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SOLVABLE AND NILPOTENT SUBGROUPS OF GL(ny q«) 

THOMAS R. WOLF 

0. Introduction. Let V ?£ 0 be a vector space of dimension n over a 
finite field J S of order qm for a prime q. Of course, GL(n, qm) denotes the 
group of JMinear transformations of V. With few exceptions, GL(n, qm) 
is non-solvable. How large can a solvable subgroup of GL(n, qm) be? 
The order of a Sylow-g-subgroup Q of GL(n, qm) is easily computed. But 
Q cannot act irreducibly nor completely reducibly on V. 

Suppose that G is a solvable, completely reducible subgroup of 
GL(n, qm). Huppert ([9], Satz 13, Satz 14) bounds the order of a Sylow-
g-subgroup of G, and Dixon ([5], Corollary 1) improves Huppert's 
bound. Here, we show that |G| ^ qsnm = \V\3. In fact, we show that 

|G| ^ |F|V(24)1 / 3 

where 

a= (31og(48)+log(24) ) /31og(9) . 

We also show that a bound of the form £>|17|ô exists only when 8 ^ a. 
Since 11/5 < « < 9/4, a quadratic bound is not possible. 

Suppose now that G is a nilpotent, completely reducible subgroup of 
GL(V). We show that \G\ ^ |7|ty2 where 0 = log (32)/log (9) (note 
that 3/2 < 13 < 8/5). This last problem deals with Burnside's "other" 
paqh theorem, which states: 

THEOREM A. Let G be a group of order paqb for distinct primes p and q 
and for positive integers a and b. If pa > qb, then Op(G) 9e 1 unless 

(i) p is a Mer senne prime and q = 2; 
(ii) p = 2 and q is a Fermât prime; or 

(iii) p = 2 and q = 7. 

Coates, Dwan, and Rose [3] noted that Burnside's proof [2] was incorrect 
and gave a correct proof. In fact, Burnside omitted exception (iii). This 
exception is necessary, because an elementary abelian group of order 78 

is acted upon faithfully by a group of order 223. Here, we show that if 
pa > qW/2t then Op(G) ^ 1. This handles the exceptional cases. 

In a minimal counter-example to Theorem A, G has a normal elemen-
tary-abelian Sylow-g-subgroup, that is acted upon faithfully by a Sylow-
^-subgroup of G. Consequently, Theorem A is equivalent to a number-
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theoretic statement about prime divisors of certain integers. The method 
of proof in [3] is essentially number-theoretic. We will show that by a 
slight strengthening of Theorem A (i.e., replacing pa > qb by pa > qb/2), 
the result may be proven by a short group-theoretic proof. This improve­
ment and method is known for both p and q odd (see Exercise 6.16 of 
[11]). We also mention that Glauberman [7] takes a different approach 
to Burnside's other paqb theorem by comparing the orders of class 2 
nilpotent subgroups of G. 

All groups considered here are finite. 

1. Burnside's other paqb theorem. A 2-group S is dihedral (quater­
nion, semi-dihedral) if 5 contains a cyclic subgroup A = (a) of index 2 
and order 2n with n at least 2 (2, 3 respectively), and if there is an ele­
ment y G S of order 2 (4, 2 respectively) such that av = am where 
m = —1 ( — 1 , - 1 + 2n_1 respectively). The following theorem is due 
to P. Hall. 

1.1. THEOREM. Let P ^ 1 be a p-group for a prime p and assume that 
every characteristic abelian subgroup of P is cyclic. Let S ^ Z(P) with 
\Z\ = p. Then there exist F, S ^ P such that 

(i) S ^ Cs(F), FS = P,and FC\S = Z; 
(ii) 5 is cyclic, or p — 2 and S is dihedral, quaternion, or semi-dihedral; 

(iii) F — Z or F is extra-special; and 
(iv) exp(F) = p or p = 2. 

Proof. Note that Z is unique. See Satz III. 13.10 of [10] for a proof. 

The following may easily be proved as a corollary of Theorem 1.1 (see 
Theorem 5.4.10 of [8]). 

1.2 THEOREM. Let P be a p-group for a prime p. Assume that every 
normal abelian subgroup of P is cyclic. Then P is cyclic; or p = 2 and S is 
dihedral, quarternion, or semi-dihedral. 

A prime g is a Fermât prime (Mersenne prime, respectively) if there 
exists an integer n ^ 1 such that q = 2n + 1 (q = 2n — 1, respectively). 
Proposition 1.3 is well-known and the proof is omitted. 

1.3 PROPOSITION. Let p and q be primes, and let m and n be positive 
integers. If qn — 1 = pm, then 

(i) p = 2 and q is a Fermât prime; or 
(ii) q = 2 and p is a Mer senne prime. 

1.4 PROPOSITION. Let q be a prime, and let m and n be positive integers. 
Ifqm - 1 = 2*-3, then 

(i) m = 1; or 
(ii) m = 2 and q is 5 or 7. 
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Proof. Assume that m > 1 and note that q is odd. Let t = 1 + • • • 
+ qm~\ so that / divides 2" -3. If m is odd, then t is odd and thus t = 3. 
This is a contradiction. Hence m = 2k for an integer k. Then 
2*.3 = (qk - l)(qk + 1). Since 4 f (g* - 1, g* + 1) and since q is odd, 
it follows that 6 = qk db 1. Conclusion (ii) now holds. 

