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SOLVABLE AND NILPOTENT SUBGROUPS OF GL(#n,9™)
THOMAS R. WOLF

0. Introduction. Let V' # 0 be a vector space of dimension 7 over a
finite field % , of order ¢™ for a prime g. Of course, GL(n, ¢*) denotes the
group of # -linear transformations of V. With few exceptions, GL (%, ¢™)
is non-solvable. How large can a solvable subgroup of GL(%, ¢™) be?
The order of a Sylow-g-subgroup Q of GL(n, ¢™) is easily computed. But
Q cannot act irreducibly nor completely reducibly on V.

Suppose that G is a solvable, completely reducible subgroup of
GL(n, g™). Huppert ([9], Satz 13, Satz 14) bounds the order of a Sylow-
g-subgroup of G, and Dixon ([5], Corollary 1) improves Huppert's
bound. Here, we show that |G| < ¢®™ = |V]3. In fact, we show that

|G| < [V]|=/(24)78
where
a = (3log (48) + log (24))/3 log (9).

We also show that a bound of the form D|V|® exists only when & = a.
Since 11/5 < a < 9/4, a quadratic bound is not possible.

Suppose now that G is a nilpotent, completely reducible subgroup of
GL(V). We show that |G| < |V|f/2 where 8 = log (32)/log (9) (note
that 3/2 < 8 < 8/5). This last problem deals with Burnside’s ‘‘other”
$%° theorem, which states:

THEOREM A. Let G be a group of order p°q® for distinct primes p and g
and for positive integers a and b. If p* > q°, then O,(G) # 1 unless
(i) p is a Mersenne prime and q¢ = 2;
(ii) p = 2 and q 1s a Fermat prime, or
(i) p=2andq =17.

Coates, Dwan, and Rose [3] noted that Burnside’s proof [2] was incorrect
and gave a correct proof. In fact, Burnside omitted exception (iii). This
exception is necessary, because an elementary abelian group of order 78
is acted upon faithfully by a group of order 222. Here, we show that if
p® > ¢%/2, then O,(G) # 1. This handles the exceptional cases.

In a minimal counter-example to Theorem A, G has a normal elemen-
tary-abelian Sylow-g-subgroup, that is acted upon faithfully by a Sylow-
p-subgroup of G. Consequently, Theorem A is equivalent to a number-
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theoretic statement about prime divisors of certain integers. The method
of proof in [3] is essentially number-theoretic. We will show that by a
slight strengthening of Theorem A (i.e., replacing p* > ¢° by p* > ¢°/2),
the result may be proven by a short group-theoretic proof. This improve-
ment and method is known for both p and ¢ odd (see Exercise 6.16 of
[11]). We also mention that Glauberman (7] takes a different approach
to Burnside's other p%® theorem by comparing the orders of class 2
nilpotent subgroups of G.
All groups considered here are finite.

1. Burnside’s other p%g° theorem. A 2-group S is dibedral (quater-
nion, semi-dihedral) if .S contains a cyclic subgroup 4 = (a) of index 2
and order 2" with n at least 2 (2, 3 respectively), and if there is an ele-
ment y € S of order 2 (4, 2 respectively) such that a¥ = ¢™ where
m= —1 (—1, —1 + 2"! respectively). The following theorem is due
to P. Hall.

1.1. THEOREM. Let P # 1 be a p-group for a prime p and assume that
every characteristic abelian subgroup of P is cyclic. Let S £ Z(P) with
|Z| = p. Then there exist F, S < P such that

1) S Cs(F),FS=P,and FN S = Z;

(ii) Sis cyclic, or p = 2 and S is dihedral, quaternion, or semi-dihedral;

(iii) F = Z or F is extra-special; and

(iv) exp(F) = porp = 2.

Proof. Note that Z is unique. See Satz I11. 13.10 of [10] for a proof.

The following may easily be proved as a corollary of Theorem 1.1 (see
Theorem 5.4.10 of [8]).

1.2 THEOREM. Let P be a p-group for a prime p. Assume that every
normal abelian subgroup of P is cyclic. Then P is cyclic; or p = 2 and S is
dthedral, quarternion, or semi-dihedral.

A prime g is a Fermat prime (Mersenne prime, respectively) if there
exists an integer n = 1 such that ¢ = 2" + 1 (¢ = 2" — 1, respectively).
Proposition 1.3 is well-known and the proof is omitted.

1.3 PROPOSITION. Let p and q be primes, and let m and n be positive
integers. I[f ¢ — 1 = p™, then

(1) p = 2 and q is a Fermat prime; or

(ii) ¢ = 2 and p is a Mersenne prime.

