(x))

b − a
I

(a,b)
1 (x),

where

I
(a,b)
1 (x) := 2

(
tanh−1 (√

2
√

1 − 4x/b + b − 2/b
) − tanh−1 (√

a + 2
√

1 − 4x/b − 2/a
))

.

However, from the induction hypothesis and equation (6.12),

Ln
ε1Mε(β−(x)) ≥ Ln−1

ε 1Mε(β− ◦ α−(x))

b − a

∫ a/4

α−◦β−(x)

1
y(1 − y)

dy

+ Ln−1
ε 1Mε(β+ ◦ α−(x))

b − a

∫ α+◦β−(x)

a/4

1
y(1 − y)

dy

≥ Ln−1
ε 1Mε(β− ◦ α−(x)) + Ln−1

ε 1Mε(β+ ◦ α−(x))

b − a
I

(a,b)
2 (x),

where

I
(a,b)
2 (x) :=

(
2 tanh−1

(√
2
√

1 − 4x/a + b − 2/b

)
+ log

(
a

4 − a

))
.

Combining the above three equations, equation (6.8) and using the definition of
admissible pair, we obtain that equation (6.11) holds. This proves Step 2.

Observe the above two steps imply the proof of the lemma.

Recall from Proposition 6.4, for every i ∈ N,

ga,b
εi

:= gεi
= μεi

(dx)

Leb(dx)
∈ L1([0, 1], Leb),

where we set gεi
(x) = 0 for every x ∈ M \ Mεi

.

LEMMA 6.8. Let (a, b) be an admissible pair. Then, for every i ∈ N:
(1) 0 ≤ gεi

(x) for every x ∈ [0, 1];
(2) gεi

(x) is non-decreasing in the interval [0, (4a2 − a3)/16]; and
(3) gεi

(x) is non-increasing in the interval [a/4, 1].

Proof. Recall that for every i ∈ N and f ∈ C0(Mεi
), Lεi

f = 1Mεi
L(1Mεi

f ). Observe that
if (a, b) is an admissible pair and i ∈ N, then Lεi

: C0(Mεi
) → C0(Mεi

) is an irreducible
compact operator. Moreover, it is readily verified that Lεi

admits a single eigenvalue in its
peripheral spectrum, implying that∥∥∥∥ 1

λn
εi

Ln
εi
1M − αεi

gεi

∥∥∥∥C0(Mεi
)

n→∞−−−→ 0

for some αεi
> 0.
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The lemma follows directly from the above equation in combination with
Lemma 6.7.

Combining Lemmas 6.6, 6.7 and 6.8, we obtain the following result.

THEOREM 6.9. Let (a, b) be an admissible pair. Then the absorbing Markov chain Y
a,b
n

admits a quasi-stationary measure μ on [0, 1] different from δ0.

Proof. For every i ∈ N, let μεi
(dx) = gεi

(x)dx be the unique quasi-stationary mea-
sures for Y

εi
n on Mεi

given by Proposition 6.4 and extend it to [0, 1] in a way that
μεi

(M \ Mεi
) = 0.

Since M1([0, 1]) is sequentially compact in the weak∗ topology, we can assume without
loss of generality (passing to a subsequence if necessary) that the sequence of real numbers
{εi}i∈N is such that limi→∞ εi = 0, μεi

→ μ in the weak∗ topology and limi→∞ λεi
=

λ ≥ (4 − a)/(b − a).
From Proposition 6.5, the probability measure μ is a quasi-stationary measure of

P . It remains to show that μ �= δ0. Suppose by contradiction that μ = δ0. Then,
limi→∞ μεi

([0, (4a2 − a3)/32]) = 1. However, from Lemma 6.8, it follows that

μεi
([0, (4a2 − a3)/32]) ≤ μεi

([(4a2 − a3)/32, 4a2 − a3)/16]) for every i ∈ N.

Taking the limit as i → ∞, we obtain that 1 ≤ μ([4a2 − a3)/32, (4a2 − a3)/16]), which
is a contradiction, implying that μ �= δ0.

Remark 6.10. Observe that without assuming that (a, b) is an admissible pair, the
inductive step presented in Step 2 of Lemma 6.7 no longer holds. Without this lemma,
the core argument in the proof of Theorem 6.9 cannot be applied, and the existence of a
non-trivial quasi-stationary measure for Y

a,b
n becomes unclear.