1.5 Definition. We say that the ordered pair (p, q) of primes p and 
q satisfy Property B if none of the following occurs: 

(i) p is a Mersenne prime and g = 2; 
(ii) p = 2 and g is a Fermât prime; or 

(iii) p = 2 and g = 7. 

For the remainder of this section, we will let /3 = log(32)/log(9) 
(i.e., 9* = 32). 

1.6 THEOREM. Let V 9e 0 be a faithful, completely-reducible £F\G\-
modulefor a nilpotent group G and afield S^ of characteristic q ^ 0. Then 

(a) \G\ Û \V\e/2;and 
(b) If G is a p-group and if (p, q) satisfies property B, then \G\ ^ | V\/2. 

Proof. We may assume that \V\ < oo, and we work by induction on 

win 
Step 1. F is an irreducible G-module. 
Otherwise, write V = V\ 0 . . . 0 Vm for irreducible G-modules 

Vi T^ 0 with m ^ 2. Let Cz = C^F*) for 1 S i ^ m. Induction yields 
that 

\G/d\ ^ | V^/2 for U i g w , 

and in part (b) that 

\G/d\ S 17*1/2 for 1 ^ i £ w. 

Since P\ C? = 1, G is isomorphic to a subgroup of G/Ci X . . . X G/Cm. 
Then 

|G| ^ n|G/C f | g n |F , |V2 ^ \V\e/2m < |7 |V2. 

Similarly, we find that |G| ^ |F|/2TO < \V\/2 for part (b). 
Step 2. VN is homogeneous for all N < G. 
If not, choose N <\ G maximal such that V is not a homogeneous 

iV-module. Write VN = W\ © . . . 0 Wn where n è 2 and the W, are 
the homogeneous components of F as an TV-module. Let M/N be a chief 
factor of G. Since VM is homogeneous, Clifford's Theorem (3.4.1. of [8]) 
yields that M/N transitively permutes the Wt. Since M/N is an abelian 
chief factor of G, we must have that M/N acts regularly on the Wt. Thus 
n = \M:N\. Let I be the stabilizer in G of Wu so that MI = G and 
MC\I = N. Let C = C(M/N) and B = C H J < if/ = G. Since 
i? ^ / a n d JB centralizes M/N, eachF, is left invariant by B. Since N ^ B, 
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we have that V is not a homogeneous ^-module. The maximality of N 
yields that B = N and C = M. 

Since G is nilpotent and M/N is a chief factor in G, we have that 
M/N ^ Z(G/N). But CG(M/N) = C = M. Thus G = M. By Clifford's 
Theorem, each Wi is a completely reducible iV-module. As in Step 1, 
induction yields that |7V| ^ | V\P/2n. For part (b), induction also yields 
that \N\ ^ \V\/2n. Since \G\ = n\N\ and since 2x~l à x for x ^ 2, Step 
2 is now completed. 

Step 3. Conclusion. 

Since F^ is homogeneous for all N < G; it follows that every normal 
abelian subgroup of G is cyclic (see Theorem 3.2.3 of [8]). Since G is nil-
potent, Theorem 1.2 implies that the Sylow-subgroups of G are cyclic, 
dihedral, quaternion, or semi-dihedral. In any case, there exists a cyclic 
1 5* U < G with index 1 or 2. Furthermore, G = U iî and only if G is 
cyclic. Since F is a faithful homogeneous [/-module, U permutes the 
non-zero elements of V in k orbits of size | U\ for some integer k. In par­
ticular, \V\ - 1 = k\U\. 

Since x3/2 — 2x + 2 ^ 0 for x ^ 2 and since 0 > 3/2, we have that 

|E/| ^ \V\ - 1 g |F|3 / 2 /2 S \V\*/2. 

To prove part (a), we may assume that G is not cyclic, that \G:U\ = 2, 
and that 2\\U\. Since x3/2 — 4x + 4 ^ 0 for x ^ 16, we have that 
| F | < 16 or that 

|G| S 2\U\ S 2(\V\ - 1) ^ |F |3 / 2 /2 £ |7 |V2. 

To prove (a), we may assume that | V\ < 16. Since 2\\U\ and I V\ — 1 = 
fe|f/|, we have that \V\ is odd. Because GL(V) is not cyclic and because 
\V\ < 16, we must have that I V\ = 9. But then |[/| |8 and |G| = 2\U\ ^ 
16 = |F|V2. This proves part (a). 

We now have that G is a p-group, that (p, q) satisfies property B, that 
\G: U\ ^ 2, and that \V\ - 1 = k\U\. Write \V\ = qm and \U\ = pn for 
some positive integers n and m. If k = 1, then £n = çm — 1 and Proposi­
tion 1.3 yields a contradiction to the hypotheses. Thus k ^ 2. If G = Z7, 
then 

|G| = \U\ = ( |7 | - l ) / * g | 7 | / 2 . 

We may assume that /> = 2 = |G: t/|. If * = 2, then gw - 1 = | V\ -
1 = |G|. Then g is a Fermât prime, contradicting the hypotheses. If 
k è 4, then 

|G| = 2 | £ / | = 2(| 7 | - 1)A ^ |F | /2 . 