1.4 PROPOSITION. Let g be a prime, and let m and n be positive integers.
If¢g" — 1 = 2".3, then

(i) m = 1;or

(ii) m = 2and gis5or 7.
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Proof. Assume that m > 1 and note that ¢ is odd. Let t = 1 4 . ..
+ ¢™ 1, so that ¢ divides 2" -3. If m is odd, then ¢ is odd and thus ¢ = 3.
This is a contradiction. Hence m = 2k for an integer k. Then
23 =(¢* —1)(¢" + 1). Since 4 t (¢* — 1, ¢* 4+ 1) and since ¢ is odd,
it follows that 6 = ¢* 4 1. Conclusion (ii) now holds.

1.5 Definition. We say that the ordered pair (p, ¢) of primes p and
q satisfy Property B if none of the following occurs:
(i) p is a Mersenne prime and ¢ = 2;
(i1) p = 2 and ¢ is a Fermat prime; or
(iii) p =2and ¢ = 7.

For the remainder of this section, we will let 8 = log(32)/log(9)
(ie., 9 = 32).

1.6 THEOREM. Let V # 0 be a faithful, completely-reducible F [G]-
module for a nilpotent group G and a field F of characteristic ¢ %= 0. Then

(@) |G| = |VI|f/2; and

(b) If G is a p-group and if (p, q) satisfies property B, then |G| < |V|/2.

Proof. We may assume that |V| < o0, and we work by induction on
IGII V1.

Step 1. V is an irreducible G-module.

Otherwise, write V=V,®...® V, for irreducible G-modules
V5% 0 with m = 2. Let C; = G¢(V;) for 1 < 7 £ m. Induction yields
that

and in part (b) that
IG/Ci| = |V.[/2for 1 <7 = m.

Since N C; = 1, G is isomorphic to a subgroup of G/C1 X ... X G/C,.
Then

Gl < WG/Cd < WV /2 < [V/2n < |VIe/2.

Similarly, we find that |G| = |V]/2™ < |V]|/2 for part (b).

Step 2. Vy is homogeneous for all N < G.

If not, choose N <1 G maximal such that I/ is not a homogeneous
N-module. Write Vy =W, ® ... ® W, where # = 2 and the W, are
the homogeneous components of 7 as an N-module. Let M/N be a chief
factor of G. Since V, is homogeneous, Clifford’s Theorem (3.4.1. of [8])
yields that M/ N transitively permutes the W ;. Since M/N is an abelian
chief factor of G, we must have that M/N acts regularly on the W,. Thus
n = |M:N|. Let I be the stabilizer in G of W, so that MI = G and
MNI=N. Let C=GC(M/N) and B =CMNI < MI = G. Since
B < I'and B centralizes M/ N, eachV . is left invariant by B. Since N < B,
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we have that V is not a homogeneous B-module. The maximality of N
yields that B = N and C = M.

Since G is nilpotent and M/N is a chief factor in G, we have that
M/N £ Z(G/N). But Co(M/N) = C = M. Thus G = M. By Clifford’s
Theorem, each W, is a completely reducible N-module. As in Step 1,
induction yields that |N| < |V|#/2". For part (b), induction also yields
that [N| < |V|/2" Since |G| = n|N| and since 2*~' = x for x = 2, Step
2 is now completed.

Step 3. Conclusion.

Since Vy is homogeneous for all N < G; it follows that every normal
abelian subgroup of G is cyclic (see Theorem 3.2.3 of [8]). Since G is nil-
potent, Theorem 1.2 implies that the Sylow-subgroups of G are cyclic,
dihedral, quaternion, or semi-dihedral. In any case, there exists a cyclic
1 # U d G with index 1 or 2. Furthermore, G = U if and only if G is
cyclic. Since V is a faithful homogeneous U-module, U permutes the
non-zero elements of V in k orbits of size |U| for some integer k. In par-
ticular, |V| — 1 = E|U|.

Since x3/2 — 2x + 2 = 0 for x = 2 and since 8 > 3/2, we have that

Ul = V] =1 = [V]PP?/2 = |[VIF/2.

To prove part (a), we may assume that G is not cyclic, that |G: U| = 2,
and that 2||U|. Since x*/? — 4x +4 2 0 for x = 16, we have that
|V| < 16 or that

IGl = 2[U| = 2(|]V] = 1) = [V]P?/2 < [V]P/2.

To prove (a), we may assume that | V| < 16. Since 2||U| and |V| — 1 =
k|U|, we have that | V] is odd. Because GL(V) is not cyclic and because
|V] < 16, we must have that | V| = 9. But then |U||8 and |G| = 2|U| <
16 = |V|8/2. This proves part (a).

We now have that G is a p-group, that (p, g) satisfies property B, that
|G:U| £ 2, and that |V]| — 1 = k|U|. Write |V| = ¢™ and |U| = p" for
some positive integers n and m. If & = 1, then p"* = ¢" — 1 and Proposi-
tion 1.3 yields a contradiction to the hypotheses. Thusk = 2. If G = U,
then

G| = [U] = (V] = 1)/k = |V]/2.

We may assume that p = 2 = |G:U|. If £ = 2, then ¢" — 1 = |V| —
1 = |G|. Then ¢ is a Fermat prime, contradicting the hypotheses. If
k = 4, then

Gl = 21U = 2(/V| — 1)/k < [V]/2.