From now on, we define μa,b = μ as a non-trivial quasi-stationary measure for Yn

on [0, 1] and λa,b = λ its associated survival rate (given by Theorem 6.9). The next
proposition shows that μ is absolutely continuous to the Lebesgue measure.

PROPOSITION 6.11. Let (a, b) be an admissible pair. Then, μ 	 Leb(dx) and 0 < λ < 1.

Proof. We can decompose μ(dx) = μ({0})δ0(dx) + μ′(dx) + μ({1})δ1(dx).
Since δ0 �= μ, we obtain that μ({0}) �= 1. Observe that

λμ({0})δ0(dx) + λμ′(dx) + λμ({1})δ1(dx) = λμ(dx)

= P∗(μ)(dx)

= (μ({1}) + μ{0})δ0(dx) + P∗(μ′).

Since P∗(μ′) 	 Leb(dx), it follows that P∗(μ′)({1}) = 0, implying that

μ({1}) = 0

and

λμ({0}) = μ({0}).
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We claim that λ < 1. Suppose, by contradiction, the opposite that λ = 1, then

μ = (P∗)nμ = μ({0})δ1(dx) + (P∗)nμ′.

Since Pn1(x) → 1{0}�{1}(x) pointwise as n → ∞, we have, by the Lebesgue dominated
convergence theorem,

μ = lim
n→∞ (P∗)nμ = μ{0}δ1(dx) + lim

n→∞ P∗n
μ′ = μ({0})δ0,

which is contradiction since μ({0}) �= 1.
This implies that λ < 1 and therefore μ({0}) = 0. Therefore, μ({0} ∪ {1}) = 0 and

λμ = P∗μ 	 Leb(dx).

From now on, we define

μa,b(dx)

Leb(dx)
=: ga,b = g ∈ L1([0, 1], μ).

The next result summarizes the properties of g.

PROPOSITION 6.12. Let (a, b) be an admissible pair. Then the function g fulfils the
following properties:
(i) g ∈ C0(M);

(ii) g is non-decreasing in the interval [0, 4a2 − a3)/16];
(iii) g is non-increasing in the interval [a/4, 1];
(iv) there exists k > 0 such that k < g(x) for every x ∈ M .

Proof. We divide this proof into 3 steps.
Step 1. We show that g(x) > 0 for every x ∈ (0, 1].
Suppose that there exists x ∈ (0, 1] such that g(x) = 0. Therefore,

0 = λg(x) =
∫ α+(x)

α−(x)

g(y)

(b − a)y(1 − y)
dy −

∫ β+(x∧a/4)

β−(x∧a/4)

g(y)

(b − a)y(1 − y)
dy.

This implies that

g(y) = 0 for all y ∈ I1 := [α−(x), β−(x ∧ a/4)] ∪ [β+(x ∧ a/4), α+(x)] ⊂ (0, 1).

Let x0 ∈ supp(μ) ∩ (0, 1). By the same arguments presented in the proof of Proposition
6.4, we can show that there exist n0 = n0(x, I1) such that Pn0(x0, I1) > 0. Since
Pn0(x0, I1) is a continuous function, there exists an open neighbourhood B ⊂ (0, 1) of
x such that

inf
y∈B

Pn0(y, I1) ≥ 1
2P

n0(x0, I1) > 0.

Therefore,

0 = μ(I1) = 1
λn

∫
M

Pn0(y, I )g(y) dx ≥ Pn0(x, I1)

2
μ(B) > 0,

which is a contradiction. Therefore, g(x) > 0 for every x ∈ (0, 1].
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Step 2. We show (i), (ii) and (iii).
Recall that for every i ∈ N, gεi

(x) = (1/λεi
)1Mεi

Lgεi
(x). This observation, combined

with Theorem 6.8 and Lemma 6.6, implies that

‖Lgεi
‖L∞ = sup

y∈[(4a2−a3)/16,a/4]
Lgεi

(y) for every i ∈ N.