We may assume that * = 3. Then qm - 1 = | V\ - 1 = 3|f/|. Since the 
hypotheses imply that ç is not 5 nor 7, Proposition 1.4 yields that m = 1. 
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But then GL(V) is cyclic. This implies tha t G = U, a contradiction. This 
completes the proof. 

We next show tha t the bound in par t (a) of Theorem 1.6 is in some 
sense " a best bound' ' . 

1.7 PROPOSITION. Suppose that \G\ ^ C\V\y whenever V and G satisfy 
the hypotheses of Theorem 1.6. Then P S 7- Furthermore, if fi = y, then 
1/2 S C. 

Proof. Given a group H and a faithful irreducible / / -module V, we 
define a group H* and a i?*-module V* as follows. We let F* = V © V 
and let H* be the semi-direct product of H X H with a cyclic group of 
order 2 t ha t permutes the two copies of H. Then if* acts faithfully and 
irreducible on V in the obvious action. 

Let Vo be a vector space of dimension two over a field of order 3. Then 
let H0 6 Syl2(C7L(F0)), so tha t \H0\ = 16 and H0 acts irreducibly on Vo. 
For each n ^ 1, we inductively define a group Hn and an irreducible 
i7w-module Vn by le t t ingi l„ = (Hn^)* and (F n ) = (F n_i)*. For each n, Vn 

is a faithful irreducible ^ - m o d u l e . Then 

l og ( | 7» | ) = 2 M o g ( 9 ) a n d 

log {\Hn\) = 2n log (16) + (1 + 2 + . . . + 2»-1) log (2). 

For any positive number 5, we have tha t 

log (\Hn\/\Vn\*) = 2Mog (32/90) + log (1 /2) . 

If 9Ô < 32, then log ( | iJw | / |Fn |5) -> oo as n -> oo. Since 9^ = 32, the 
proposition follows. 

The proof of Proposition 1.7 shows tha t the bound in Theorem 1.6(a) 
occurs for infinitely many values of | V\ (namely, for log (| V\) = 2n log (9) 
and w ^ l ) . 

Burnside's other paqb theorem now follows as an easy corollary of 
Theorem 1.6(b). Also, an alternative bound can be given to handle the 
exceptional cases. 

1.8 COROLLARY. Assume that G is a group of order paqb for distinct 
primes p and q and positive integers a and b. Then 

(a) If pa > qbf>/2, then Op(G) ^ I; and 
(b) If pa > qb/2 and if (p, q) satisfies property B, then Op(G) 7* 1. 

Proof. Assume tha t Op(G) = 1. By Burnside's "well-known" paqb 

theorem [1], G is solvable. T h u s 0Q(G) 7^ 1. Let Q = 0Q(G) and 
C = CG(Q) < G. Then 0QP(CQ) = Q X Po for a normal ^-subgroup P 0 

of G. Since Op(G) = 1, we have tha t P 0 = 1 and GG(Q) ^ Q. T h u s a 
Sylow-£-subgroup P of G acts faithfully on Q. T h u s P acts faithfully on 
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(?/$((?)> where $(Q) is the Fitting subgroup of Q (see Theorem 5.1.4 of 
[8]). But Q/$(Q) is elementary abelian, and thus may be viewed as a 
faithful P-module over the field of g-elements. Since (\P\, q) = 1, 
Q/$(Q) is a completely reducible P-module by Maschke's Theorem 
(3.3.1 of [8]). Theorem 1.6 now implies that 

\P\ ^ |<2/S(<2)|72^c&72; 

and for part (b) that \P\ ^ qb/2. 

2. The F i t t ing subgroup . An irreducible ^[Gj-module W is quasi-
primitive if W is a homogeneous iV-module for all TV < G. In this section, 
we look at the structure of a solvable group G that has a faithful quasi-
primitive module. Some of the structure of G is known, particularly when 
^ is algebraically closed (see [14] or Chapter 4 of [6]). The following is 
Lemma 6.5 of [12]. We include a proof, since the lemma is used frequently. 

2.1 LEMMA. Assume that Z ^ Z(E), that Z is cyclic, and that E/Z is 
abelian. Let A S Aut (E) with [E, A] ^ Z and [Z, A] = 1. Then \A\ 
divides \E:Z\. 

Proof. We view Horn (E/Z, Z) as a group with multiplication defined 
pointwise. For a Ç A, define <j>a'.E/Z —» Z by <j>a(Zx) = [x, a]. Since 
[Z}A] = 1 and since [E, A] ^ Z ^ Z(E), 0a is well-defined and 
0a G Horn (E/Z, Z). Furthermore, a —>• 0a is an isomorphism of A into 
Horn (E/Z,Z), because [E, E, A] = 1 and A acts faithfully on E. It 
suffices to show that 

|Hom (E/Z, Z)\ | \E/Z\. 

Write E/Z = Dx X . . . X Dn for cyclic groups D*. Then 

Horn (E/Z, Z) = n Horn (Z>„ Z). 

It suffices to show |Hom (Pi, Z) | | |Z>i|. Since Di and Z are cyclic, it 
follows that |Hom (Du Z)\ = (\DX\, \Z\). 

We need some elementary facts about certain 2-groups. We denote the 
Frattini subgroup of G by S(G). 