We may assume that £ = 3. Then ¢ — 1 = |V| — 1 = 3|U|. Since the
hypotheses imply that g is not 5 nor 7, Proposition 1.4 yields that m = 1.
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But then GL(V) is cyclic. This implies that G = U, a contradiction. This
completes the proof.

We next show that the bound in part (a) of Theorem 1.6 is in some
sense ‘‘a best bound”.

1.7 PROPOSITION. Suppose that |G| < C|V|" whenever V and G satisfy
the hypotheses of Theorem 1.6. Then 8 < ~. Furthermore, if 8 = v, then
1/2 £ C.

Proof. Given a group H and a faithful irreducible H-module V, we
define a group H* and a H*-module V* as follows. We let V* = V@ V
and let H* be the semi-direct product of H X H with a cyclic group of
order 2 that permutes the two copies of H. Then H* acts faithfully and
irreducible on V in the obvious action.

Let V) be a vector space of dimension two over a field of order 3. Then
let Hy € Syla(GL(V,)), so that [Hy| = 16 and H, acts irreducibly on V.
For each n = 1, we inductively define a group H, and an irreducible
H,-module V, by letting H, = (H,_;)* and (V,) = (V,1)*. For each n, V,
is a faithful irreducible H,-module. Then

log (JV,]) = 2"log (9) and
log () = 2*log (16) + (1 +2 + ... + 21 log (2).

For any positive number §, we have that
log (|H,|/|V4]*) = 2"log (32/9°) + log (1/2).

If 9° < 32, then log (|H,|/|{V.|?) — o as n — o0. Since 9% = 32, the
proposition follows.

The proof of Proposition 1.7 shows that the bound in Theorem 1.6(a)
occurs for infinitely many values of | V| (namely, for log (|V|) = 2" log (9)
and 7 = 1).

Burnside’s other p%?® theorem now follows as an easy corollary of
Theorem 1.6(b). Also, an alternative bound can be given to handle the
exceptional cases.

1.8 COROLLARY. Assume that G 1is a group of order p°q® for distinct
primes p and q and positive integers a and b. Then

(a) If p* > q%/2, then 0,(G) # 1; and

(b) If p* > ¢°/2 and if (p, q) satisfies property B, then O,(G) #= 1.

Proof. Assume that O,(G) = 1. By Burnside’s ‘“‘well-known” p%¢°
theorem [1], G is solvable. Thus O,(G) £ 1. Let Q = O,G) and
C = Gg(Q) & G. Then 0,(CQ) = Q X P, for a normal p-subgroup P,
of G. Since 0,(G) = 1, we have that Py = 1 and G¢(Q) = Q. Thus a
Sylow-p-subgroup P of G acts faithfully on Q. Thus P acts faithfully on
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Q/®(Q), where ®(Q) is the Fitting subgroup of Q (see Theorem 5.1.4 of
[8]). But Q/®(Q) is elementary abelian, and thus may be viewed as a
faithful P-module over the field of g¢-elements. Since (|P[,¢) =1,
Q/®(Q) is a completely reducible P-module by Maschke’'s Theorem
(3.3.1 of [8]). Theorem 1.6 now implies that

|P| = 1Q/2(Q)|%/2 = ¢"/2;
and for part (b) that |P| = ¢*/2.

2. The Fitting subgroup. An irreducible & [G]-module W is quasi-
primitive if W is a homogeneous N-module for all N < G. In this section,
we look at the structure of a solvable group G that has a faithful quasi-
primitive module. Some of the structure of G is known, particularly when
& is algebraically closed (see [14] or Chapter 4 of [6]). The following is
Lemma 6.5 of [12]. We include a proof, since the lemma is used frequently.

2.1 LEMMA. Assume that Z £ Z(E), that Z is cyclic, and that E/Z 1s
abelian. Let A < Aut (E) with [E, Al £ Z and [Z, A] = 1. Then |A4]|
divides |E: Z|.

Proof. We view Hom (E/Z, Z) as a group with multiplication defined
pointwise. For a € A4, define ¢,:E/Z — Z by ¢.(Zx) = [x, a]. Since
[Z,4]1 =1 and since [E,A] =< Z £ Z(E), ¢, is well-defined and
¢. € Hom (E/Z, Z). Furthermore, ¢ — ¢, is an isomorphism of 4 into
Hom (E/Z, Z), because [E, E, A] =1 and A4 acts faithfully on E. It
suffices to show that

[Hom (E/Z, Z)| | |E/Z|.
Write E/Z = D; X ... X D, for cyclic groups D;. Then

Hom (E/Z,Z) = Il Hom (D, Z).
It suffices to show |Hom (Di, Z)|| |D,|. Since D; and Z are cyclic, it
follows that |Hom (D, Z)| = (|D4l, |Z]).

We need some elementary facts about certain 2-groups. We denote the
Frattini subgroup of G by S(G).

