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TILTING COMPLEXES AND CODIMENSION FUNCTIONS OVER
COMMUTATIVE NOETHERIAN RINGS

MICHAL HRBEK , TSUTOMU NAKAMURA and JAN ŠŤOVÍČEK

Abstract. In the derived category of a commutative noetherian ring, we

explicitly construct a silting object associated with each sp-filtration of the

Zariski spectrum satisfying the “slice” condition. Our new construction is based

on local cohomology and it allows us to study when the silting object is tilting.

For a ring admitting a dualizing complex, this occurs precisely when the sp-

filtration arises from a codimension function on the spectrum. In the absence

of a dualizing complex, the situation is more delicate and the tilting property

is closely related to the condition that the ring is a homomorphic image of

a Cohen–Macaulay ring. We also provide dual versions of our results in the

cosilting case.
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2 M. HRBEK ET AL.

§1. Introduction

Rickard’s theorem [105] states that derived equivalences between categories of modules

over rings are fully governed by compact tilting complexes. While these are ubiquitous in

representation theory, it is well known that any derived equivalence boils down to a Morita

equivalence whenever one of the rings happens to be commutative (e.g., [12, Prop. 5.14]). As

a consequence, in commutative algebra, the classical tilting theory reduces just to studying

progenerators of the module category. However, there is a much richer supply of large

(= possibly non-compact) tilting objects. They were first introduced in the module-theoretic

incarnation by Colpi and Trlifaj [36] and Angeleri Hügel and Coelho [7]. Psaroudakis and

Vitória [103] and Nicolás, Saoŕın, and Zvonareva [94] introduced large silting and tilting

objects in triangulated categories, where they naturally generalized the concepts of compact

silting objects (see [1], [71]) and large silting complexes (see [14], [119]). In contrast with the

classical setting, the endomorphism ring of a large tilting module is typically not derived

equivalent to the original ring. However, if the tilting module is “good,” then one obtains

a triangulated equivalence after localizing the derived category of the endomorphism ring

(see [23]). This discrepancy can be measured by a recollement (see [11, §5], [24], and [32],

[33]). Silting objects are defined as those inducing t-structures in a natural way, and the

heart of such a t-structure is an abelian category having a projective generator. Under mild

assumptions, the inclusion from the heart of a silting t-structure to the derived category

extends to a derived equivalence if and only if the silting object is tilting (see [103]). An

analogous dual theory exists for cosilting and cotilting objects, for which the hearts are

abelian categories having an injective cogenerator (in fact, the cosilting hearts are often

Grothendieck categories); see Section 2 for more details. We also remark that recently a

mutation theory for large silting and cosilting objects has been developed in [13]; pure-

injective cosilting objects play an important role there, and mutation for such objects

encompasses mutation for compact silting complexes in the classical context (see [1], [71]).

The theory is meaningful in the setting of the present paper as well (see [13, Exam. 4.11]

and the last paragraph of Section 2.1.6).

Let R be a commutative noetherian ring. A lot of structural information about the

derived category D(R) is known to be controlled by the Zariski spectrum SpecR. Neeman

[86] proved that there is a canonical bijection between the localizing subcategories of D(R)

and the subsets of SpecR. Alonso Tarŕıo, Jeremı́as López, and Saoŕın [4] classified the

compactly generated t-structures in D(R) by using the sp-filtrations of SpecR (= the

filtrations of specialization closed subsets of SpecR); see (2.16). The compactly generated

t-structures induced by silting objects have also been classified in terms of sp-filtrations of

SpecR. For tilting modules, this was essentially achieved by Angeleri Hügel, Posṕı̌sil, the

third author, and Trlifaj [16], and in general, by Angeleri Hügel and the first author [10]

(see (2.20)). On the other hand, explicit constructions of the silting objects inducing these

t-structures are known only in rather limited instances (see [8, §3] and [101]).

The first main goal of this paper is to provide such a construction for sp-filtrations

of special type, which we call slice sp-filtrations. The slice condition asserts that in each

step of the filtration we are only allowed to remove at most a zero-dimensional (=“thin”)

layer of prime ideals. Such sp-filtrations are rather ubiquitous (see Example 3.3 and the

next paragraph). The philosophy behind these filtrations is akin to the notion of the

slice filtration in equivariant or motivic homotopy theory (see Remarks 3.2 and 4.3).
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TILTING COMPLEXES AND CODIMENSION FUNCTIONS 3

In particular, the slice condition is sufficient for the Bousfield localization and colocalization

functors induced by the consecutive members of the sp-filtration to decompose objects into

“computable pieces.” Our construction of silting objects is also related to the method

that builds tilting modules and complexes from ring epimorphisms in the representation

theoretical context (see, e.g., [17, Th. 3.5] and [10, §5]). To successfully produce a silting

object, the existing constructions need to impose a strong homological restriction on the

ring epimorphism(s) appearing there, while the slice condition can be viewed as a suitable

geometric analog. See the end of Section 4 for a more detailed discussion.

To state our first main result, we remark that there is a bijection between the sp-filtrations

Φ of SpecR and the order-preserving functions fΦ : SpecR→Z∪{∞,−∞}. Then Φ is a slice

sp-filtration if and only if it corresponds to a strictly increasing function fΦ : SpecR → Z
(see Remark 2.11 and (3.1)).

Theorem 1.1 (Theorem 4.6). Let R be a commutative noetherian ring, and let Φ be a

slice sp-filtration of SpecR. Then

TΦ :=
⊕

p∈SpecR

ΣfΦ(p)RΓpRp

is a silting object in D(R), and this induces the t-structure whose aisle is

YΦ := {X ∈D(R) | widthR(p,X)> n ∀n ∈ Z ∀p ∈ Φ(n)}.