2.2 PROPOSITION. Let P be a dihedral, quarternion, or semi-dihedral 
2-group. Then 

(a) |P /$ (P) I = 4 and |Z(P) | = 2; and 
(b) / / P is not isomorphic to the quaternion group Qs of order 8, then P 

has a characteristic, cyclic subgroup of index 2. 

Proof. If P is dihedral (quaternion, semi-dihedral), then, by definition, 
P has a cyclic subgroup A = (a) of index 2 and order 2n with n at least 
2 (2, 3 respectively). Furthermore, there is an element y £ P of order 2 
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(4, 2 resp.) such that ay = am where m = - 1 ( - 1 , - 1 + 2n+1 resp.). 
Evidently Z(P) ^ 4 and |Z(P) | = 2. Since $(P) is the smallest U < P 
such that P/U is elementary abelian, it follows that <£(P) = (a2). This 
yields part (a). 

Direct computation shows that each element of P — A has order at 
most 2 (4, 4 resp.)- Assume that P is not isomorphic to Q&. Then A con­
tains (and is generated by) all elements of P with order at least 4 
(8, 8 resp.). Thus A is characteristic in P. 

2.3 LEMMA. Assume that every abelian normal subgroup of G is cyclic. 
Let 1 y* P be a normal-p-sub group of G for a prime p.Ifp = 2, then assume 
that G is solvable. Let Z ^ Z(P) with \Z\ = p. Then there exist E, T <j G 
such that 

(i) ET = P,EC\T = Z, and £ ^ CG(T); 
(ii) P = Z or E is extra-special; 

(iii) p = 2 or exp (P) = £; 
(iv) P is cyclic, or p = 2 and P is dihedral, quaternion, or semi-dihedral; 
(v) If T is not cyclic, then there exists U < G with U cyclic, U ^ T, 

and \T:U\ = 2; 
( vi) If Z ^ D ^ E with D/Z chief in G, then D is non-abelian; and 
(vii) If E > Z, there exist Ei, . . . , En < G such that each EJZ is a 

chief factor of G, Et ^ CG(Ef) for i ^ j , and 

E/Z = EJZ X . . . X EJZ. 

Proof. We use induction on |P|. We note that Z is unique, since 
Z(P) < G. 

Assume conclusions (i)-(vi). Here we prove (vii). Assume that 
E > Z and let EJZ be a chief factor in G. Since E\ is non-abelian, 
Z = Z(£i ) . Let A = CG(Z) ^ P , so that A < G. Let d = CA (EJZ) 
and let P i = CA(Pi). Then CJB\ acts on E\ and centralizes both EJZ 
and Z. By Lemma 2.1, |Ci/Pi| ^ | P i / Z | . B u t P i ^ Ci and P i H Pi = Z. 
Thus PiPi = Ci. If P = Pi we are done. Thus Pi < E ^ C\ and P C\ 
B\ > Z. Choose a chief factor P2/Z of G with P 2 ^ P P\ Pi . Let 
C2 = CA(PiP2 /Z) and P 2 = CA(PiP2), so that B2C\ElE2 = Z. By 
Lemma 2.1, |C2/P2 | ^ |PiP2/Zl. Since PXP2 ^ C2 and P iP 2 Pi P 2 = Z, 
we have that PiP 2 P 2 = C2. If P = PiP2 , we are done. Otherwise 
P iP 2 < P ^ C2 and P H P 2 > Z. Choose EJZ chief in G with P 2 ^ P2 . 
Part (vii) is proved by repetition of the above arguments. 

We will now prove conclusions (i)-(vi). The hypotheses imply that 
every characteristic abelian subgroup of P is cyclic. Thus Theorem 1.1 
applies. Namely, there exist F, S ^ P such that 5 ^ CG(F), such that 
F = Z or P is extra-special, such that exp (P) = p or p = 2, and such 
that 5 is cyclic, quaternion, dihedral, or semi-dihedral. 

Assume that p 7* 2. Then 5 = Z(P) and P = {x G P|xp = 1 } . Thus 
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F and S are characteristic in P and F, S < G. If Z)/Z is chief in G and if 
D ^ F, then Z> is not cyclic since exp (D) = £. The hypotheses imply 
that D is non-abelian. We finish if p 9^ 2 by setting E = F and P = 5. 

We have that p = 2 and that G is solvable. If 5 is non-abelian of order 
8, then P is extra-special (see Theorem 5.5.2 of [8]). Thus, it involves 
no loss of generality to assume that |5| ^ 16 if 5 is non-abelian. Note 
t h a t Z g Z ( G ) . 

W may assume that F > Z. Otherwise we let E = F = Z and 
T = 5 = P , and then finish by Proposition 2.2(b). 

We may assume that \P\ è 16. For if P is not cyclic and if \P\ < 16, 
then we must have that \P\ = 8 and that P is either dihedral or quater­
nion. If there exists R S P with R < G and \R\ = 4, we let E = Z and 
T = P. Otherwise, we let E = P and T = Z. 