2.2 PROPOSITION. Let P be a dihedral, quarternion, or semi-dihedral
2-group. Then
(a) |[P/®(P)| = 4 and |Z(P)| = 2; and
(b) If P is not isomorphic to the quaternion group Qs of order 8, then P
has a characteristic, cyclic subgroup of index 2.

Proof. If P is dihedral (quaternion, semi-dihedral), then, by definition,
P has a cyclic subgroup 4 = {(a) of index 2 and order 2" with = at least
2 (2, 3 respectively). Furthermore, there is an element y € P of order 2
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(4, 2 resp.) such that @’ = @™ where m = —1 (—1, —1 4 2™ resp.).
Evidently Z(P) £ 4 and |Z(P)| = 2. Since ®(P) is the smallest U < P
such that P/U is elementary abelian, it follows that ®(P) = (a?). This
yields part (a).

Direct computation shows that each element of P — A has order at
most 2 (4, 4 resp.). Assume that P is not isomorphic to Qs. Then 4 con-
tains (and is generated by) all elements of P with order at least 4
(8, 8 resp.). Thus 4 is characteristic in P.

2.3 LEMMA. Assume that every abelian normal subgroup of G s cyclic.
Let 1 # P be a normal-p-subgroup of G for a prime p. If p = 2, then assume
that G is solvable. Let Z < Z(P) with |Z| = p. Then there exist E, T 1 G
such that

() ET=P,ENT =Z,and E < Cg(T);
(i1) E = Z or E is extra-special;
(iii) p = 2 or exp (E) = p;
(iv) T is cyclic, or p = 2 and T s dihedral, quaternion, or semi-dihedral;
(v) If T s not cyclic, then there exists U < G with U cyclic, U £ T,

and |T:U| = 2;
(vi) If Z £ D £ E with D/Z chief in G, then D is non-abelian; and
(vii) If E > Z, there exist E,, ..., E, < G such that each E;/Z is a

chief factor of G, E; < C¢(E;) for 1 # j, and
E/Z = Ey/JZ X ... X E,/Z.

Proof. We use induction on |P|. We note that Z is unique, since
Z(P) 4 G.

Assume conclusions (i)—(vi). Here we prove (vii). Assume that
E > Z and let E;/Z be a chief factor in G. Since E; is non-abelian,
Z =Z(E). Let A = Cg(Z) =z P,so that 4 J G. Let C, = C4 (Ei/2)
and let B; = G4 (E,). Then Ci/B, acts on E; and centralizes both E,/Z
and Z. By Lemma 2.1, |Cy/B4| £ |Ei/Z|.ButE, £ Ciand B\ E, = Z.
Thus E\B; = C1. If E = E; we are done. Thus E; < E £ C;and EN
B; > Z. Choose a chief factor E;/Z of G with E; £ EN B;. Let
C2 = CA(ElEz/Z) and B2 = CA(ElEz), so that B2 N E1E2 = Z. By
Lemma 21, |C2/B2| é |E1E2/Z| Since E1E2 é C2 and E1E2 A B2 = Z,
we have that E E;By; = Co. If E = E\E,;, we are done. Otherwise
EiE; < E £ Cyand E N By > Z. Choose E3/Z chief in G with E;, £ B,.
Part (vii) is proved by repetition of the above arguments.

We will now prove conclusions (i)—(vi). The hypotheses imply that
every characteristic abelian subgroup of P is cyclic. Thus Theorem 1.1
applies. Namely, there exist F, S < P such that S < G¢(F), such that
F = Z or F is extra-special, such that exp (F) = p or p = 2, and such
that S is cyclic, quaternion, dihedral, or semi-dihedral.

Assume that p # 2. Then S = Z(P) and F = {x € P|x? = 1}. Thus
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F and S are characteristicin P and F, S < G. If D/Z is chief in G and if
D £ F, then D is not cyclic since exp (D) = p. The hypotheses imply
that D is non-abelian. We finish if p # 2 by setting E = Fand 7" = S.

We have that p = 2 and that G is solvable. If S is non-abelian of order
8, then P is extra-special (see Theorem 5.5.2 of [8]). Thus, it involves
no loss of generality to assume that |S| = 16 if .S is non-abelian. Note
that Z < Z(G).

W may assume that F > Z. Otherwise we let E =F = Z and
T = S = P, and then finish by Proposition 2.2(b).

We may assume that |P| = 16. For if P is not cyclic and if |P| < 16,
then we must have that |P| = 8 and that P is either dihedral or quater-
nion. If there exists R < P with R < G and |R| = 4, we let E = Z and
T = P. Otherwise, we let E = Pand I" = Z.