In general, the tilting property is not easily read from the silting t-structure alone, as the

vanishing of negative self-extensions is typically not tested by orthogonality properties with

respect to any set of compact objects. Our explicit construction of silting objects enables

us to study this question:

When is the silting object TΦ tilting?

In fact, if TΦ is tilting, then Φ is necessarily a codimension filtration (i.e., fΦ is a codimension

function on SpecR); see Proposition 6.10. This makes a limitation on R because the

existence of a codimension function implies R is catenary. Our second main result shows

that, for rings which are nice enough in a certain sense, TΦ is tilting for any codimension

filtration Φ.

Theorem 1.2 (Theorems 4.7 and 7.5). Assume one of the following conditions hold:

(1) R admits a (strongly pointwise) dualizing complex.

(2) R is a homomorphic image of a Cohen–Macaulay ring of finite Krull dimension.

Let Φ be a codimension filtration of SpecR, which exists under the assumption. Then TΦ is

a tilting object in D(R).

Note that R can have infinite Krull dimension under the condition (1) of Theorem 1.2.

When a (strongly pointwise) dualizing complex D for R exists, R has finite Krull dimension

if and only if D has finite injective dimension. In this case, we refer to D as a classical

dualizing complex (Remark 2.14). We also remark that, for rings of finite Krull dimension,

(1) is strictly stronger than (2). Indeed, the existence of a classical dualizing complex implies

that R is a homomorphic image of a Gorenstein ring of finite Krull dimension. This fact

(originally conjectured by Sharp [112]) is due to Kawasaki [69] (Theorem 7.6(1)).
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4 M. HRBEK ET AL.

Given a classical dualizing complex D for R, we know that it is a cotilting object in

the bounded derived category Db
fg(R) (Remark 7.7). Under this interpretation, Kawasaki’s

result characterizes homomorphic image of Gorenstein rings of finite Krull dimension in

a tilting theoretic way. His other work [70] provides a necessary and sufficient condition

for a commutative noetherian ring to be a homomorphic image of a Cohen–Macaulay

ring (Theorem 7.6(2)), while this characterization itself looks far from tilting theory.

Nevertheless, it turns out that his work is closely related to the tilting property of TΦ

for a codimension filtration Φ, and it actually makes sense to ask the next question:

Is TΦ tilting if and only if R is a homomorphic image of a Cohen−Macaulay ring?

An important viewpoint to study this question is flatness of the endomorphism ring of TΦ

over R. Indeed, an essential ingredient of our proof of Theorem 1.2 under the assumption (2)

is that EndD(R)(TΦ) is flat whenever R is a Cohen–Macaulay ring of finite Krull dimension

(Proposition 6.21). Furthermore, if R is a one-dimensional commutative noetherian ring,

then it has a codimension filtration Φ, and TΦ is always tilting (Theorem 6.5). In this case,

the endomorphism ring can explicitly be computed as follows:

EndD(R)(TΦ)∼=

⎛⎝ S−1R 0

(
∏

m∈mSpecR

R̂m)⊗RS
−1R

∏
m∈mSpecR

R̂m

⎞⎠ , (1.1)

where S stands for the complement of the union of all non-maximal prime ideals and

R̂m stands for the m-adic completion of the local ring Rm (Example 6.8). Evidently,

EndD(R)(TΦ) is flat over R, and in fact, every one-dimensional ring satisfies the condition

(2) of Theorem 1.2 by results of Kawasaki (Theorem 7.12). More generally, given any

commutative noetherian ring R with a codimension filtration Φ, the flatness of EndD(R)(TΦ)

implies that all the formal fibers of all the localizations of R are Cohen–Macaulay

(Proposition 7.15). This fact along with a result of Kawasaki (Theorem 7.6(2)) enables

us to show the next theorem. Although Kawasaki’s result requires that R is universally

catenary, perhaps surprisingly, this follows from the tilting property of TΦ (Proposition

7.14).

Theorem 1.3 (Theorem 7.18). Let R be a commutative noetherian local ring with a

codimension filtration Φ. The following conditions are equivalent:

(1) TΦ is tilting and EndD(R)(TΦ) is a flat R-module.

(2) R is a homomorphic image of a Cohen–Macaulay local ring.

It is natural to ask if we can get rid of the second condition from (1) of Theorem 1.3

so that Cohen–Macaulay homomorphic images can be determined purely by the tilting

property of TΦ. Namely, we are interested in the following question:

Is EndD(R)(TΦ) flat as an R-module whenever TΦ is tilting?

We will show that the answer is affirmative for any ring R of Krull dimension two (Theorem

7.22). Note that this is the least dimension in which rings may not be homomorphic images

of Cohen–Macaulay rings (see Theorem 7.12 and Remark 7.21).

Up to now, we have focused on the silting case, but the last three sections provide

the cosilting counterparts for all of the results mentioned so far. Most of them can not
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TILTING COMPLEXES AND CODIMENSION FUNCTIONS 5

be deduced by formally dual arguments, while it is actually efficient to start with silting

objects, because we can translate each silting object TΦ to a cosilting object RHomR(TΦ,E)

inD(R) by an injective cogenerator E in ModR (see (2.21)). We further equivalently replace

each cosilting object RHomR(TΦ,E) by a more explicit one CΦ (Definition 5.1) using local

duality and Matlis duality (see Theorem 5.2 and its proof).

Given a slice sp-filtration Φ, we obtain the cosilting object CΦ as mentioned above, and it

induces a t-structure in a natural way. This assignment is compatible with the classification

of compactly generated t-structures in D(R) based on the sp-filtrations of SpecR (see [4]).

When R admits a classical dualizing complex D, D gives a codimension function (Section

2.5.3), from which we obtain a codimension filtration Φ. Then the t-structure induced by

CΦ is precisely the compactly generated t-structure in D(R) which restricts to the Cohen–

Macaulay t-structure in Db
fg(R) with respect to D in the sense of [4, §6] (see Remark 7.7).

