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§2. In this section we extend the definition of an E-set, so that it
includes sets of the type

(19) E1E1=wE,E1; 7/<j, ’I:,j=1, 2, ceeey g,

where the only restriction on the E; is that they be non-singular. We
now consider matrices of the type

(20) 4= Za (ei) E (ei)i a (ei) =a (e].’ €2, oo eq)1
E(e)=Eo By .... B,

where each e; takes independently the values 0, 1, ...., » — 1, while
the a (¢;) are either complex numbers or else matrices of order r, the
product a (e;) E (¢;), in the latter case, being interpreted as the direct
product of the two matrices a(e;) and E (¢;). We shall call the
nt? matrices a (e;) E (e;) the terms of A, a(e;) the coefficient of E (e;),
and the set of integers e;, ez, ...., e, the exponents of E (e). We
first prove

TeEEOREM 3. If the matrices E,, E,, ...., E,= E,, form a set of
matrices, of order n?, satisfying (19), then a matriz A of the form (20)
is zero if, and only if, each a (e;) is zero.

If each a(e;) is zero, 4 must be zero, so we have only to show
that, if 4 is zero, every coefficient a (¢;) is zero. Now, corre-
sponding to each term a (¢;) E (e;) there exists a set of ¢ equations

(21) E;E(e)Ei'=w%E(e), j=1,2,....,4¢,
where
(22) di=—e—e—.... —€¢_1+ €1+ .... +e, (modn).

1 This is the continuation of a paper by the same author, pp; 179-188 of this
volume. The numbering of sections, equations, and theorems follows on after that
of the previous paper.
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But, since ¢ is even, the congruences (22) possess a unique
solution; in fact

efEdf-—l_df—2+ s e +(_ l)jdl—df+1+dj+2— s e e + (_ l)qu,
where
0=e¢=n—1,

and the solutions of (22), for two sets of ¢ integers d;, incongruent
modulo 7, are distinct. Moreover, corresponding to each term
a (e;) £ (e;), we can define a set of ¢ matrices by means of the recursion
formula*

n—-1
(23) A;= k2=0w-’~'dj EfA; \E7* j§=1,2,....,q

where 45 =A. We notice that, if

A; 1= 2Zb(e) E (e),
then
A; =nZ' b(e) E (e),

where the accent means that the summation extends only over those
terms of 4;_, whose exponents satisfy the j*" of the congruences (22).
Accordingly

A, = ntZ"ale) E (),

where the summation now extends only over those terms of 4 whose
exponents satisfy all of the congruences (22), and, as there is only
one such term,

A, = ntal(e) E (e).

Now if 4 is zero, 4, must be zero, and as E (e;) is non-singular, a (¢;)
must be zero. Thus the theorem is proved.

CoroLLARY. Under the hypotheses of Theorem 3, the n?® malrices
E (e;) form a basis for the algebra of matrices of order n?, and, in the
more general case, every matrix of order nPr can be written uniquely in
the form (20).

For, by Theorem 3, the n?’? matrices E (¢;)) are linearly inde-
pendent with respect to the field of complex numbers, and so form a
basis for the algebra of matrices of order n?. The second part of the
corollary is now an immediate consequence.

1In this formula E; is written for the matrix ¢ E; where e is the unit matrix of
order 7.
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Before proceeding to determine the coefficients a (e;) of the terms
of 4 in (20), we consider the matrices of the type (20) which satisfy
the equations
(24) AE, = wE; A, 1=1,2,....q,

and also those which satisfy the equations
(25) AE;=E; A, i=1,2,....q.

If a matrix A satisfies (24), then A must consist solely of terms
whose exponents e; satisfy the congruences (22) where each d; has
the value unity. Accordingly, by (23), 4 reduces to the single term
a B, ., where

E,y1=E'E,E;*E, .... B[\ E,.

Hence, if a4, a3, ...., a, form a maximal set of matrices of order r
satisfying (19), the matrices

(26) el a;E,.,, 6=1,2,....,2p; j=1,2,....,8;)

where ¢ is the unit matrix of order r, form a maximal E-set of matrices
of order n?r. In particular, if »9=0 (mod =), then s=1 and
consequently a mazximal E-set of matrices of order nPr, r==0 mod n,
contains exactly 2p + 1 matrices.