First assume that S is non-abelian; so that S| = 16 and .S is quater-
nion, dihedral, or semi-dihedral. By Proposition 2.2, Z = Z(P) and thus
Z £ ®(P). By Proposition 2.2, |S:®(S)| = 4. Since F/Z is elementary
abelian and S = C4(F), it follows that ®(P) = &(S). Since S has a
cyclic subgroup U = (u) of index 2, we must have that ®(P) = ®(S) =
(u?). Now F{u) = Cp(®(P)) < G. We next apply induction and Propo-
sition 2.2(a) to Cz(®(P)). Since (u) = Z(Cp(®(P)) and |(u)| = 8, we
have that there exists £ < G such that E is extra-special, E{u) = F(u),
and E M (u) = Z. Furthermore, if Z < D £ E with D/Z chief in G,
then D is non-abelian. Let C = C¢(E/Z) and B = G4(E). Then C/B
centralizes both E/Z and Z. By Lemma 2.1, |C/B| £ |[E/Z|. But E £ C
and BN E = Z(E) = Z. Thus EB = (. Since

C = Ge(E@)/ ) = Ce(Fu)/(u)),

we have that P < C. Let 7'= PN\ B < G. Since |P:E(u)| = 2 and
since EB = Citfollowsthat (u) £ Tand|T:(u)] = 2.Since T £ Cp(E)
and Z = Z(P), we have that Z(T") = Z. Since |T:{u)| = 2, the hypo-
theses and Theorem 1.2 yield that T is dihedral, quaternion, or semi-
dihedral. Furthermore, (u) < G, since (u) = Z(E{u)). We are done if S
is non-abelian.

Suppose that.S = Z,so that F = P < G. If D is non-abelian whenever
P =D >Z with DG, we finish by setting £E = P and T = Z.
Hence, we may choose W < G with Z = W and W cyclic of order 4.
Since Z = Z(P), it follows that |G:Ce(W)| = |P:Cpr(W)| = 2. We
apply induction and Proposition 2.2(a) to Gx(W). Since W = Z(Cp(W))
since |P| > 8, and since |W| = 4; we have that there exists an extra-
special group E < G such that EW = Cx(W), WM E = Z. Further-
more, D is non-abelian whenever Z < D < E and D < G. Since
|[P:Cp(W)| = 2, this case can now be handled in a manner similar to that
in the last paragraph. Again 7" = Cp(E).
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Hence we must have that S is cyclic and that S > Z. We let T = S.
Since T = Z(P), we have that T J G. We let ¥ £ T with |V| = 4.
Then

YF/Z = {x € P/ZJx* = 1},

so that YF/Z is characteristic in P/Z and YF L G. If Y< H £ YF
with H < G, then H is not cyclic and thus non-abelian because
exp (YF) = 4. Repetition of the argument in the second paragraph of this
proof yields that there exist Hy, Hs, . . . , H, < G with H; £ C¢(H;) for
1 # j, with each H;/Y a chief factor in G, such that FY/Y = H,/Y
X ... X H,/Y.

Let H/Y be a chief factor of G with H < FY. Let I = Gg(Y), so that
P=<IdG. Let C=C,;(H/Y) and note that P £ C < G. Let B =
C¢(H) < G so that B = I. By Lemma 2.1, |C/B| < |H/Y]|. Since H/Y
is a chief factor of G and H is non-abelian, ¥ = Z(H) = B M H. Since
H = C, it follows that HB = C. If C = G, then H/Y £ Z(G/Y) and
H/Y is cyclic. This is a contradiction, since ¥V = Z(H). Hence C < G.
Since I = C¢(Y) and | Y| = 4, we have that |G:I| = 2. If C = I, then
Cu/v(G/C) # 1, a contradiction as H/Y is a chief factor of G and
C < G. Thus C < I and we may choose a chief factor M/C of G with
M < I. Since Cyg,y(M/C) = 1, we have that M/C is a g-group for a
prime ¢ # 2. Choose Q/B € Syl,(M/B). Since CQ = M < I, we must
have that Cy,y(Q) = 1 and C4(Q/B) = Y. Since H/Y is elementary
abelian and Y =< Z(H), it follows from Theorem 2.2.1 of [8] that
|H'| = 2 and thus H' = Z. By Fitting’s Lemma (Theorem 5.2.3 of [8]),

H/Z = Y/Z X Eo/Z
where
E\/Z = [H/Z,Q/B] = [H/Z, Q].
Since B £ (, we have that
Ey 94 H-N¢(Q) = HBON(Q) = CON&(Q) = MNs(Q).

Since Q/B € Syl,(M/B), the Frattini argument yields that G =
MN¢g(Q). Thus Eo 4 G. Since H is non-abelian, since H/Y is a chief
factor of G, and since H = YE,, it follows that E; is non-abelian and
Eo/Z is a chief factor of G. In particular, Z = Z(E,).