Even if a dualizing complex is not available, as far as R admits a codimension filtration

Φ, we obtain the heart of the t-structure in D(R) induced by CΦ, and this heart, up

to equivalence, does not depend on the choice of the codimension filtration. We call this

canonical abelian category the Cohen–Macaulay heart (Definition 7.9). As far as R has

finite Krull dimension, CΦ is cotilting if and only if the inclusion from the Cohen–Macaulay

heart induces a derived equivalence. Moreover, if R is local and of Krull dimension 2, we can

verify that CΦ is cotilting if and only if R is a homomorphic image of a Cohen–Macaulay

local ring (Corollary 7.24), as in the silting case.

The paper is structured as follows: In Section 2, we gather required facts and notions from

several different topics: the silting theory in triangulated categories, localization theory of

D(R), depth and width over commutative noetherian rings, sp-filtrations of SpecR, and

dualizing complexes. We also recall the technical notions of cofiltrations and Lukas lemma

for complexes which is required to complete the proof of Theorem 1.1. Section 3 introduces

slice sp-filtrations and codimension filtrations, and we provide a rather concise proof for

Theorems 1.1 and 1.2 restricted to rings admitting a classical dualizing complex (Remark

3.14); for this, the infinite completion of Grothendieck duality (Theorem 2.18) plays a key

role. The goal of Section 4 is to establish Theorem 1.1 in full generality, which demands a

more technical approach. In Section 5, we deal with the dual setting for cosilting objects,

and in Section 6, we study the flatness of the endomorphism ring of both tilting and cotilting

objects induced by codimension functions. Finally, in Section 7, we consider rings which

are homomorphic images of Cohen–Macaulay rings and finish the proofs of Theorems 1.2

and 1.3. The questions listed above are restated for the silting and cotilting case both

(Questions 7.8 and 7.19(2)), and they are affirmatively answered for local and nonlocal

rings, respectively, of Krull dimension at most two.

§2. Preliminaries

Convention. Throughout this paper, subcategories of a given category are assumed

to be full, additive, and closed under isomorphisms.

2.1 Silting objects in derived categories

We begin with recalling basic facts on (co)silting objects in the sense of [94] and [103].

Some of the facts work well in more general triangulated categories, but we confine ourselves

to the case of unbounded derived categories of rings.
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2.1.1.

Let R be a ring, and let D(R) be the unbounded derived category of the category of all

right R-modules. We denote by Σ the suspension functor on D(R). For a class C of objects

in D(R) and a set I of integers, define the following subcategories of D(R):

C⊥I := {X ∈D(R) |HomD(R)(C,Σ
iX) = 0 ∀C ∈ C ∀i ∈ I} and

⊥IC := {X ∈D(R) |HomD(R)(X,ΣiC) = 0 ∀C ∈ C ∀i ∈ I}.

The role of the set I will often be played by symbols of the form n, > n, < n, ≥ n, ≤ n,

and �= n, interpreted in the obvious way, where n is an integer. For example, C⊥n := C⊥{n}

and C⊥>n := C⊥{i∈Z|i>n} . If C = {X} for a single object X ∈D(R), we use X⊥I and ⊥IX

instead of {X}⊥I and ⊥I{X}, respectively.

2.1.2.

A t-structure in D(R) is a pair (U ,V) of subcategories satisfying the following axioms

(see [25]):

(t-1) HomD(R)(U,V ) = 0 for all U ∈ U and V ∈ V ,
(t-2) for any X ∈D(R) there is a triangle

U →X → V → ΣU

with U ∈ U and V ∈ V , and
(t-3) ΣU ⊆ U .

The subcategory U is called the aisle of the t-structure, and V is called the coaisle. A

consequence of the axioms is that V = U⊥0 and U = ⊥0V . In particular, the aisle and the

coaisle both are closed under direct summands, and the former is closed under coproducts,

while the latter is closed under products. Moreover, (t-3) is equivalent to

(t-3’) Σ−1V ⊆ V

under the other two axioms.

If (U ,V) is a t-structure, then the triangle in (t-2) is functorially unique up to

isomorphism. More precisely, the inclusions from U and V into D(R) admit a right adjoint

u :D(R)→U and a left adjoint v :D(R)→V , respectively, and the counit u→ IdD(R) and

the unit IdD(R) → v of these adjunctions yield a triangle

uX →X → vX → ΣuX (2.1)

for every X ∈ D(R), and this triangle can be identified with the triangle in (t-2) via the

isomorphisms U ∼−→ uX and vX ∼−→ V induced by adjointness. Note also that the essential

images Imu and Imv coincide with U and V , respectively, and the kernels Keru and Kerv

coincide with V and U , respectively (see, e.g., [68, Prop. 4.1.4]).

The intersection H = U ∩ΣV is called the heart of the t-structure (U ,V). It is shown in

[25, Th. 1.3.6] that the heart of a t-structure is an abelian category such that its exact

structure is induced by the triangles belonging to the heart. In addition, the truncation

functors u and v of the t-structure give rise to a cohomological functor H0
H :D(R) →H,

which can be defined as the composition u◦Σ◦v ◦Σ−1. See also [67, §10.1] for details.
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For each n ∈ Z, there is a canonical t-structure (D≤n(R),D>n(R)) in D(R), where

D≤n(R) := {X ∈D(R) |Hi(X) = 0 ∀i > n} and D>n(R) := {X ∈D(R) |Hi(X) = 0 ∀i≤ n}.
We say that a t-structure (U ,V) is intermediate if there are integers n ≤ m such that

D≤n(R)⊆ U ⊆D≤m(R). We also call such a t-structure l-intermediate in case the integers

satisfy m−n≤ l for some nonnegative integer l. A t-structure (U ,V) is called nondegenerate

provided that
⋂

n∈Z
ΣnU = 0 and

⋂
n∈Z

ΣnV = 0. It is straightforward to check that any

intermediate t-structure is nondegenerate. Nondegenerate t-structures are well-behaved in

the sense that they are fully determined by the induced cohomological functor H0
H to the

heart (see [25, Prop. 1.3.7] or [67, Prop. 10.1.10]).