First assume that S is non-abelian; so that |5| ^ 16 and 5 is quater­
nion, dihedral, or semi-dihedral. By Proposition 2.2, Z = Z(P) and thus 
Z S $ (P) . By Proposition 2.2, |S :$(S) | = 4. Since F/Z is elementary 
abelian and 5 S CG(F), it follows that <ï>(P) = $(S). Since S has a 
cyclic subgroup U = (u) of index 2, we must have that $(P) = ^(5) = 
(w2). Now F(w) = C P ( $ ( P ) ) < G. We next apply induction and Propo­
sition 2.2(a) to C P ( $ ( P ) ) . Since (u) = Z (C P ($ (P ) ) and |(w)| ^ 8, we 
have that there exists E < G such that E is extra-special, E(u) = P(w), 
and £ H <w) = Z. Furthermore, if Z ^ D ^ £ with P>/Z chief in G, 
then P> is non-abelian. Let C - CG(E/Z) and 5 = C G (£) . Then C/B 
centralizes both E/Z and Z. By Lemma 2.1, \C/B\ ^ |E/Z| . But £ ^ C 
and 5 H E = Z(E) = Z. Thus E 5 = C. Since 

C = C0(E(u)/(u)) = C0(F(u)/(u)), 

we have that P ^ C. Let T = P C\ B < G. Since \P:E(u)\ = 2 and 
s ince££ = C it follows that <w) g P a n d | r : ( w > | = 2. Since P ^ C P (P) 
and Z = Z(P) , we have that Z(P) = Z. Since |P:(w)| = 2, the hypo­
theses and Theorem 1.2 yield that T is dihedral, quaternion, or semi-
dihedral. Furthermore, (u) < G, since (w) = Z(E(u)). We are done if 5 
is non-abelian. 

Suppose that 5 = Z, so that F = P < G. If D is non-abelian whenever 
P ^ D > Z with D < G, we finish by setting £ = P and P = Z. 
Hence, we may choose W < G with Z ^ W and PF cyclic of order 4. 
Since Z = Z(P) , it follows that \G:C0(W)\ = \P:CP(W)\ = 2. We 
apply induction and Proposition 2.2(a) to CP(W). Since TV ^ Z(CP(W0) 
since |P | > 8, and since \W\ = 4; we have that there exists an extra-
special group E < G such that EW = CP(W), W C\ E = Z. Further­
more, D is non-abelian whenever Z < D < E and D < G. Since 
|P :Cp(W) | = 2, this case can now be handled in a manner similar to that 
in the last paragraph. Again T = C P (P) . 
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Hence we must have that 5 is cyclic and that S > Z. We let T = S. 
Since T = Z(P) , we have that T < G. We let Y ^ T with | Y\ = 4. 
Then 

FP/Z = {x G P/Z|x2 = 1}, 

so that YF/Z is characteristic in P/Z and FF < G. If Y < H g FF 
with H < G, then i7 is not cyclic and thus non-abelian because 
exp ( YF) = 4. Repetition of the argument in the second paragraph of this 
proof yields that there exist ifi, H2} . . . , Hm < G with H{ ^ CG(Hj) for 
i 7* j , with each H J Y a chief factor in G, such that F F / F = Hi/Y 
X . . . X t f m / F . 

Let H/ Y be a chief factor of G with # g FF. Let f = CG( F), so that 
P ^ f < G. Let C = C 7 ( i f /F ) and note that P ^ C < G. Let B = 
CG(H) < G so that £ ^ f. By Lemma 2.1, |C /5 | ^ | i f /F | . Since H/Y 
is a chief factor of G and if is non-abelian, F = Z(if) = B C\ H. Since 
if ^ C, it follows that HB = C. If C = G, then H/Y ^ Z(G/F) and 
H/Y is cyclic. This is a contradiction, since F = Z(if). Hence C < G. 
Since 7 = CG(F) and | Y\ = 4, we have that |G:f| ^ 2. If C = f, then 
CH/Y(G/C) T̂  1, a contradiction as i f / F is a chief factor of G and 
C < G. Thus C < I and we may choose a chief factor i f / C of G with 
M ^ I. Since C^/r(M/C) = 1, we have that M/C is a g-group for a 
prime q 9* 2. Choose 0 / 5 G Syl,(Jlf/£). Since CQ = M ^ I, we must 
have that C^ / F(Ç) = 1 and CH(Q/B) = F. Since H/Y is elementary 
abelian and F g Z ( f f ) , it follows from Theorem 2.2.1 of [8] that 
\H'\ = 2 and thus if' = Z. By Fitting's Lemma (Theorem 5.2.3 of [8]), 

H/Z = Y/Z X £o/Z 

where 

Eo/Z = [if/Z, Ç/5] = [ff/Z, Ç]. 

Since B ^ Q,we have that 

£0 < ff • NG(Q) = HBQN(Q) = CQNG(Q) = MNG(Q). 

Since Q/B Ç Syl(?(Âf/5), the Frattini argument yields that G = 
MNG(Q). Thus £ 0 <! G. Since if is non-abelian, since H/Y is a chief 
factor of G, and since H = FE0, it follows that E0 is non-abelian and 
E0/Z is a chief factor of G. In particular, Z = Z(E0). 

We have ifi, . . . , Hm < G such that Hi ^ C0(Hj) for i ^ j , such 
that i2V F is a chief factor in G, and such that FY/Y = i ^ / F X . . . X 
Hm/Y. Thus, it follows from the last paragraph that there exist 
Ei, . . . , Em such that EtY = if* for each i, that F*/Z is a chief factor 
in G for each i, Z = Z(Ej) for each i, and F* ^ C G ( F ; ) for i ?̂  j . In 
particular, 

£ x £ 2 . . . EJZ = £ : / X X . . . X Fm /Z. 
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We set E = EiE2. . . Em. Since E/Z is elementary abelian and since 
Z = Z (£ ) , it follows that E is an extra-special 2-group. Now 

E r = (£, . . . E J Y T ^ H L . . HmT = HT = P. 