We have H,, ..., H, 4G such that H; < C¢(H;) for 7 # j, such
that H,/Y is a chief factor in G, and such that FY/Y = H,/V X ... X
H,/Y. Thus, it follows from the last paragraph that there exist

E,, ..., E, such that E;Y = H, for each 7, that E,;/Z is a chief factor
in G for each ¢, Z = Z(E,) for each 7, and E; £ C¢(E;) for 7 % j. In
particular,
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We set E = E\E;...E,. Since E/Z is elementary abelian and since
Z = Z(E), it follows that E is an extra-special 2-group. Now

ET = (E,...E))YT'=H,...H,T = HI = P.
Also
ZSENTZZE) = Z,

so that EMNT = Z. Assume that Z <D £ E with D G and D
abelian. The hypotheses imply that DT and D7T/Z are cyclic. This is
impossible, since 7" > Z. This completes the proof.

In the above lemma, we have that 4 = C¢(Z) = P. Each E;/Z may
be viewed as a (not necessarily faithful) A/P-module over Zp. We
note that A/P preserves a symplectic form on E,/Z. We let F(G) denote

the Fitting subgroup of G (i.e., the largest normal nilpotent subgroup
of G).

2.4 COROLLARY. Suppose that every normal, abelian subgroup of G 1is
cyclic. Assume that G # 1 and that G s solvable. Let p, . .., p, be the
distinct prime divisors of |[F(G)|, and let Z < (F(G)) with |Z| = p1, . - . Pn.
Let A = C¢(Z). Then there exist E, T <1 G such that

QW) ET=FG)and ENT = Z;
(i1) Each Sylow subgroup of T is either cyclic, dihedral, quaternion, or
semi-dihedral;
(iii) If T s not cyclic, then T has a cyclic subgroup U of index 2 with
U Gy

(iv) Each Sylow subgroup of E is either cyclic of prime order, or is
extra-special of prime exponent or exponent four;

(v) G is nilpotent if and only if G = T

(vi) T = C4(E) and F(G) = Cu(E/Z);

(vii) Each Sylow-subgroup of E/Z is elementary abelian, and 1s a com-

pletely reducible (not necessarily faithful) A/F(G)-module.

Proof. Since G # 1 is solvable, we have that F(G) £ 1. Note that Z
is unique. Parts (i)-(iv) follow from Lemma 2.3. Also, T £ C¢(E).
Furthermore, if Z < D £ E with D < G, then D is non-abelian.

One direction of part (v) is trivial. Assume that G is nilpotent, so that
G = F(G). It suffices to show that E = Z. If not, choose Z < Y £ E
with |Y/Z| prime. Then Y is abelian and ¥ < G. This contradiction
proves part (v).

Let B = C¢(E) and C = C4(E/Z), so that B £ C £ A. By Lemma
2.1, |C/B| £ E/Z. Since E £ F(G) £ Cand BN E = Z(E), it follows
that BE = C. From above, we have that 7" < B. To prove (vi), it
suffices to show that 7' = B. Assume not and choose M/T chief in G with
M =< B.Then M/T is a g-group for a prime ¢. Let Q € Syl, (M). Suppose

https://doi.org/10.4153/CJM-1982-079-5 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1982-079-5

SUBGROUPS OF GL(n, ¢™) 1107

that p # ¢ is a prime divisor of T" and that P € Syl,(T). It follows from
part (iii) that P has a cyclic subgroup P; # 1 of index 1 or 2 with
P, < G. Since Q = 4, Q centralizes Z M P;. Since Z M P; # 1, since
P, is cyclic, and since p # ¢, we must have that Q centralizes P,. Since
Q centralizes both P/P; and P;, and since p # ¢, it follows that Q
centralizes P. Hence M is nilpotent. Thus

M = F(G) N B =Cpe(E) =T.

This contradiction completes part (vi).

Let D be a Sylow-subgroup of E/Z for some prime. By Lemma 2.3, D
is elementary abelian and D is a completely reducible G/F (G)-module.
Since 4 < G, part (vii) follows from Clifford’s Theorem (Theorem 3.4.1
of [8]).

A solvable group G that has a faithful quasiprimitive module will
satisfy the hypotheses of Corollary 2.4 (see Theorem 3.2.3 of [8]).

2.5. LEMMA. Assume that E, U, and Z satisfy the conclusion of Corollary
2.4. Let V be a faithful irreducible F [EU]-module for a finite field F .
Let W # 0 be an 1rreducible U-submodule of V and let e = |E:Z|'"2. Then
dim (V) = me dim (W) for an integer m.

Proof. Since E is nilpotent and since the Sylow-subgroups of E are
extra-special or of prime order, e is an integer. Since 1 is faithful and
irreducible and since EU is nilpotent, we have that char (%) t |EU].
Let 2 be the centralizer of EU in Homg(V, V), so that ¥, U C 9.
By Schur’s Lemma (1.5 of [11]), Z is a division ring. Since |Z| is finite,
D is a field. Then V is an irreducible Z[EU]-module. Since & is the
centralizer of EU in Homg(V, V), we have that V' is an absolutely
irreducible Z[EU]-module. Since char (Z) t |EU|, it follows that
dimg (V) = e (see Satz V.16.14 of [10]). Let ¥ # 0 be an irreducible
D[U]-submodule. Since U C &, we have that dimg(Y) = 1. We also
have that ¥V is an % [U]-submodule and that

dimg (V) /dimz(Y) = dimg(V)/dimg(Y) = e.