A t-structure (U ,V) in D(R) is called stable if Σ−1U ⊆U , or equivalently, if both U and V
are triangulated subcategories of D(R). The notion of stable t-structures can be essentially

identified with the notion of Bousfield localizations (see Section 2.2).

A t-structure (U ,V) in D(R) is called compactly generated if V = S⊥0 for some set S
of compact objects in D(R). Recall that an object in D(R) is compact if and only if it is

isomorphic to a bounded complex of finitely generated projected R-modules (see [87, 2.1.3];

see also [27, Th. 2.2]).

Remark 2.1. If a t-structure in D(R) is compactly generated, then its heart is

a Grothendieck category by [107, Th. D]. In fact, this is a locally finitely presented

Grothendieck category by [106, Th. 1.6].

2.1.3.

An object T ∈D(R) is called silting if the pair (T⊥>0 ,T⊥≤0) is a t-structure in D(R).

Dually, an object C ∈D(R) is cosilting if (⊥≤0C,⊥>0C) is a t-structure in D(R). Given a

silting object T (resp. a cosilting object C ), it is easily seen that T ∈ T⊥>0 (resp. C ∈⊥>0C).

A t-structure is called silting (resp. cosilting) if it is induced by a silting (resp. cosilting)

object as above. All silting t-structures and cosilting t-structures are nondegenerate (see

[103, Prop. 4.3]).

Silting objects T and T ′ are said to be equivalent if the induced t-structures (T⊥>0 ,T⊥≤0)

and (T ′⊥>0 ,T ′⊥≤0) coincide. Similarly, cosilting objects C and C ′ are said to be equivalent

if the induced t-structures (⊥≤0C,⊥>0C) and (⊥≤0C ′,⊥>0C ′) coincide.

If an object X satisfies Add(X) = Add(X ′) (resp. Prod(X) = Prod(X ′)) for a silting

(resp. cosilting) object X ′, then X is a silting (resp. cosilting) object equivalent to X ′, and

the converse is also true (see, e.g., [103, Lem. 4.5]), where we denote by Add(X) (resp.

Prod(X)) the subcategory of D(R) consisting of all objects being direct summands of a

coproduct (resp. of a product) of copies of X.

Lemma 2.2. An object T ∈D(R) is silting if and only if the following conditions hold:

(1) T ∈ T⊥>0,

(2) T⊥Z = 0, and

(3) T⊥>0 is closed under coproducts.

Proof. See [103, Prop. 4.13].

Lemma 2.3. A pure-injective object C ∈ D(R) is cosilting if and only if the following

conditions hold:
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(1) C ∈ ⊥>0C,

(2) ⊥ZC = 0, and

(3) ⊥>0C is closed under products.

Proof. The assumptions imply by [15, Lem. 4.8] that there is a t-structure of the

form (U ,⊥>0C) in D(R). Since C ∈ ⊥>0C and U = ⊥0(⊥>0C) = ⊥≤0(⊥>0C), it follows that

U ⊆ ⊥≤0C. It remains to show the converse inclusion. Let X ∈ ⊥≤0C and consider the

triangle uX → X → vX → ΣuX with uX ∈ U and vX ∈ ⊥>0C. Since both X and uX

belong to ⊥≤0C, we see that vX ∈⊥≤0C. But then vX ∈⊥≤0C∩⊥>0C =⊥ZC =0. Therefore,

X ∼= uX ∈ U .

Remark 2.4. Alonso Tarŕıo, Jeremı́as López, and Souto Salorio [3, Th. 3.4] proved

that, for an object X in the unbounded derived category of a Grothendieck category, there

exists a t-structure whose aisle is the smallest subcategory containing X and closed under

extensions, suspensions, and coproducts. This fact, which is essential for [103, Prop. 4.13],

has been extended by Neeman [93, Th. 2.3] to well generated triangulated categories.

Consequently, we may replace D(R) in Lemma 2.2 by a well-generated triangulated

category. On the other hand, the proof of Lemma 2.3 will work when D(R) is replaced

by a compactly generated triangulated category T as [15, Lem. 4.8] is proved for T .

Let X = (. . .→Xi−1 →Xi →Xi+1 → . . .) be a complex of R-modules. We say that X

is bounded above (resp. bounded below) if Xi = 0 for i� 0 (resp. i� 0). If X is bounded

above and below, it is called bounded.

Proposition 2.5. Let T be a bounded complex of projective R-modules. Then T is a

silting object in D(R) if and only if the following conditions hold:

(1) Add(T )⊆ T⊥>0, and

(2) all bounded complexes of projective R-modules belong to the smallest triangulated

subcategory of D(R) containing Add(T ).

Proof. See [14, Exam. 2.9(4) and Prop. 4.2] or [6, Prop. 5.3].

Proposition 2.6. Let C be a bounded complex of injective R-modules. Then C is a

cosilting object in D(R) if and only if the following conditions hold:

(1) Prod(C)⊆ ⊥>0C, and

(2) all bounded complexes of injective R-modules belong to the smallest triangulated

subcategory of D(R) containing Prod(C).