Let

J :=
⋃

x∈[(4a2−a3)/16,a/4]

([α−(x), β−(x) ∧ a/4] ∪ [β−(x) ∧ a/4, α+(x) ∧ a/4]) ⊂ (0, 1),

and observe that J is a compact set. Finally,

0 ≤ gεi
(x) ≤ 1

λεi

Lgεi
(x) ≤ 1

λε

sup
y∈[(4a2−a3)/16,a/4]

Lgεi
(y) ≤ 1

λεi

∫
J

gεi
(y)

(b − a)y(1 − y)
dy

≤ sup
y∈J

1
4y(1 − y)

sup
i∈N

1
λεi

=: C < ∞. (6.13)

Therefore, we obtain a uniform bound for {gεi
}i∈N on L∞(M) for n big enough. For

every δ > 0, consider the map

Tδ : L∞(M) → C0([δ, 1 − δ]),

f → 1[δ,1−δ]Lf .

From the Arzelà–Ascoli theorem, it is readily verified that Tδ is a compact operator
for every 0 < δ < 1/2. From equation (6.13), we obtain that there exists a subsequence
{Lgεin

}n∈N ⊂ {Lgεi
}i∈N and fδ ∈ C0([δ, 1 − δ]) such that

lim
n→∞ ‖TδLgεin

− fδ‖∞ = 0.

Choosing an interval Iδ ⊂ [δ, 1 − δ], observe that

P(x, Iδ) is continuous on x ∈ [0, 1],

it follows that∫
Iδ

fδ(y) dx = lim
n→∞

∫
Iδ

Lgεin
(x) dx = lim

n→∞

∫ 1

0
P(x, Iδ)gεin

(x) dx =
∫

Iδ

λg(x) dx.

Since Iδ is an arbitrary interval subset of [δ, 1 − δ], we obtain fδ = λg|[δ,1−δ]. Using
that for every subsequence of {1[δ,1−δ]Lgεi

}i∈N there exists subsubsequence converging
to 1[δ,1−δ]λg, we obtain that

lim
i→∞ ‖1[δ,1−δ](Lgεi

− λg)‖∞ = 0.

Since {gεi
}i∈N is bounded L∞(M , μ) and g lies in L1(M , μ), the above equation

implies that

Lgεi
→ λg in L1([0, 1]).
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Thus, there exists a subsequence {gεni
}i∈N ⊂ {gεn}n∈N such that

lim
i→∞ Lgεni

= λg μ-a.s. (6.14)

Therefore, for μ-almost every x ∈ M ,

0 ≤ g(x) ≤ 1
λ

lim
i→∞ Lgεni

(x) ≤ C

λ
,

which implies that g is L∞([0, 1]). Since for every i ∈ N:
(1) Lgεni

is non-decreasing in the interval [0, (4a2 − a3)/16]; and
(2) Lgεni

is non-increasing in the interval [a/4, 1],
from equation (6.14) and the continuity of g on (0, 1], we obtain that:
(1) g is non-decreasing in the interval [0, (4a2 − a3)/16]; and
(2) g is non-increasing in the interval [a/4, 1].
The proof is finished observing that g ∈ C0([0, 1]) when imposing g(0) := infx∈(0,a/4) g(x).

Step 3. We show item (iv).
Observe that in virtue of Step 2, it is enough to show that g(0) > 0. Since g is

continuous, it follows that

lim
ε→0

1
ε

∫ ε

0
g(y) dy = g(0).

Since g(x) dx is a quasi-stationary measure of Yn on [0, 1], we obtain that∫ ε

0
g(y)dy = 1

λ

∫ 1

0
P(y, [0, ε])g(y) dy.

It is clear that

P(x, [0, ε]) = 1 for every x ∈ [α+(ε), 1] ⊂ [a/4, 1].

Since g is decreasing in [a/4, 1] and g(1) > 0, it follows that∫ ε

0
g(y) dy = 1

λ

∫ 1

0
P(y, [0, ε])g(y)dy ≥ g(1)

λ

(
1 − α+(ε)

)
= g(1)

λ

(
1
2

− 1
2

√
1 − 4ε

b

)
.

Finally,

g(0) = lim
ε→0

1
ε

∫ ε

0
g(y)dy ≥ lim

ε→0

1
ε

g(1)

λ

(
1
2

− 1
2

√
1 − 4ε

b

)
= g(1)

bλ
> 0.

Combining Steps 1–3, we conclude the proof of the theorem.

To apply Theorem 2.4, we need to show that P admits an eigenfunction lying in
L1([0, 1], Leb). To do this, consider the operator

T : C0([0, 1]) → C0([0, 1]),

f 
→ L(gf )

λg
.