Since U £ Z(EU), it follows via Clifford’s Theorem that V is a direct
sum of isomorphic % [U]-submodules. Hence, we may assume that
W < Y. We finish by setting m = dimg(Y)/dimg (W).

It is in fact true that m = 1 above, but it is not needed here.
3. Solvable groups. Here we obtain a bound for the order of a solvable,

completely reducible subgroup of GL(%, ¢). Throughout this section, we
let

a = (3 log (48) + log (24))/3 log (9)
so that 9« = 48-(24)!/3. Note that 11/5 < « < 9/4.
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3.1 THEOREM. Let V # 0 be a faithful and completely reducible ¥ [G|-
module for some field F and a solvable group G. Then

(@) |G| = |V|/(24)'3; and

(b) If |G| is odd, then |G| < |V]?/2.

Proof. We will prove part (a). The proof for part (b) is similar to that
of (a). We may assume that |V| is finite. We let A\ = (24)'/3. To prove
(a), we use induction on |G||V].

Step 1. V is an irreducible G-module.

Mimic Step 1 of Theorem 1.6.

Step 2. V is an homogeneous N-module for all N 4 G.

If not, choose N < G maximal such that Vy is not homogeneous.
Write V=W, ® ... ® W, with n = 2 and the W, as the homogeneous
components of V. Use induction as in Step 1 of Theorem 1.6 to conclude
that |[N| < |V]o/\

Let M/N be a chief factor of G, so that M/N is an elementary abelian
p-group for a prime p. Repetition of the argument in the first paragraph
of Step 2 in Theorem 1.6 yields that |M/N| = n and C¢,y(M/N) =
M/N. Thus M/N is a faithful, irreducible G/M-module. Induction
yields that |G/ M| £ n*/\, and hence that

|G| é na+l| Vla/)\n+1_

We may assume that net! > N Since o < 7/3, we have that n!® > 24",
This implies that 2 < n < 5.

We have that |G| = |G/N||Ve/N\*, that n = |[M:N|, and that
Cew(M/N) = M/N. If n = 4, then

|G/N| < 24 and |G| < 24 |Ve|/N\ = |V]|/\.

The cases n = 2, 3, and 5 are handled similarly.

Step 3. Conclusion.

By Step 2, every normal abelian subgroup of G is cyclic (see Theorem
3.2.3 of [8]). Corollary 2.4 applies to G and we adopt the notation of that
corollary. In particular, 4 = C4(Z) = F(G). Since Z is cyclic, |G/4| <
|Z| = |UJ. If |T:U| = 2, then 2||S| and a Sylow-2-subgroup of Z is
central in G and |G/4| £ |Z|/2. In any case, we have that |G/A4| |T| £
|U2.

If p is prime and P € Syl,(E/Z), then Corollary 2.4 yields that P is
elementary abelian and a completely reducible 4/F(G)-module. By
Lemma 2.5, |E/Z| = ¢? for an integer e. Since C4(E/Z) = F(G), in-
duction and the method in Step 1 yield that ¢ = 1 or that |4/F(G)| £
e/\. If e > 1, we then have that

|G| = |G/A||A/F(G)| |[E/Z| |T| £ |U|%%**2/X\.

By Step 2, V is the direct sum of isomorphic, irreducible faithful
EU-modules. Let 0 £ W be an irreducible U-submodule of V, so that
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Step 2 implies that W is a faithful U-submodule. Let r = |W|, so that r
is a prime power. Since U is cyclic, |U||(r — 1). By Lemma 2.5, there is
an integer ¢ such that dim (V) = fe dim (W). In particular, |V| = r'e.

Assume that e > 1, so that |G| = |U|%%*+2/\. Since |U| < 7, since
|V] = 7', and since we may assume that |G| > |V]*/}, it follows that
e?t2 > r2¢=2 Since @ > 2, we have that

(1) e >r¢D (fore > 1).

Butl < Z £ Uand Ul(r — 1). Hence r = 3 and €3 > 3°1. The last
inequality implies that 2 < ¢ < 5. Each prime divisor of e divides |Z|,
|U|, and (r — 1). If e = 5, then r = 11 and inequality () yields a con-
tradiction. Thus e = 4.

Suppose that e = 4. Since each prime divisor of e divides (r — 1),
inequality (1) yields that » = 3. Since |Ul|(r — 1), we have that |U| =
2 = |T| and G = A. Induction yields that |G/F(G)| £ 162/\. Thus
|G| £ 162-32/X. Since |V| 2 3%, we may assume that 32 > (81/16)=.
This is impossible, since « > 11/5. Thus e < 3.