Proof. This is stated in [6, Prop. 6.8(2)] with a sketch proof, and the “if” part follows

from [78, Prop. 3.10]. Let us prove the “only if” part in a little more detail. Assume that C

is a cosilting object in D(R). Then we have the t-structure (⊥≤0C,⊥>0C) and C ∈ ⊥>0C, so

(1) holds. By assumption, we have C ∈D>n(R) for some integer n. Thus ΣiC ∈D>n(R) for

all i ≤ 0. It follows that ⊥≤0C ⊇ ⊥0 D>n(R) =D≤n(R). Applying (−)⊥0 to this inclusion,

we have ⊥>0C ⊆D>n(R), which implies (2) by [121, Prop. 2.10].

If a bounded complex T of projective R-modules (resp. a bounded complex C of injective

R-modules) satisfies the two conditions in Proposition 2.5 (resp. Proposition 2.6), then T

(resp. C) is called a silting complex (resp. a cosilting complex ); see, e.g., [6, Defs. 5.1 and

6.1]. By the propositions, a silting (resp. cosilting) complex is a silting (resp. cosilting)
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object in D(R), but in general, the latter may not be isomorphic to any bounded complex

of projective (resp. injective) modules (see Example 5.5).

Remark 2.7. Let T be a triangulated category with small coproducts (resp. small

products), and let S0 be a subcategory of T closed under small coproducts (resp. small

products). Let S be the smallest triangulated subcategory of T containing S0. Then,

for any object X ∈ S and any cardinal κ, the coproduct X(κ) (resp. the product Xκ)

belongs to S. This fact follows from the construction of S by [73, §3.3, Lem. (1)] along

with [88, Prop. 1.2.1 and Rem. 1.2.2]. It also follows that S is a thick subcategory, that

is, a triangulated subcategory closed under direct summands (see, e.g., [6, Lem. 3.6]).

Hence we have S = thick(S0), where thick(S0) denotes the smallest triangulated subcategory

containing S0 and closed under direct summands.

By the above observation applied to T :=D(R), Proposition 2.5(2) is equivalent to the

condition that R ∈ thick(Add(T )). Dually, Proposition 2.6(2) is equivalent to the condition

that E ∈ thick(Prod(C)), where E is an injective cogenerator of ModR.

Let l be a positive integer. By an l-term silting complex (resp. an l-term cosilting

complex), we mean a silting (resp. cosilting) complex concentrated degrees from k to l+k−1

for some integer k. If an object X inD(R) is isomorphic to a silting (resp. cosilting) complex,

then X is called a bounded silting object (resp. a bounded cosilting object); cf. [103, Def.

4.15 and Prop. 4.17]. A silting (resp. cosilting) object X in D(R) is isomorphic to an l -term

silting complex (resp. an l -term cosilting complex) if and only if the induced t-structure is

(l−1)-intermediate (see [14, Def. 4.1 and Lem. 4.5] and [103, Lem. 4.5 and Prop. 4.17]); in

particular, X is a bounded silting object (resp. a bounded cosilting object) if and only if

the induced t-structure is intermediate.

2.1.4.

A silting object T is called of finite type provided that there is a set S of compact objects

in D(R) such that T⊥>0 = S⊥0 . A cosilting object C is called of cofinite type provided that

there is a set S of compact objects in D(R) such that ⊥>0C = S⊥0 . Any bounded silting

object in D(R) is of finite type by Proposition 2.5 and [78, Th. 3.6], while any bounded

cosilting object is pure-injective by Proposition 2.6 and [78, Prop. 3.10].

A silting t-structure of finite type refers to a t-structure which is induced by a silting

object of finite type, and a cosilting t-structure of cofinite type refers to a t-structure which

is induced by a cosilting object of cofinite type. We remark that there is a known equality:⎧⎨⎩
cosilting t-structures

of cofinite type

in D(R)

⎫⎬⎭=

⎧⎨⎩
nondegenerate

compactly generated

t-structures in D(R)

⎫⎬⎭ . (2.2)

The inclusion “⊆” is clear, and the converse inclusion follows from [15, Th. 3.5] and

Remark 2.1.

2.1.5.

Let S be a commutative ring, and let R be an S -algebra, that is, R is a ring endowed

with a ring homomorphism S →R whose image is contained in the center of R. Let E be an

injective cogenerator of ModS and denote by (−)+ the contravariant functor RHomS(−,E)

from D(R) to D(Rop), where Rop is the opposite ring of R. Given a silting object T of finite
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type in D(R), T+ is a cosilting object of cofinite type in D(Rop). This assignment gives rise

to an injection from the equivalence classes of silting objects of finite type in D(R) to the

equivalence classes of cosilting objects of cofinite type in D(Rop). Moreover, this injection

restricts to a bijection from the equivalence classes of bounded silting objects in D(R) and

the equivalence classes of bounded cosilting objects of cofinite type in D(Rop). See [10, Th.

3.3]. Note that every bounded silting object is of finite type as mentioned in Section 2.1.4.

2.1.6.

Let T ∈ D(R) be a silting object and denote by HT the heart of the t-structure

(T⊥>0 ,T⊥≤0) induced by T. Then HT has a projective generator (see [103, Prop. 4.3]),

and the inclusion HT ↪→D(R) extends to a triangulated functor Db(HT )→D(R) called a

realization functor (see [103, Th. 3.11]). This can be regarded as a functorDb(HT )→Db(R)

between the bounded derived categories if the silting object T is bounded (see [103, Lem.

4.14]). The realization functor is in principle not unique and depends on the choice of an

“f-enhancement” of D(R). See [103, §3] for details. We also remark that the existence of

a realization functor D(HT )→D(R) between the unbounded derived categories has been

established in [118, §6].
The dual theory for a cosilting object C ∈D(R) is also available in the references above.

We note that if the cosilting object C is bounded, then not only does the associated heart

HC admit an injective cogenerator, but it is in fact a Grothendieck category (see [78, Prop.

