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Pade approximation and

orthogonal polynomials

G.D. Allen, C.K. Chui, W.R. Madych,

F.J. Narcowich, and P.W. Smith

By using a variational method, we study the structure of the

Pade table for a formal power series. For series of Stieltjes,

this method is employed to study the relations of the Pade

approximants with orthogonal polynomials and gaussian quadrature

formulas. Hence, we can study convergence, precise locations of

poles and zeros, monotonicaty, and so on, of these approximants.

Our methods have nothing to do with determinant theory and the

theory of continued fractions which were used extensively in the

past.

1. Introduction

Consider the formal power series

(1) /(a) = aQ + axz + a ^ 2 + ... .

The [N, M] Pade approximant of / is defined as the unique rational

function P., ,As)/Q., ,,(s) where P., ,. and Q., .. are polynomials of
N ,M N ,M N ,M N ,M

degree no greater than M and N respectively and satisfy

as s -• 0 ; (of. Wall [79]). The collection of all Pade approximants form

a doubly infinite array of rational functions:
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[0, 0] [0, 1] [0, 2] ...

[1, 0] [1, 1] [1, 2] ...

These rational functions were first studied by Frobenius [5], who

systematically investigated their properties and relations. It was Pade

[7 2] who, in his thesis, investigated when approximants of continued

fractions of a function / fit into the above table, now called the Pade

table. Active interest in this subject seems to have ceased about 1900.

In about I960, theoretical physicists and chemists discovered that this

approximation method assisted with high speed computing machines proved to

be very useful in solving problems in scattering theory, turbulence, field

theory, and a host of other applications. The modern fundamental paper in

this subject was written in 1965 by Baker [2], However, the known methods

he uses (such as determinant theory and continued fractions) are very

cumbersome to mathematicians.

It is the intent of this paper to streamline some of these ideas and

in particular to render the subject of series of Stieltjes elementary.

Namely, we do not use determinant theory and continued fractions but

instead use the simple concept of orthogonality.

Series of Stieltjes are examples of (l) where the series comes from

the formal expansion of the integral

(2)

where d$ is a positive measure with infinite support and the coefficients

a. are the n-th moments with respect to d§ . That i s ,

(3) r
n \r

The subject of these series was developed in conjunction with the theory of

continued fractions by Stieltjes ['5, 16]. It is with integrals of the

type (2) and their continued fractions that the subject of orthogonal

polynomials was originated. (For reference, see Szego [77].) Some of the

first papers were due to Tchebyshev ['&], Heine [9], and Markoff [JO].
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That is, associated with respect to the measure a"<j> there is an

orthonormal set of polynomials, with which the continued fraction of (2)

is computed. The connections between these polynomials and the classical

moment problem were developed by Hamburger [6], [7], [S], and Riesz [73],

['4]. Much of this can be found in the recent book of Akhieser [?].

2. Main results

We relate the [N, M] Pade approximant to the solution of the so-

called Schwinger variational principle (of. [?']) as follows: associated

with the formal power series (l), consider the formal series

CO CO 00

(h) F f e , c . . l = 7 2c, a, - 1 J c, e .(a, .-2a, . ] .
0 1 k=0 k fe=O j=0 k 3 k+J k+J+1

Formally we compute the variation of F and set it equal to zero. We

observe the solution, that is, the stationary point, of this form is at

[cQ, a^ ...) = (l, z, z2, ...)

and so, formally, F(l, z, z2, ...) = f(z) . If we "approximate" (it) by

its partial sums

(5> y v • • • > GNJ = X 2%% - X So °k°J[aK+rzak+jJ
when N S 1 , it is clear that [a , ..., a ) is a solution of the

system

j = 0, ..., ff-1 , if the column n-vector 3 = (cn, ..., c.7 n)

satisfies the following matrix equation for each z :

Here, and throughout the rest of the paper, we use the notation
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(8)
AM

aM+2~aM+3
Z

aM+N-l~aM+NZ aM+N~aM+N+lZ

aM+N~aM+N+lZ

aM+2N-2~°M-2N-lZ

where M = 0, ±1, ... and we set a . = 0 for j < 0 . We obtain the
3

following

LEMMA 1. There exists a c
.

satisfying (7).