It is clear that T is a Markov operator that is:
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(1) T : C0([0, 1]) → C0([0, 1]) is a bounded positive linear operator;
(2) T 1 = 1.

PROPOSITION 6.13. Let (a, b) be an admissible pair. Then there exists a probability ν 	
Leb such that ν is a fixed point of the operator T ∗ : M(M) → M(M).

Proof. Since T is a Markov operator, it is well known that there exists a probability
measure ν such that T ∗ν = ν (see [10, Ch. 10]).

Let us decompose ν as

ν = α1δ0 + α2ν
′ + α3δ1,

where ν ∈ M1(M) and ν′({0} ∪ {1}) = 0.
Since

L(fg)(0) = 1
b − a

lim
x→0

( ∫ β−(x)

α−(x)

f (y)g(y)

y(1 − y)
dy +

∫ α+(x)

β+(x)

f (y)g(y)

y(1 − y)
dy

)
= log(b/a)

b − a
f (0)g(0) + log(b/a)

b − a
f (1)g(1),

we obtain that

Tf (0) = log(b/a)

(b − a)λ
f (0) + log(b/a)

(b − a)λ

g(1)

g(0)
f (1). (6.15)

From a similar computation, we obtain that

Tf (1) = 1
λg(1)

∫ α+(1)

α−(1)

f (x)g(x) dx. (6.16)

Note that given A ∈ B([0, 1]) such that Leb(A) = 0 and A ⊂ [δ, 1 − δ] for some
δ > 0, then T (1A) = 0. This implies that

T ∗ν′(A) =
∫ 1

0
T ∗1A(x)ν′(dx) = 0,

since ν′({0} ∪ {1}) = 0, we obtain

T ∗ν′(dx) 	 Leb(dx). (6.17)

Combining T ∗ν = ν, and equations (6.15), (6.16) and (6.17), we obtain that ν′ 	
Leb(dx).

Let {fn}n∈N ∈ C0(M) be a sequence of continuous functions such that:
(1) 0 ≤ fn(x) ≤ 1 for every n ∈ N and x ∈ [0, 1];
(2) fn(1) = 1; and
(3) fn(x) = 0 for every x ∈ [0, 1 − 1/n].

Since T ∗ν = ν and fn is continuous, it follows that∫
M

fn(x)ν(dx) =
∫

M

Tfn(x)ν(dx) for every n ∈ N. (6.18)
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The left-hand side of equation (6.18) is equal to∫
M

fn(x)ν(dx) = α2

∫
fn(x)ν(dx) + α3fn(1) = α2

∫
fn(x)ν(dx) + α3,

and the right-hand side of equation (6.18) is equal to∫
M

fn(x)T ∗ν(dx)

= α1

(
log(b/a)

(b − a)λ
fn(0) + log(b/a)g(1)

(b − a)g(0)λ
fn(1)

)
+ α2

∫ 1

0
fn(x)T ∗ν(dx)

+ α3
1

λg(1)

∫ α+(1)

α−(1)

fn(x)g(x) dx

= α1
log(b/a)

b − a

g(1)

λg(0)
+ α2

∫ 1

0
fn(x)T ∗ν(dx) + α3

1
λg(1)

∫ α+(1)

α−(1)

fn(x)g(x) dx.

Taking the limit as n → ∞ in equation (6.18), we obtain that

α3 = α1
log(b/a)

b − a

g(1)

λg(0)
.

Repeating the same argument with the sequence {fn(1 − x)}n∈N ⊂ C0([0, 1]), we
obtain that

α1 = log(b/a)

(b − a)λ
α1.

If α1 = 0, then α3 = 0 and the proof is finished. Suppose by contradiction that α1 > 0,
the above equation shows that 1 = log(b/a)λ−1(b − a)−1. However, we obtain that

g(0) = 1
λ
Lg(0) = 1

λ

log(b/a)

b − a
g(0) + 1

λ

log(b/a)

b − a
g(1) = g(0) + 1

λ

log(b/a)

b − a
g(1),

therefore, g(1) = 0, contradicting Proposition 6.12.

With the above results, we can prove the following two theorems.