3.10]). This fact more generally holds as far as the cosilting object C is pure-injective (see

[75, Th. 4.6]), where recall that every bounded cosilting object is pure-injective as mentioned

in Section 2.1.4.

If the cosilting object C is of cofinite type, then C is pure-injective (see [75, Th. 4.6])

and HC is a locally finitely presentable Grothendieck category (Remark 2.1). In general,

a bounded cosilting object may not be of cofinite type (see [78, Exam. 3.12]), but if R

is a commutative noetherian ring, then every pure-injective cosilting object in D(R) is of

cofinite type as shown by the first and second authors (see [62, Cor. 2.14]). All the cosilting

objects we consider for commutative noetherian rings in this paper are of cofinite type, and

so the induced hearts are locally finitely presentable Grothendieck categories.

2.1.7.

A silting object T ∈D(R) is called tilting provided that Add(T ) ⊆ T⊥<0 . Assume that

T is a bounded silting object, and let Db(HT )→Db(R) be a realization functor. Then T

is tilting if and only if the realization functor is a triangulated equivalence; see [103, Cor.

5.2] (which is stated for a realization functor with respect to a specific f-enhancement [103,

Exam. 3.2], but its proof works for any f-enhancement of D(R)). The realization functor

D(HT )→D(R) due to Virili is also a triangulated equivalence if and only if T is tilting

(see [118, Th. 7.12]).

We remark that a similar theory so far does not seem to be fully developed for silting

objects which are not bounded. It at least holds that, given a silting object T ∈D(R) and

a realization functor Db(HT )→D(R), T is tilting if and only if the realization functor is

fully faithful (see [103, Prop. 5.1]).

A cosilting object C is called cotilting provided that Prod(C)⊆ ⊥<0C. There are analo-

gous results about realization functors and derived equivalences (see the references above).
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If a silting (resp. cosilting) complex X is a tilting (resp. cotilting) object in D(R), then

X is called a tilting complex (resp. a cotilting complex ). A bounded tilting object (resp.

a bounded cotilting object) X ∈ D(R) means a bounded silting object (resp. a bounded

cosilting object) which is tilting (resp. cotilting) in D(R).

Remark 2.8. An R-module M is tilting (resp. cotilting) in the sense of [7] if and only if

M is a bounded tilting object (resp. a bounded cotilting object) in D(R) by Proposition 2.5

and [119, Cor. 3.7] (resp. Proposition 2.6 and [121, Prop. 2.6]). If a tilting (resp. cotilting)

module has projective (resp. injective) dimension at most n, then it is called n-tilting (resp.

n-cotilting).

2.2 Bousfield localization

A triangulated functor λ : D(R) → D(R) is called a (Bousfield) localization functor if

there exists a morphism η : IdD(R) → λ such that λη : λ → λ2 is invertible and λη = ηλ.

If λ :D(R) →D(R) is a localization functor, then (Kerλ, Imλ) is a stable t-structure. In

particular, Imλ (resp. Kerλ) is a reflective (resp. coreflective) subcategory, that is, the

inclusion functor Imλ ↪→ D(R) (resp. Kerλ ↪→ D(R)) admits a left (resp. right) adjoint,

where λ can be naturally regarded as the left adjoint D(R) → Imλ. Conversely, given a

stable t-structure (L,C), by definition, the inclusion functors L ↪→ D(R) and C ↪→ D(R)

admit a right adjoint γ :D(R)→L and a left adjoint λ :D(R)→ C respectively, where γ

and λ are triangulated (see [88, Lem. 5.3.6]). Further, if λ is interpreted as the composition

D(R)
λ−→C ↪→D(R), then the functor λ :D(R)→D(R) is a localization functor. Dually, if γ

is interpreted as the composition D(R)
γ−→L ↪→D(R), then the functor γ :D(R)→D(R) is

a colocalization functor, that is, the counit morphism ε : γ→ IdD(R) satisfies that γε : γ
2 → γ

is invertible and γε= εγ. See [74, Prop. 4.9.1] for details.

A triangulated subcategory of D(R) is called localizing (resp. colocalizing) if it is closed

under small coproducts (resp. small products). Given a subcategory X , the pair (X ,X⊥0)

is a stable t-structure if and only if X is a coreflective localizing subcategory; similarly, the

pair (⊥0X ,X ) is a stable t-structure if and only if X is a reflective colocalizing subcategory.

A localization functor λ : D(R) → D(R) is called smashing if it commutes with small

coproducts, or equivalently, if Imλ is closed under small coproducts. In this case, Kerλ

is called a smashing subcategory.

Now, assume that R is a commutative noetherian ring. The theorem of Neeman [86,

Th. 2.8] asserts that localizing subcategories of the derived category D(R) are in bijective

correspondence with subsets of the Zariski spectrum SpecR. If W ⊆ SpecR is the subset

corresponding to a localizing subcategory L, then L is the smallest localizing subcategory

containing the small set {κ(p) | p ∈ W}, where κ(p) = Rp/pRp. Thus, it also follows that

every localizing subcategory of D(R) is coreflective (see [74, §§5.1 and 7.2]). In other words,

(L,L⊥0) is a stable t-structure.

This correspondence can be described by using an invariant in D(R). The support of a

complex X ∈D(R) is the set

suppX := {p ∈ SpecR | κ(p)⊗L
RX �= 0}.