Similarly, if 4 satisfies the equations (25), 4 must consist of the
single term af. But the matrices (eZ;)", where j=1,2, ...., g, all
satisfy (25) and therefore (eE;)" =a; E.

In particular, if r=1, we see that the n power, but no lower power,
of every matrix of a maximal E-set of matrices, of order m?, is a scalar
matrix. Thus, if r = 1, by multiplication with suitably chosen scalar
matrices, we can always take the members of a maximal E-set to be
n® roots of the unit matrix. When this is done we shall say that
the set is normalised.

In determining the coefficients a(e;) of A in (20) we first show
that, if E (¢;)=F E, the trace of E (¢;) is zero. For by (21), we have,
denoting w=% K (¢;) £ ! by @,

E (e;) = E;Q; = % Q; B,

where j=1, 2, ...., g. But since the trace of a product of two
matrices is the same as the trace of the product of the matrices in
reverse order, we obtain

trace [E (e;)] = trace [E; @;] = w% trace [@; E;] = trace [@; E;].
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Accordingly the trace of E (¢;) is zero, unless d;=0 (mod =), for
j=1,2,.... g, that is, unless E(¢;) = E. Now the matrix 4 E (¢;)~!
has a (e;) as coefficient of E, so that, if a (e;) is a complex number,

. trace [A E (¢;)~1] = trace [a (¢;) £} =n?a (¢;),
or
(27 a(e;)) = n~?.trace [4 E (e;) 71].

Formula (27) must be somewhat modified when a (e;) is a matrix
of order r. Thus, if the direct product a(e;) E (¢;) is written as a
matrix whose elements are matrices of order »?, it takes the form
(@jr B (¢;)), where aj, is the element in the j* row and A" column
of a(e;). Accordingly the matrix 4 E (e;)~! has the form (b;;) where
each matrix by is a matrix of order »?. Then by a proof similar
to that of the simpler case, it follows that formula (26) must be
replaced by

a;, = n~? . trace [by],

where j and k take the values 1, 2, .. .. 7.

If the matrices &; form an K-set, so do the matrices ¢;=B~1 E,B,
where B is any non-singular matrix, and the two sets are said to be
simtlar. Conversely we shall now prove

THEOREM 4. If E;and G, i=1, 2, ...., 2m, are any two normalised
E-sets of matrices of order nPr, then the two H-sets E; and G; are
stmilar.

We shall prove this theorem by showing that the set E; and the
set G, are both similar to the same E-set. We know that there exists
a non-singular matrix 4, such that A-'E;4 = F;, where F, is
defined by (3) when s = 1 and by (9) when s> 1. Let D denote the
diagonal block matrix

diag (Fig, Foo F1a, FaoFog Froy oovoy Fyy 0 Fry_p5.... Fy, e);

this means that, when D is written as a matrix of matrices, all the
component matrices are zero, except those in the principal diagonal,
which are the matrices Fip, Fos Fyg, etc. Then it is easily verified
that

D-1F,D=F =¢e-Q, D-1F,D=c¢e-Q,,

where (); and Q, are defined by (7). It now follows from (26) that
D-'F,D=A, - Q7'Q,, s=3,4,....,2m,

where the 2m matrices 4, form an E-set of matrices of order ¢/n. If
m = 1, we need proceed no further, since E; and E, have been shown
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to be similar to e-Q; and e-Q, respectively. If m > 1, we apply the
same process to the matrices A, and show that the set A4, is similar
to the set

¢ Ql’ e Qz, Bs_z- Ql—l Qz, §=3,4, ... .y 2(m — 1),

where ¢’ is the unit matrix of order ?/n? and the matrices B, form an
E-set of matrices of order ¢/n%. ~ Thus, if m = 2, the set E,, E,, Es, E,
is similar to the set e-Q;, e-Q,, (/- Q) - Q71 Qy, (¢ Qy) - Q71 Q. I,
however, m > 2, we proceed as before with the matrices B, and
finally, in m steps, arrive at a standard E-set, expressed in terms of
the matrices Q; and €),, similar to the set E,. In the same manner
it can be shown that the set G, is similar to the same standard E-set,
so that the two sets E; and @G; are similar. As an immediate conse-
quence we have the following corollary:

Two maximal normalised E-sets of matrices of order t, where t is divisible
by n, are stmilar.