Ta

We remark that o may not be unique but the matrix product

m8 is unique, independent of solution S of (7), and in fact it

is the [N, N-l] Pade approximant of the formal series / . We include

this in the following more general theorem.

THEOREM 1. The Pade approximants of the formal power series are

uniquely given by

^ I*. W><*> = T aJ +

where 1& ~+. „ denotes a generalized inverse of the matrix K^ „

Mote that is the analogue of f o r

M = N - 1 . When M - N < 0 , the sum in (9) is considered to be zero.

For generalized inverses of matrices, see [4], In the case when K „

is non-singular, this formula reduces to the Baker-Nuttall Compact Formula

[3]. Using the above formula (9) we have the Pade table explicitly for any

formal power series (l).

We now restrict our attention to series of Stieltjes defined by (2)

and (3)- From equation (7), we arrive at the following system of

equations:

r P A t , z)tkd<S>(t) = 0 ,

where k = 0 , . . . , N-l , where J 3 ) i-s given by
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ff-1

Let £j,(*) be the orthonormal polynomials with positive leading

coefficients with respect to d<j> . Then P.. is a constant multiple of

L . From this we arrive at the following

THEOREM 2. The [N, N-l] Pade approximant of the series of

Stieltjes given by (l)j (2)j and (3) is

(10)
; 0

and the error f{z) - [N, N-l](f)(z) is

(11)

COROLLARY 1. For j > - i ,

(12) [N, #+«/](/) (3) = I a,zk +

where {L . } is the orthonormal set of polynomials with positive
3»«

coefficients with respect to the measure i? d$(t) .

We note that L = L , and when j = -1 the sum in (12) is

interpreted as zero.

COROLLARY 2. For j < -1 ,

(13) [S, N+jUfHz) = 2J'+1[^, ff-l](f)(a) ,

where F{z) = 2~( t 7 '+ 1V(z) •

Thus, the entire Pade table for series of Stieltjes can be determined

explicitly in terms of orthogonal polynomials. Consequently, we know the

precise location (and hence interlacing properties) of the poles and zeros

of the Pade approximants. The formula (10) can be modified as a gaussian

quadrature formula as in the following
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COROLLARY 3. For j > -1 , the [N, N+j] Paae approximants are

given by

(1U) [N, N+j](f)(z) = \ a,zk * z^X \ JjULL- ,
k=0 K k=l L~ZX3,N,k

where x • .. . , k = 1, . . . , N , are the zeros of the orthonormal
3 >" >*•

polynomial L. and a . . . . are the corresponding Cotes-Christoffel

numbers.

Since the Cotes-Christoffel numbers a . „ , are positive i t is easy
3 > ̂  s ̂

to see that for each fixed j 2: -1 the sequence {[N, N+j](f)} ,
N = 1, 2, ... , is a normal family in the domain D . = C - R • , where C

J 3
denotes the complex plane and R. denotes the reciprocal of the support of

u

the measure t d<$>(t) . In the theorem to follow, we impose a mild

condition on the measures t d$(t) , namely, a. = 0((2"?+l)! R ) ,
31™

R > 0 , and

Of course, a = a

THEOREM 3 . For each j > -1 , the sequence {[N, N+J](f)} converges

uniformly on each compact subset of D. to the function f in ( 2 ) .
3

In Baker [2], it is only shown that the limit exists, and we have

shown that indeed the limit is the function f . It might be of interest

to point out that our method gives elementary proofs to the following

inequalities. For each x 5 0 ,

(15) [N, N-l](f)(x) < f(x) < [N, N]if)ix)

and

(16) [1, O]if)ix) < [2, l](f)(x) < ... < [N, N-l](f)(x) < ... .

Note that the inequalities are strict, compared with the results in Baker

[2].

In conclusion, we remark that there are many directions of
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generalization of these techniques. The details, related results, and

generalizations will appear elsewhere.
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