Also 

Z ^ EC\T ^ Z(£) = Z, 

so that EC\T = Z. Assume that Z < D ^ E with £> < G and £> 
abelian. The hypotheses imply that DT and DT/Z are cyclic. This is 
impossible, since T > Z. This completes the proof. 

In the above lemma, we have that A = CG(Z) à -P. Each £</Z may 
be viewed as a (not necessarily faithful) ^4/P-module over ZP. We 
note that A/P preserves a symplectic form on Et/Z. We let F(G) denote 
the Fitting subgroup of G (i.e., the largest normal nilpotent subgroup 
of G). 

2.4 COROLLARY. Suppose that every normal, abelian subgroup of G is 
cyclic. Assume that G ^ 1 and that G is solvable. Let p\, . . . ,pn be the 
distinct prime divisors of |F(G)|, and let Z ^ (F(G)) with \Z\ = pi, . . . pn. 
Let A = C G ( Z ) . Then there exist E, T < G such that 

(i) ET = F (G) andEC\T = Z; 
(ii) Eacfe Sylow subgroup of T is either cyclic, dihedral, quaternion, or 

semi-dihedral; 
(iii) / / T is not cyclic, then T has a cyclic subgroup U of index 2 with 

U < G; 
(iv) Each Sylow subgroup of E is either cyclic of prime order, or is 

extra-special of prime exponent or exponent four; 
(v) G is nilpotent if and only if G = T; 

(vi) T = C0(E) and F(G) = GA(E/Z); 
(vii) Each Sylow-sub group of E/Z is elementary abelian, and is a com­

pletely reducible (not necessarily faithful) A /F(G) -module. 

Proof. Since G ^ 1 is solvable, we have that F(G) ^ 1. Note that Z 
is unique. Parts (i)-(iv) follow from Lemma 2.3. Also, T ^ CG(E). 
Furthermore, if Z < D ^ E with D < G, then D is non-abelian. 

One direction of part (v) is trivial. Assume that G is nilpotent, so that 
G = F (G). It suffices to show that E = Z. If not, choose Z < Y ^ E 
with | Y/Z\ prime. Then Y is abelian and Y < G. This contradiction 
proves part (v). 

Let B = CG(E) and C = GA(E/Z), so that 5 g C £ A. By Lemma 
2.1, |C/JB| £ E/Z. Since £ ^ F(G) S C and 5 H E = Z(E) , it follows 
that J3£ = C. From above, we have that T ^ B. To prove (vi), it 
suffices to show that T = B. Assume not and choose M/ T chief in G with 
M ^ B. Then M/T is a ç-group for a prime g. Let Q Ç Sylff (M). Suppose 
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that p y£ q is a prime divisor of T and that P G Sy\p(T). It follows from 
part (iii) that P has a cyclic subgroup Pi ^ 1 of index 1 or 2 with 
P i < G. Since <2 ^ .4, Q centralizes Z Pi Pi . Since Z H P ^ l , since 
P i is cyclic, and since p 9e q, we must have that Q centralizes Pi . Since 
Q centralizes both P / P i and Pu and since p 9^ q, it follows that Q 
centralizes P . Hence M is nilpotent. Thus 

M S F (G) H 5 = CF ( 0 )(£) = P. 

This contradiction completes part (vi). 
Let D be a Sylow-subgroup of E / Z for some prime. By Lemma 2.3, P 

is elementary abelian and D is a completely reducible G/F (G)-module. 
Since A < G, part (vii) follows from Clifford's Theorem (Theorem 3.4.1 
of [8]). 

A solvable group G that has a faithful quasiprimitive module will 
satisfy the hypotheses of Corollary 2.4 (see Theorem 3.2.3 of [8]). 

2.5. LEMMA. Assume that E, U, and Z satisfy the conclusion of Corollary 
2.4. Let V be a faithful irreducible ^[E U]-module for a finite field Ĵ ~. 
Let W ?£ 0 be an irreducible U-submodule of V and let e = \E:Z\1/2. Then 
dim (V) = me dim (W) for an integer m. 

Proof. Since E is nilpotent and since the Sylow-subgroups of E are 
extra-special or of prime order, e is an integer. Since V is faithful and 
irreducible and since EU is nilpotent, we have that char (^~) \ \EU\. 
Let 9 be the centralizer of EU in Hom^(F, V), so that #~, U C 2. 
By Schur's Lemma (1.5 of [11]), Sf is a division ring. Since | ^ | is finite, 
2iï is a field. Then F is an irreducible i^[E£/]-module. Since ^ is the 
centralizer of EU in Hom^(F, F), we have that F is an absolutely 
irreducible 2\EU\-module. Since char (Qf) \ \EU\, it follows that 
dim^(F) = e (see Satz V.16.14 of [10]). Let F ^ 0 be an irreducible 
Z)[£/]-submodule. Since U Q &, we have that dim^(F) = 1. We also 
have that F i s an J^[U]-submodule and that 

dim J , (F)/dim J , (F) = dim^(F)/dim^(F) = e. 