Note that suppX = ∅ if and only if X = 0 in D(R) by [86, Lem. 2.12]. For each W ⊆ SpecR,

the subcategory

LW := {X ∈D(R) | suppX ⊆W}

https://doi.org/10.1017/nmj.2024.1 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2024.1


12 M. HRBEK ET AL.

is localizing, and the bijection due to Neeman is given by W �→ LW . As mentioned above,

LW is coreflective, so the inclusion functor LW ↪→D(R) admits a right adjoint, which we

denote by γW :D(R)→LW . Since the pair (LW ,L⊥0

W ) is a stable t-structure, the inclusion

L⊥0

W ↪→ D(R) admits a left adjoint, which we denote by λW : D(R) → L⊥0

W . Regarding

this functor as the composition D(R)
λW−−→ L⊥0

W ↪→D(R), we obtain a localization functor

λW :D(R)→D(R). By [86, Th. 3.3], the localization functor λW is smashing if and only

if W is specialization closed, that is, W is an upper subset of the poset (SpecR,⊆), or

equivalently, W is an arbitrary union of Zariski closed subsets of SpecR. To understand

λW from another viewpoint, let us use a dual invariant to the notion of support.

The cosupport of a complex X ∈D(R) is the set

cosuppX := {p ∈ SpecR |RHomR(κ(p),X) �= 0}.

Note that cosuppX = ∅ if and only if X = 0 in D(R) by [86, Th. 2.8]. For each W ⊆ SpecR,

the subcategory

CW := {X ∈D(R) | cosuppX ⊆W}

is colocalizing (and in fact every colocalizing subcategory of D(R) is of this form by [92]).

Since the localizing subcategory LW c for W c := SpecR\W is generated by {κ(p) | p∈W c},
we have

L⊥0

W c = CW .

Denote by λW :D(R)→ CW the left adjoint to the inclusion functor CW = L⊥0

W c ↪→D(R),

that is,

λW := λW c .

By definition, (LW c ,CW ) is a stable t-structure in D(R), so we have the approximation

triangle

γW cX →X → λWX → ΣγW cX (2.3)

for every X ∈D(R).

If W0 ⊆W ⊆ SpecR, then LW0 ⊆ LW , so we have

γW0γW
∼= γW0

∼= γWγW0 and λW0λW ∼= λW0 ∼= λWλW0 (2.4)

by a standard argument (see [84, Rem. 3.7(i)] and [85, Rem. 2.7(ii)]).

If V ⊆ SpecR is a specialization closed subset, then the following equalities hold:

L⊥0

V = LV c = CV c

= ⊥0CV , (2.5)

which can be deduced from [86, Th. 3.3].

A subsetW ⊆ SpecR is called generalization closed if its complement W c is specialization

closed. If we take the generalization closed subset U(p) := {q ∈ SpecR | q⊆ p} for a prime

ideal p, then

γU(p)
∼=RHomR(Rp,−) and λU(p) ∼=−⊗RRp (2.6)

(see, e.g., [84, p. 2584] and [85, (2.8)]).
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For an R-module M, define SuppM := {p ∈ SpecR |Mp �= 0}, which we refer to as the

classical support of M. Let V be a specialization closed subset V, and denote by ΓV :

ModR → ModR the functor that assigns to each R-module M the submodule ΓV M :=

{x ∈M | SuppRx⊆ V }(see [52, Chap. IV, §1, Variation 1]). It is well known that

γV ∼=RΓV and λV ∼=RHomR(RΓV R,−) (2.7)

(see [77, Prop. 3.5.7] and [28, Prop. 8.3]). Note that (RΓV R)⊗L
RX ∼= RΓV X for every

X ∈ D(R) (see [77, Prop. 3.5.5(ii)]), and so λV : D(R) → D(R) is a right adjoint to γV :

D(R)→D(R), by (2.7) and tensor-hom adjunction.

If we take the Zariski closed subset V (I) := {p ∈ SpecR | I ⊆ p} for an ideal I, then

γV (I)
∼=RΓI and λV (I) ∼= LΛI , (2.8)

where ΓI is the I-torsion functor lim−→n≥1
HomR(R/In,−) and ΛI is the I-adic completion

functor lim←−n≥1
(−⊗RR/In). The first isomorphism of (2.8) follows from the isomorphism

ΓI
∼= ΓV (I) of functors ModR→ModR (see [52, Chap. V, Cor. 4.2] or [53, Chap. II, Exer.

5.6]). The second isomorphism of (2.8) follows from (2.7) and the isomorphism

LΛI ∼=RHomR(RΓIR,−), (2.9)

which is known as Greenlees–May duality ([50]); see [77, §4] or [108, Cor. 9.2.4]. In

particular, this fact ensures that LΛI :D(R)→D(R) is a right adjoint to RΓI :D(R)→
D(R). Moreover, there are isomorphisms

RΓILΛ
I ∼=RΓI and LΛIRΓI

∼= LΛI ; (2.10)

see [108, Th. 9.1.3] (cf. [2, Cor. 5.1.1]). More generally, we have γV λ
V ∼= γV and λV γV ∼= λV

for a specialization closed subset V by a formal argument using (2.3) and (2.5).

Let I be an ideal of R and x = x1, . . . ,xt be a system of generators of I. For each xi,

consider the complex (R→Rxi) concentrated in degrees 0 and 1, where the map R→Rxi is

the localization R→ S−1R with respect to the multiplicatively closed subset S generated by

xi. The (extended) Čech complex with respect to x is the complex Č(x) :=
⊗n

i=1(R→Rxi).

For every X ∈D(R), there is a natural isomorphism

RΓIX ∼= Č(x)⊗RX (2.11)

in D(R) (see, e.g., [77, §3.1]).

Notation 2.9. For each p ∈ SpecR, we fix once and for all a system of generators

x= x1, . . . ,xt of p, and write Č(p) := Č(x).