THEOREM 6.14. Let (a, b) be an admissible pair. Then the operator P : L1([0, 1], μ) →
L1([0, 1], μ) admits eigenvalue η with respect to eigenvalue λ such that μ({η > 0}) = 1
and ‖η‖L1(M ,μ) = 1. In particular, Y

a,b
n fulfils Hypothesis H1.

Proof. From Proposition 6.13, there exists an eigenmeasure ν(dx) = h(x) dx of T ∗ with
h ∈ L1([0, 1], μ). This implies that for every f ∈ C0(M),∫ 1

0
T (f )(x)h(x) dx =

∫ 1

0
f (x)h(x) dx.

However, since fg ∈ L∞([0, 1]), we obtain that∫ 1

0
f (x)h(x) dx =

∫ 1

0
Tf (x)h(x) dx =

∫ 1

0

L(fg)(x)

λg(x)
h(x) dx

=
∫ 1

0
f (x)

g(x)

λ
P

(
h

g

)
dx.
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Finally, defining η(x) = h(x)/g(x), it follows that Pη = λη. Since

η(x) = 1
λ(b − a)x(1 − x)

∫ bx(1−x)∧1

ax(1−x)

η(y) dy,

we clearly have that η ∈ C0((0, 1)). Moreover, it is easy to see that if there exists x0 ∈ (0, 1)

such that η(x0) = 0, then η(x) = 0 Leb-a.s. in (0, 1), which is a contradiction.

THEOREM 6.15. Let (a, b) be an admissible pair. Consider M = [0, 1] and the Markov
chain Y

(a,b)
n+1 = ωnY

(a,b)
n (1 − Y

(a,b)
n ) absorbed at ∂ = R \ M , with {ωn}n∈N an i.i.d

sequence of random variables such that ωn ∼ Unif([a, b]) on RM with absorption ∂ .
Then we have the following.

(i) Y
a,b
n admits a quasi-stationary measure μa,b with survival rate λa,b such that

supp(μ) = [0, 1] and μ 	 Leb, where Leb denotes the Lebesgue measure on [0, 1].
(ii) There exists ηa,b ∈ L1(M , μ) such that Pηa,b = λa,bη

a,b, ‖ηa,b‖L1(M ,μ) = 1 and
ηa,b > 0 μa,b-a.s.

(iii) For every h ∈ L∞(M , Leb),

lim
n→∞ E

[
1
n

n−1∑
i=0

h ◦ Ya,b
n | τ > n

]
=

∫
M

h(y)ηa,b(y)μa,b(dy) for every x ∈ (0, 1).

(iv) For every h ∈ L∞(M , μ),

lim
n→∞ Ex[h ◦ Xi | τ > n] =

∫
h(y)μ(dy) for every x ∈ (0, 1).

Proof. Note that Theorem 6.14 implies that Y
(a,b)
n satisfies items (H1a) and (H1b) of

Hypothesis H1, also items (H1c) and (H1d) of Hypothesis H1 follow from Propositions
6.1 and 6.12.

Once again, from Propositions 6.1 and 6.12, we obtain that Y
a,b
n satisfies Hypothesis H2

defining Ki := [1/i, 1 − 1/i] for every i ∈ N. Also, since the logistic map 4x(1 − x) is
chaotic in [0, 1] and f : R × [a, b] → R, f (x, ω) = ωx(1 − x) is a continuous function,
so we conclude that m = 1 in Theorem 2.2. Therefore, the conclusions of the theorem
follow directly from Theorem 2.4.

6.1. Analysis of the admissible pairs. Fixing a pair (a, b) ∈ (0, 4) × (4, ∞), it is
relatively easy to check if (a, b) is an admissible pair or not. However, it is complicated to
solve inequality equations (6.7) and (6.8) in terms of (a, b). In this section, we prove that
every (a, b) ∈ [1, 4) × (4, ∞) is an admissible pair.

We start showing that for every (a, b) ∈ [1, 2) × (4, ∞), inequality equation (6.7) is
fulfilled.