Since U ^ Z(EU), it follows via Clifford's Theorem that V is a direct 
sum of isomorphic J^t/J-submodules. Hence, we may assume that 
W ^ F. We finish by setting m = dim^-(F)/dim^(PF). 

It is in fact true that m = 1 above, but it is not needed here. 

3. Solvable groups. Here we obtain a bound for the order of a solvable, 
completely reducible subgroup of GL(n, q). Throughout this section, we 
let 

a = (3 log (48) + log (24))/3 log (9) 

so that 9" = 48-(24)1/3. Note that 11/5 < a < 9/4. 
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3.1 THEOREM. Let V ^ 0 be a faithful and completely reducible ?F\G\-
module for some field &~ and a solvable group G. Then 

(a) \G\ ̂  17|«/(24)1/8; and 
(b) If \G\ is odd, then \G\ ^ \V\2/2. 

Proof. We will prove part (a). The proof for part (b) is similar to that 
of (a). We may assume that \V\ is finite. We let X = (24)1/3. To prove 
(a), we use induction on |G||F|. 

Step 1. F is an irreducible G-module. 
Mimic Step 1 of Theorem 1.6. 
Step 2. V is an homogeneous iV-module for all N < G. 
If not, choose N < G maximal such that VN is not homogeneous. 

Write V — W\ © . . . © Wn with n è 2 and the Wt as the homogeneous 
components of VN. Use induction as in Step 1 of Theorem 1.6 to conclude 
that \N\ g \V\a/\n. 

Let M/N be a chief factor of G, so that M/N is an elementary abelian 
£-group for a prime p. Repetition of the argument in the first paragraph 
of Step 2 in Theorem 1.6 yields that \M/N\ = n and GG/N(M/N) = 
M/N. Thus M/N is a faithful, irreducible G/Af-module. Induction 
yields that \G/M\ ^ na/\, and hence that 

\G\ S na+1\V\a/\n+1. 

We may assume that na+l > \n. Since a ^ 7/3, we have that n10 > 24n. 
This implies that 2 ^ w ̂  5. 

We have that \G\ = \G/N\ \Va/\n, that n = \M:N\, and that 
C0/N(M/N) = M/N. If n = 4, then 

|G/iV| ^ 24 and \G\ ^ 24 |F«|/A4 = \V\a/\. 

The cases w = 2, 3, and 5 are handled similarly. 
Step 3. Conclusion. 
By Step 2, every normal abelian subgroup of G is cyclic (see Theorem 

3.2.3 of [8]). Corollary 2.4 applies to G and we adopt the notation of that 
corollary. In particular, A = CG(Z) ^ F(G). Since Z is cyclic, |G/^4| g 
\Z\ ^ |J7|. If | r :C / | = 2, then 2||5| and a Sylow-2-subgroup of Z is 
central in G and |GA4| ^ |Z|/2. In any case, we have that \G/A\ \T\ ^ 

\u\\ 
If £ is prime and P £ Sylp(E/Z), then Corollary 2.4 yields that P is 

elementary abelian and a completely reducible A/F(G) -module. By 
Lemma 2.5, |E/Z | = e2 for an integer e. Since C A (£ /Z) = F(G), in­
duction and the method in Step 1 yield that e = 1 or that |^4/F(G)| ^ 
e2a/\. If e > 1, we then have that 

\G\ = \G/A\ \A/F(G)\ \E/Z\ \T\ g \U\2e2«+2/\. 

By Step 2, F is the direct sum of isomorphic, irreducible faithful 
EU-modu\es. Let 0 ^ W be an irreducible £/-submodule of V, so that 
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Step 2 implies that W is a faithful £/-submodule. Let r = \W\, so that r 
is a prime power. Since U is cyclic, | U\\(r — 1). By Lemma 2.5, there is 
an integer t such that dim (F) = te dim (W). In particular, | V\ = rte. 

Assume that e > 1, so that \G\ = |£/|2e2a+2/X. Since \U\ < r, since 
| 7 | = rte, and since we may assume that \G\ > \V\a/\, it follows that 
e2a+2 > «̂6-2 s i n c e a > 2, we have that 

(!) ez > r(«-n (foré> > ! ) . 

But 1 < Z = [/ and U\(r - 1). Hence r ^ 3 and e3 > 3 e-1 . The last 
inequality implies that 2 ^ e ^ 5. Each prime divisor of e divides |Z|, 
\U\, and (r — 1). If e = 5, then r = 11 and inequality (/) yields a con­
tradiction. Thus e ^ 4. 

Suppose that e = 4. Since each prime divisor of e divides (r — 1), 
inequality (1) yields that r = 3. Since \U\\(r — 1), we have that \U\ = 
2 = |T| and G = ,4. Induction yields that |G/F(G)| = 16VX. Thus 
\G\ = 16«-32/X. Since \V\ = 34, we may assume that 32 > (81/16)*. 
This is impossible, since a > 11/5. Thus e ^ 3. 

If e = 3, then r = 4 via Inequality (1). Then | £/| = 3 = |JH| and 
|G/4 | = 2. Since |4 /F(G) | = |Aut (E/Z)\, we have that |i4/F(G)| = 48 
and that |G| = 2 5 -3 4 . Then 

\G\ = 2 5 -3 4
 = (4 3 ) 1 1 / 5 A = 43«/X = \V\°/\. 