§3. Groups of periodic collineations. The matrices in any E-set
consisting of 2m members generate, under multiplication, a group of
order n®?®, if two matrices, which differ from each other only by a
scalar factor, are considered to represent the same element of the
group. Such a group is simply isomorphic with a group of collinea-
tions in a space of one dimension less than the order of the matrices
in the E-set. Since the n** power of each matrix is a scalar matrix,
the corresponding collineations are periodic, of period a divisor of
n, while the fact that any two matrices of the group are semi-
‘commutative means that the two corresponding collineations are
commutative. A group of collineations will be said to be periodic of
period =, if at least one of its members has an actual period n. We
shall now determine the structure of all maximal groups of commu-
tative periodic collineations, of period %, in a space of {— 1
dimensions?.

If T, and T, are two members of a group of commutative
collineations of period n in a space of { — 1 dimensions, T; and 7
determine uniquely two matrices E, and E, of order {, satisfying the
two equations

(28) Ei=E;=E,
(29) E1 E2 = kEQ E].

1 This problem was solved for n =2 by E. Study, Gittinger Nachrichten (1912),
452-479.
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But it follows from (28) that E} E, = E, E7, and from (29) that
E} E, =k E,E}?. Hence k is an n* root of unity. Accordingly, if
Ty, Ty, ...., T, are the members of a commutative group of periodic
collineations of period =, the elements E,, E,, ...., E; of the corre-
sponding group of matrices must satisfy the two conditions

(30) E,’LL = }\i E, Ei EJ = w’iiEj Ei!

where w is a primitive n* root of unity and the r;; are positive integers.
If £, E,, ...., E, are generators of the group, A;, A, ...., A, may all
have the value unity but then the values of }; for j > s, are determined.
We shall call such a group an E-group and notice that to every
E-group there corresponds a group of periodic commutative collinea-
tions and vice versa.

We shall require the following lemmas.

Lemma 1. In every E-group there exist two matrices E, and E,, such
that B, B, = pliy, I, while B, B, =p" E, B, and E, E, = p*- E, E, for
every other matrix E; in the group, where p is a primitive m* root of
unity, m a divisor of n, and ky, ky are integers.

If r = ryp is & minimum value for the exponents r; of w in (30),
then ry; and ry;, are integral multiples of . For, if r; = wr + ¢, where
0<t<r, then

E\E;YE;=pE;"E; E,;

since E; " E; belongs to the group, ¢{ must be zero, as otherwise r
would not be a minimum value of r;;. Similarly it can be shown that
r9; must be an integral multiple of r. But w” = p where p is a primitive
m* root of unity and m is a divisor of n; accordingly the lemma is
proved.

Levma 2. In every maximal E-group, in which not every pair of
matrices is commulative, there exist two mairices E; and E;, such that
E.E;=pl; E;, E] = E] = E, where p is a primitive m™ root of unity.
By lemma 1 there exist in the E-group two matrices £, and E,
such that K1 E,=pE,E, and E} =E}=E. Accordingly E,=E;'pE,E,,
so that the latent roots of Z, are the same as the latent roots of pE,.
As each latent root of E, is an n'® root of unity, the latent roots of
E, can be arranged into sets w;, w;p, ...., w;p" (1 =1,2,....,¢m)
where w; is an 2™ root of unity. If w; = p®w; for any integral value
of s, the " of these sets coincides with the k**, so that two sets
either coincide or else have no member in common. Let the set
Wi, WP, ...., w;p" 1 be repeated exactly ¢; times; then, if R, is the

https://doi.org/10.1017/50013091500027310 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500027310

SETS OF SEMI-COMMUTATIVE MATRICES: Part II 237

diagonal matrix (1, p, p% ...., p"~!) and K; = w; e;- R,, where ¢; is the
unit matrix of order ¢;, the latent roots of E, are the same as the
latent roots of the diagonal block matrix

(31) F]_:(KI, Kg, ve ey Kq), tl+t2+....tq=t/lm.