PROPOSITION 6.16. For every (a, b) ∈ [1, 2) × (4, ∞), we have that

0 ≤ 1
2

− 1
2

√
1 − 2

b

(
1 −

√
1 − 4x

a

)
≤ a

4
for every x ∈

[
4a2 − a3

16
,
a

4

]
.
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Proof. Note that 1
2 − 1

2

√
1 − 2/b(1 − √

1 − 4x/a) is an increasing function in x. There-
fore, for every x ∈ [(4a2 − a3)/16, a/4], we obtain

0 ≤1
2

− 1
2

√
1 − 2

b

(
1 −

√
1 − 4x

a

)
≤ 1

2
− 1

2

√
1 − 2

b
≤ 1

4
≤ a

4
.

PROPOSITION 6.17. For every b > 4, the following maps

F
a,b
1 (x)

:= 2
(

tanh−1 (√
1 − 2/b + 2/b

√
1 − (4x/b)

) − tanh−1 (√
1 − 2/a + 2/a

√
1 − (4x/b)

))
√

1 − (4x/b)

and

F
a,b
2 (x) := 2 tanh−1 (√−2 + 2

√
1 − (4x/a) + b/b

) + log
(
a/(4 − a)

)
√

1 − (4x/a)

are increasing in x in the interval [(4a2 − a3)/16, a/4].

Proof. It is readily verified that

x 
→ tanh−1
(√

1 − 2
b

+ 2
b

√
1 − 4x

b

)
− tanh−1

(√
1 − 2

a
+ 2

a

√
1 − 4x

b

)
and

x 
→
√

1 − 4x

b

are respectively increasing and decreasing for x ∈ [(4a2 − a3)/16, a/4], implying that
F

a,b
1 (x) is increasing in x in the interval [(4a2 − a3)/16, a/4].

In the following, we prove that F
a,b
2 is an increasing function in [(4a2 − a3)/16, a/4].

Through the change of coordinates y = √
(−2 + 2

√
1 − 4x/a + b)/b, we obtain that to

show that F
a,b
2 is an increasing function, it is enough to show that

F
a,b
3 (y) = log((1 + y)/(1 − y)) + log(a/(4 − a))

by2 − b + 2

is decreasing in x in the interval [
√

(b − 2)/b,
√

(b − 1)/b] ⊃ [
√

(−2 + b)/b,√
(b − a)/b]. Since

dFb
3

dy
(y) = 2(b(y2 − 1)y(log(a/(4 − a)) + log((1 + y)/(1 − y))) + by2 − b + 2)

(1 − y2)(b(y2 − 1) + 2)2 ,

it is enough to show that

b(y2 − 1)

(
y log

(
a

4 − a
· 1 + y

1 − y

)
+ 1

)
+ 2 ≤ b(y2 − 1)

(
y log

(
1 + y

3 − 3y

)
+ 1

)
+ 2

≤ 0 for every y ∈
[√

b − 2
b

,

√
b − 1

b

]
.
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Observe that given y ∈ [
√

(−2 + b)/b,
√

(−1 + b)/b] ⊂ [
√

2/2, 1], we obtain that

by(y2 − 1) log
(

1 + y

3 − 3y

)
≤ 0 and

1 + y

3 − 3y
− 1 ≥ 0.

From [21, equation (2)], it follows that log(1 + x) ≥ x/(1 + x/2) for every x ≥ 0.
Therefore,

2 + b(y2 − 1) + by(y2 − 1) log
(

y + 1
3 − 3y

)
≤ 2 + b(y2 − 1) + by((y + 1)/(3 − 3y) − 1)(y2 − 1)

1/2((y + 1)/(3 − 3y) − 1) + 1

= 2 − b(1 − y2)(4y2 − 3y + 2)

2 − y
. (6.19)

Using standard techniques, one can check that b > 4 and y ∈ [
√

(−2 + b)/b,
√

(−1 + b/b]
then equation (6.19) is less than or equal to 0, implying that F

a,b
3 is decreasing in the

interval [
√

(−2 + b)/b,
√

(−1 + b)/b] for every (a, b) ∈ [1, 2] × (4, ∞) and therefore
F

a,b
2 is increasing in [(4a2 − a3)/16, a/4] for every (a, b) ∈ [1, 2] × (4, ∞).

Using the above proposition, we show that if (a, b) ∈ [1, 4) × (4, ∞), then (a, b) is an
admissible pair.

THEOREM 6.18. If (a, b) ∈ [1, 4) × (4, ∞), then (a, b) is an admissible pair.

Proof. From the definition of admissible pair, we just need to consider the case (a, b) ∈
[1, 2] × (4, ∞). From Proposition 6.16, we obtain that the pair (1, b) satisfies equation
(6.7).