If e =3, then r = 4 via Inequality (1). Then [U| = 3 = |T] and
|G/A| < 2. Since |[A/F(G)| £ |Aut (E/Z)|, we have that |[4/F(G)| < 48
and that |G| £ 2°-3% Then

IGI < 25.3¢ < (43)11/5/)\ < 43a/>\ < ]V'a/}h

We may assume that e < 2.
If e = 2, then |4/F(G)| £ 6 and |4/T| £ 24. Inequality (1) implies
thatris3, 5, or 7. In any case, |G/4||T| < 12. Thus

G| < 25-3% < (25)1/5)/\,

Since | V| = 72, we may assume that » = 3. But then |U| = 2 = |T| and
G = A. Thus

|G| < 48 = 9¢/\ < |V]o/\

Without loss of generality, e = 1.

We may assume that |G| > |V|?/2 and that |V| = 7. Otherwise, we
have that |V| < 7, since x%/2 < x!15/\ < x2/\ for x = 7. But if
2 < |V] £ 5, then

IGL(V)| = [V"53/N = [VI/\

By Corollary 2.4, we have that T = F(G) = A = C¢(Z). Write
T = R X S with |R|odd and S € Syly(T). Then T = C¢ (RN Z), and
thus G/T is isomorphic to a subgroup of Aut(R M Z). In particular,
|G/T| £ |RMN Z|. We have that |T:U| £ 2, and that |T] =8 if
|T:U| = 2. Since |U| <r = 1V|, since |G:T| £ |R M Z|, and since
|G| > |V|2/2, it follows that S = 1. Since U permutes the non-identity
elements of V in orbits of size |U|, since |G/U| < |U]|, and since |G| >
| V|2/2, we must have that |V| — 1 = |U|. Since |U]| is odd, | V] is a power
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of 2, say 2/. Since |V| — 1 = |U|, we have that U and hence G act
transitively on the non-identity elements of V. Then V may be identified
with the additive group of the field GF(2/) in such a way that G may be
viewed as a subgroup of the semi-linear group

TL(1,27) = {x > ax’la € GF(27), ¢ a field automorphism}

in its action on V (see Theorem 19.9 of [13]). Since |T'L(1, 27)| = f-2/
and since |G| > |V]2/2, we have that f-2/ > 22/~! a contradiction. This
completes the proof.

We next show that the exponent in the bound in Theorem 3.1(a)
cannot be improved. In fact, the proof of Proposition 3.2 will show that
the bound in Theorem 3.1(a) is obtained for infinitely many values of
| V] (namely, log(]V]) = 4" log (9) and n = 1).

3.2. PROPOSITION. Let D and 6 be constants. Assume that whenever G
and V satisfy the hypotheses of Theorem 3.1, then |G| < D|V|°. Then
a = 8. Furthermore, if § = «, then (24)71/3 < D.

Proof. Given a group H and irreducible H-module W, we form a group
H* and an irreducible H*-module as follows. We let W* be the direct sum
of four copies of W. We let the symmetric group S, transitively permute
four copies of H, and then we let H* be the semi-direct product (H X
H X H X H)S,. Then W* is easily seen to be an irreducible H*-module.
Now let Wy be the vector space of order 9 over a field of order 3, and let
Wo = GL(V). We define W, and H, inductively for n = 1 by W, =
Wi, and H, = H,_,. Thus W, is an irreducible H,-module and H, is
solvable for each n. Note that

log(|V,]) = 4" log (9) and
log(IH,|) = 4"log (48) + (1 + 4 + 42+ ... + 4") log (24).

Thus, for any j,

log (|H,|/|Va|?) = 4"[log (48) + (log (24)/3) — j log (9)]
+ (—1/3) log (24).

Thuslog (|H,!/|V,|?) — 0 asn — w0 if j < a. Also, |H,|/| Ve = (24)7173
ifn=1.

3.3 COROLLARY. Let G be a solvable primitive subgroup of the symmetric
group S,. Then |G| < me+1/(24)173,

Proof. We have that G acts primitively and faithfully on a set @ of
m elements. Let a € Q, so that G, is a maximal subgroup of G and G.
contains no non-trivial normal subgroups of G. Let M be a minimal
normal subgroup of G. Then MG, = G. Since M is abelian; M NG, 1 G
and thus 1 = M M G,. In particular, |M| = m. Since C¢(M) N G. &
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G.M = G; it follows that M = G¢(M) and that M is a faithful, irre-
ducible G/M-module. By Theorem 3.1, |G/M| £ m®/(24)'/® and thus
|G| =< ma+l/(24)1/3'

We note that Dixon [4] shows that a solvable subgroup of S,, has order
at most (24)™/3 and that this bound is obtained for infinitely many values
of m. Also, the bound in Corollary 3.3 is obtained for infinitely many
values of m. This is evident by the proof of Proposition 3.2. For n = 1,
the semi-direct product G, = V,H, (same notation as Proposition 3.2)
has faithful, primitive permutation representation on |V,| objects
(namely the conjugates of H, in G,); and |G,| = |V,|*F1/(24)/2.
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