Moreover, if =57, no latent root of K; is the same as a latent root
of K;, or differs from a latent root of K; by an integral power of
p. Accordingly there exists a non-singular matrix D such that
DE, D = F;, where F,is defined by (31). If, now, F, is written
as (F;;), where 7 and j take the values 1, 2, ...., ¢, F;; being a matrix
of t;m rows and ¢;m columns, then it follows from the equation
F, Fi=p? F;, F, that K, F;;=p? F;; K;. But, if 154, since K; and p? K/
have no latent root in common, F;; is the zero matrix, so that ¥, is a
diagonal block matrix (Fy, Fg, ...., F,). In particular F, is the
diagonal block matrix (M,, M,, .... M,), where K, M;=pM K,
1 taking the values 1, 2, .... ¢.

By methods similar to those used in the proof of theorem 4, we
can find a non-singular matrix ¢ such that

G_lKiG=Ki, G_lMiG= Ni=Bi'.R2, G_lFiiG:‘F’ii,

where B; is a diagonal matrix whose elements are »n'* roots of unity,
and R, is the square matrix of order m,

60 00 . . . 01
1P 00 . . . 0
01 0 . . . 00O
Rz—"“—-
o o0 0 . . . 00
000 0 . . . 1 0]

Moreover G can be chosen in such a manner that B, R, becomes a
diagonal block matrix (S, Ss, ...., §,), where each matrix §; is of
the form w;é€’;+- R, and no latent root of §;is the same as a latent
root of §; or differs from a latent root of §; by a power of p.
Accordingly, since F';; N; = p? N, F’;;, by a proof similar to the above,
F’;, must also be a diagonal block matrix. We have thus shown
that the matrices E;, of the original E-group, can be reduced by the
same similarity transformation to the diagonal block matrices
Ti=Tu, T3, ....,Ty), where T;= wje; - Ry, Toj=¢;w’;- Ry, ¢; being a
unit matrix of some order. But the matrices 7", =(T"11, T"12, . . . ., T"1)
and Ty = (T"n, T's, .. .., T's), where T'y; = ¢;- B; and T"y; = ¢;- R,,
are members of any maximal E-group, in which the matrices 7'; and
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T, lie. For, from the equations 7, T, = o T, T and T, To=p* T, T,
it follows immediately that 7. 1", =p 1", T and T, T’y = p*- T, T,.
Since (T"))* = (T"y)" = E and 7", T", = pT', T",, we may take, for the
matrices £; and E;, the matrices in the original E-group, which are
similar to 7'y and 7', respectively. Thus the lemma is proved.

If all the matrices in an E-group of matrices of order ¢ are
commutative, the group must be simply isomorphic with a subgroup
of the group of order n!~!, whose component matrices are all diagonal
matrices with »'" roots of unity as their elements, the first element
in each matrix being unity. Thus the only type of maximal E-group,
tn which all the matrices are commutative, is one of order n‘~1; in this
case every matrix can be reduced simultaneously by a similarity
transformation to diagonal form.

If, however, all the matrices in a maximal E-group are not
commutative, the minimum value r of 7; in (30) is less than =, so
that, by lemmas 1 and 2, there exist in the E-group two matrices
E, and E,, such that E, E, = pE,E, and E} = E} = E, where p is a
primitive m™ root of unity. Then, by Theorem 4, E, and E, are
similar to the matrices ¢’ R; and e’ R,, where ¢’ is the unit matrix
of order ¢/m; R, and R, are then obtained from Q, and Q, respectively
by replacing w by p and = by m. Moreover R, R, = pR, R,; if
E\E, =p" E. B, and E, E;, = p® E; E,, then E, is similar to the matrix
A; - R} R, where e; and e, are determined uniquely from d, and d, by
congruences similar to (22). Accordingly the matrices 4; must form
an FE-group of matrices of order t/m, which must also be maximal
since the original F-group is maximal. Thus the original E-group is
the direct product of one maximal E-group of matrices of order t/m
and another of matrices of order m. If we denote the group of order
m?, generated by R; and R,, by G (m), we may say that the original
E-group is of type H x G'(m), where H is a maximal E-group of
matrices of order ¢{/m. Thus the problem of determining all E-groups
of matrices of order ¢, is reduced to that of determining all E-groups
of matrices of order ¢/m.