We may assume that e ^ 2. 
lie = 2, then M/F(G)| = 6 and | 4 / r | = 24. Inequality (1) implies 

that r is 3, 5, or 7. In any case, \G/A\\T\ ^ 12. Thus 

\G\ S 25-32 g (25)11/5/X. 

Since ' F | ^ r2, we may assume that r = 3. But then | Z7| = 2 = |T| and 
G = A. Thus 

|G| g 48 = 9«/X ^ l^h/X-

Without loss of generality, e = 1. 
We may assume that \G\ > \V\2/2 and that \V\ ^ 7. Otherwise, we 

have that | F | < 7, since x2/2 = x11/5/X ^ x«/X for x = 7. But if 
2 ^ | F | = 5, then 

|GL(7)| = |F|11/5/X = |7|«/X. 

By Corollary 2.4, we have that T = F(G) = 4 = GG(Z). Write 
T = RXS with |£ | odd and 5 G Syl2(r) . Then T = CG (RC\Z), and 
thus G / r is isomorphic to a subgroup of A u t ( i ^ H Z ) . In particular, 
\G/T\ = \RC\Z\. We have that \T:U\ = 2, and that \T\ = 8 if 
| r :C / | = 2. Since \U\ < r £ \V\, since |G:T| = \R C\ Z\, and since 
\G\ > |F |2 /2, it follows that 5 = 1 . Since U permutes the non-identity 
elements of V in orbits of size |Z7|, since \G/U\ ^ \U\, and since \G\ > 
| F|2/2, we must have that | V\ — 1 = | U\. Since | U\ is odd, | V\ is a power 
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of 2, say 2 /. Since \V\ — 1 = \U\, we have that U and hence G act 
transitively on the non-identity elements of V. Then V may be identified 
with the additive group of the field GF(2f ) in such a way that G may be 
viewed as a subgroup of the semi-linear group 

TZ(1, 2f ) = {x —• ax'la 6 GF(2f)} a a field automorphism} 

in its action on V (see Theorem 19.9 of [13]). Since |TL(1, 2 ' ) | = / ' 2 ' 
and since |G| > |F |2 /2, we have t\\2itf'2f > 22 / - 1 , a contradiction. This 
completes the proof. 

We next show that the exponent in the bound in Theorem 3.1(a) 
cannot be improved. In fact, the proof of Proposition 3.2 will show that 
the bound in Theorem 3.1(a) is obtained for infinitely many values of 
\V\ (namely, log(|F|) = 4n log (9) and n â 1). 

3.2. PROPOSITION. Let D and è be constants. Assume that whenever G 
and V satisfy the hypotheses of Theorem 3.1, then \G\ ^ Z)|F|Ô. Then 
a ^ 8. Furthermore, if h = a, then (24)_1/3 ^ D. 

Proof. Given a group H and irreducible iJ-module W, we form a group 
H* and an irreducible if*-module as follows. We let W* be the direct sum 
of four copies of W. We let the symmetric group <S4 transitively permute 
four copies of H, and then we let H* be the semi-direct product (H X 
H X H X H)SA. Then W* is easily seen to be an irreducible i/*-module. 
Now let Wo be the vector space of order 9 over a field of order 3, and let 
Wo = GL{V). We define Wn and Hn inductively for n ^ 1 by Wn = 
Wn-i and Hn = Hn-\. Thus Wn is an irreducible i/n-module and Hn is 
solvable for each n. Note that 

log(|7n |) = 4Mog(9) and 
log(lffn|) = 4- log (48) + (1 + 4 + 42 + . . . + 4""1) log (24). 

Thus, for any j , 

\og{\Hn\/\Vn\>) = 4«[log (48) + (log (24)/3) - j log (9)] 
+ ( - 1 / 3 ) log (24). 

Thus log( |HJ / |F n | 0 -^oo asw ->oo ifj < a. Also, |iï»|/|7n |« = (24)~1/3 

i f» è 1. 

3.3 COROLLARY. Let G be a solvable primitive subgroup of the symmetric 
group Sm. Then \G\ ^ ma+1/(24)1 /3 . 

Proof. We have that G acts primitively and faithfully on a set Œ of 
m elements. Let a Ç 12, so that Ga is a maximal subgroup of G and Ga 

contains no non-trivial normal subgroups of G. Let M be a minimal 
normal subgroup of G. Then MGa = G. Since M is abelian; M P\ Ga < G 
and thus 1 = M C\ Ga. In particular, |Af| = m. Since C 0 (M) H G« < 
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GaM = G; it follows that M = CG(M) and that M is a faithful, irre­
ducible G/M-module. By Theorem 3.1, \G/M\ ^ wV(24)1/3 and thus 
|G| ^ m«+1/(24)1/3. 

We note that Dixon [4] shows that a solvable subgroup of Sm has order 
at most (24)m/3 and that this bound is obtained for infinitely many values 
of m. Also, the bound in Corollary 3.3 is obtained for infinitely many 
values of m. This is evident by the proof of Proposition 3.2. For w è l 
the semi-direct product Gn = VnHn (same notation as Proposition 3.2) 
has faithful, primitive permutation representation on \Vn\ objects 
(namely the conjugates of Hn in Gn)\ and \Gn\ = | Fw |a+1/(24)1/3. 
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