In the following, we show that the pair (1, b) satisfies equation (6.8). Observe that
equation (6.8) is equivalent of showing that F

a,b
1 (x) ≤ F

a,b
2 (x) for every x ∈ [(4a2 −

a3)/16, a/4], where F
a,b
1 and F

a,b
2 are defined in Proposition 6.17. From Proposition 6.17,

it is enough to show that

F
a,b
1

(
a

4

)
≤ Fb

2

(
4a2 − a3

16

)
for every (a, b) ∈ [1, 4) × (4, ∞).

We divide the proof into two steps.
Step 1. 1 We show that for every b > 4, (1, b) is an admissible pair.
Note that for every b > 4,

F
1,b
1

(
1
4

)
= 2

(
tanh−1 (√

(b + 2
√

1 − 1/b − 2)/b
) − tanh−1 (√

2
√

1 − 1/b − 1
))

√
1 − 1/b

≤ 4 tanh−1
( √

2
√

(b − 1)/b − 1 − √
(b + 2

√
(b − 1)/b − 2)/b

1 −
√(

2
√

(b − 1)/b − 1
)(

(b + 2
√

(b − 1)/b − 2)/b
))
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and

F
1,b
2

(
3
16

)
= 4 tanh−1

( √
1 − (1/b) − 1/2

1 − 1/2
√

1 − (1/b)

)
= 4 tanh−1

(
3
√

b − 1
√

b − 2
3b + 1

)
.

Since the function x 
→ 4 tanh−1(x) is increasing, to finish the proof of this step it is
enough to show that√−1 + 2

√
(b − 1)/b − √

(b + 2
√

(b − 1)/b − 2)/b

1 −
√( − 1 + 2

√
(b − 1)/b

)(
(b + 2

√
(b − 1)/b − 2)/b

)
≤ 3

√
b − 1

√
b − 2

3b + 1
for every b > 4. (6.20)

Using standard methods, one can show that the above equation simplifies in showing that

p(b) := 4239b6 − 23868b5 + 31482b4 + 8964b3

− 40401b2 + 23424b − 4096 ≥ 0 for every b > 4.

However, since for every δ > 0,

p(4 + δ) = 4239δ6 + 77868δ5 + 571482δ4

+ 2119716δ3 + 4091679δ2 + 3683256δ + 998384 > 0,

we obtain that equation (6.20) holds. This completes Step 1.
Step 2. 2 We show that (a, b) is an admissible pair for every (a, b) ∈ [1, 2) × (4, ∞).
Fixing b > 4, observe that

(2 − a)F
a,b
1

(
a

4

)

= 2
2 − a√

1 − (a/b)

(
tanh−1

(√
2
√

1 − (a/b) + b − 2
b

)
− tanh−1

(√
2
√

1 − (a/b) + a − 2
a

))
and

(2 − a)F
a,b
2

(
4a2 − a4

16

)
= 2

(
2 tanh−1

(√
b − a

b

)
+ log

(
a

4 − a

))
.

It is readily verified that

2 − a√
1 − (a/b)

and tanh−1
(√

2
√

1 − (a/b) + b − 2
b

)
− tanh−1

(√
2
√

1 − (a/b) + a − 2
a

)

are decreasing functions in a ∈ [1, 2), implying that (2 − a)F
a,b
1 (a/4) is a decreasing

function in a ∈ [0, 1] and

(a − 2)F
a,b
2 ((4a2 − a3)/16) = 2

(
2 tanh−1

(√
b − a

b

)
+ log

(
a

4 − a

))

https://doi.org/10.1017/etds.2023.69 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.69


1854 M. M. Castro et al

is an increasing function in a ∈ [1, 2). From Step 1, we obtain that for every a ∈ [1, 2),

F
a,b
1

(
a

4

)
= (2 − a)F

a,b
1 (a/4)

2 − a
≤ F

a,b
1 (1/4)

2 − a
≤ F

a,b
2 (3/16)

2 − a
≤ F

a,b
2

(
4a2 − a3

16

)
.

This completes the proof of the theorem.

We finish the paper proving Theorem 2.1.

Proof of Theorem 2.1. The theorem follows directly from Theorems 6.15 and 6.18.
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