But the matrices in a maximal E-group are either all commuta-
tive, in which case H is of order #¥m—1, or else H is the direct product
of a group ¢ (m,;) and a group H,, where H, is a maximal E-group of
matrices of order f{/mm,. Thus, by repeated applications of this
process, we are led to the conclusion that if my, my, ...., my; are k
divisors (not necessarily distinct) of n, and if

(32) : t=mymg .... M8
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where s 1s a positive integer, then there exists a maximal E-group
G (my, my .... my) of matrices of order t, which is the direct product of a
group G (m,) of order m3, a group G (my) of order m3, ...., a group
G (my) of order mi and a group H of order n*~1, so that the order of
Q(my, mg, ..., m) 18 mimi .... min*~1l. Moreover every mazximal
E-group of matrices of order t is simply isomorphic to a group
G (my, mg, . ..., my) for some set m; of divisors of n which satisfy (32).

In the group G (m,, my, ...., m;) the s*"~! matrices in the sub-
group H are permutable with every matrix in the group, while no
other matrix in G (m,, my, ...., m;) has this property. Moreover,

since the matrices in H can all be reduced simultaneously to diagonal
form, it follows that the matrices in any Z-group, simply isomorphic
to G (my, my, ....,m;), can be reduced simultaneously by a similarity
transformation to diagonal block matrices, whose blocks are matrices
of order ¢/s.

We now proceed to show that two different sets m,; of divisors
of =, both of which satisfy (32) with the same value for s, do not
determine two groups G (m,, ms, ...., m;) which are necessarily
distinect.

To do this we consider a group G which is the direct product of
two groups G (m;) and G (m;). If wis the greatest common divisor of
m; and m;, so that m; = wg and m; = wf, where g and f are relatively
prime, the least common multiple of m; and m; is wfg =m. Then, if
p is a primitive m™ root of unity, p/ is a primitive m;® root of unity,
and p’ a primitive m;® root. Accordingly in G (m;) there exist two
matrices E; and E, and in G (m;) two matrices F, and Fj,, such that
E\E, =pl'EE,, F1Fy=p'F, F,, E,F; = F;E;, where ¢ and j take
the values 1, 2. Now, since f and g are relatively prime, there exist
two integers a and B satisfying the equation af + Bg = 1. Hence
the two matrices E, F, and E5 F5, which both lie in G, satisfy the
condition

(By Fy) (B3 F8) = p (B3 F%) (By Fy).

Accordingly, by our previous results, G must be the direct product
of a group G (m) and some other group, which must necessarily be
G (w). Thus the integers m; in G (my, mg, .. .., m;) can always be
chosen in such a way that, if m; and m; are any two of them, then
either m, is a divisor of m; or else m; is a divisor of m;. Moreover, if
the group G(r) x @ (s) is simply isomorphic with the group G(') X G(s),
where s is a divisor of r and s’ of 7/, then r =" and s =s". For,
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if not, we may suppose r > ¢’; then in G (r) X G (8) there are at least
two elements of order r, while in G (r') XG (s’) every element is of
order not exceeding #’; and this is impossible. Hence we have the
following result:

Every maximal E-group of matrices of order t is simply isomorphic to
one and only one group G (my, my, ...., my), where m; is a divisor of
mi_, and 1 =2,3, ...., k.

It should be noted that m,; is a divisor of m;_;, not a proper
divisor, so that the case in which m,; coincides with m;_, i8 not
excluded.

As an alternative form of the last result we have the following:
Every maaximal E-group of matrices of order t is simply isomorphic to
one and only one group G (my, my, ...., my), where each m; 18 a power
of a prime.

For, if o and b are two relatively prime integers whose product
is m, it is easily shown that the group @G (m) is the direct product of
two groups G (a) and G (b). Therefore, if m = pf: p% .... pir, where
Pi1, P2y - - - -, Py, are the distinct prime factors of m, G (m) is the direct
product of A groups G (p%).

In conclusion we state our results as a theorem on groups of
commutative collineations of period =:

THEOREM 5. Every maximal group of commutalive periodic collinea-
tions of period n in a space of t — 1 dimensions is simply isomorphic to

an E-group of type G (my, ma, ...., my), where the m; form a set of
divisors of n satisfying (32), and such that m; is a divisor of m;_,,
1=2,3,...., k. Corresponding to each group G{m,;, ms, ...., my),

satisfying the above conditions, there is one and only one projectively
distinct collineation group.
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