2.3 Depth and width

Let R be a commutative noetherian ring, and let X be a complex of R-modules. The

infimum and supremum of X are defined as

infX := inf{n ∈ Z |Hn(X) �= 0} and supX := sup{n ∈ Z |Hn(X) �= 0},

respectively, where inf X = ∞ and supX = −∞ if X is acyclic (i.e., Hn(X) = 0 for all

i ∈ Z). Let I be an ideal of R, and take a system of generators x= x1, . . . ,xt of I. For each

xi, consider the complex (R
·xi−−→R) concentrated in degrees −1 and 0. The Koszul complex
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with respect to x is the complex K(x) :=
⊗n

i=1(R
·xi−−→ R). By [46, Ths. 2.1 and 4.1], the

following hold:

infRΓIX = infRHomR(R/I,X) = inf HomR(K(x),X) and (2.12)

supLΛIX = sup((R/I)⊗L
RX) = sup(K(x)⊗RX). (2.13)

The I-depth and I-width of X are defined as

depthR(I,X) := inf RΓIX and widthR(I,X) :=−supLΛIX,

respectively. If R is a local ring with maximal ideal m, the depth and width of X are defined

as

depthRX := depthR(m,X) and widthRX := widthR(m,X),

respectively.

For a specialization closed subset W of SpecR, the W-depth of X is defined as

depthR(W,X) := infRΓWX

(see [52, Chap. IV, §2]). Given an ideal I of R with V (I) ⊆ W , we have RΓV (I)RΓW
∼=

RΓV (I) (see (2.4) or Remark 4.2). Hence infRΓWX ≤ infRΓIX = depthR(I,X). Con-

versely, if there is an integer n such that n≤ infRΓV (I)X for every ideal I with V (I)⊆W ,

then n ≤ infRΓWX since for each complex Y, ΓWY can be written as lim−→V (I)⊆W
ΓIY in

the category C(R) of complexes of R-modules, where I runs through all ideals of R with

V (I)⊆W . Thus it holds that

depthR(W,X) = inf{depthR(I,X) | V (I)⊆W}. (2.14)

By using (2.14) and [46, Props. 2.10 and 2.11], we can easily deduce that

depthR(W,X) = inf{depthRp
Xp | p ∈W}= inf{depthR(p,X) | p ∈W}. (2.15)

A similar phenomenon to the above can not be expected for width and a specialization

closed subset W. Nevertheless, we define the W-width of a complex X ∈D(R) as

widthR(W,X) :=−supλWX,

where λWX ∼=RHomR(RΓWR,X) in D(R) (see (2.7)). If W = V (J) for some ideal J, then

widthR(W,X) = widthR(J,X) by (2.8). In general, there is an inequality

supLΛIX ≤ supλWX

for every ideal I with V (I)⊆W by (2.4), and hence

width(W,X)≤ inf{widthR(I,X) | V (I)⊆W}.

As described in Remark 2.10, there are a specialization closed subset W and a complex X

such that supX < supλWX, while supLΛIX ≤ supX for every ideal I with V (I)⊆W , so

it can happen that

widthR(W,X)<−supX ≤ inf{widthR(I,X) | V (I)⊆W}.
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Remark 2.10. Recall that there is a (commutative noetherian) integral domain R of

finite global dimension such that the projective dimension of R(0) over R is greater than

one (see [66, Th. 2] or [97, §6]). Letting W := SpecR\{(0)}, we obtain a triangle

RHomR(R(0),X)→X → λWX → ΣRHomR(R(0),X)

in D(R), where γW cX ∼= RHomR(R(0),X) (see (2.3) and (2.6)). Since the projective

dimension of R(0) is greater than one, we can choose X as an R-module such that

supRHomR(R(0),X) > 1, and then supλWX > 0 by the above triangle. Thus it happens

that 0 = supX < supλWX.

2.4 Sp-filtrations

Let R be a commutative noetherian ring. An sp-filtration of SpecR is a map Φ : Z →
2SpecR such that Φ(n) is a specialization closed subset of SpecR and Φ(n) ⊇ Φ(n+1) for

every n ∈ Z. An sp-filtration Φ is nondegenerate if
⋃

n∈Z
Φ(n) = SpecR and

⋂
n∈Z

Φ(n) = ∅,
where the former condition is equivalent to Φ(n) = SpecR for some n ∈ Z, since R has only

finitely many minimal prime ideals.

Remark 2.11. To each sp-filtration Φ, assign a function fΦ : SpecR → Z∪{−∞,∞}
given by

fΦ(p) := sup{n ∈ Z | p ∈ Φ(n)}+1

for each p ∈ SpecR. By definition, fΦ is order-preserving, that is, p ⊆ q implies fΦ(p) ≤
fΦ(q). Then the assignment Φ �→ fΦ yields a bijection from the sp-filtrations of SpecR to

the order-preserving functions SpecR → Z∪{−∞,∞}.1 The inverse map is described as

follows. To each order-preserving function f : SpecR→ Z∪{−∞,∞}, assign an sp-filtration

Φf : Z→ SpecR given by

Φf(n) := {p ∈ SpecR | f(p)> n}

for each n ∈ Z.
Notice that non-degeneracy of an sp-filtration Φ is equivalent to that the function fΦ :

SpecR→ Z∪{−∞,∞} corestricts to a function SpecR→ Z.

By [4, Ths. 3.10 and 3.11], there is a bijection{
sp-filtrations

of SpecR

}
∼−→
{
compactly generated

t-structures in D(R)

}
, (2.16)

given by Φ �→ (UΦ,VΦ), where

UΦ := {X ∈D(R) | SuppHn(X)⊆ Φ(n) ∀n ∈ Z} and

VΦ := {X ∈D(R) | depthR(Φ(n),X)> n ∀n ∈ Z}.

To describe a set of compact objects generating each t-structure (UΦ,VΦ), we use the

following notation.

1 The authors naturally reached this fact in order to formulate Theorem 1.1, while Ryo Takahashi had
also noticed this bijection (in relation with [39]) and he recently reported it as well (see [115, Prop. 4.3]).
He kindly suggested that the authors more emphasize the bijection, and his suggestion actually clarified
their work; for example, (3.1) was added after that.
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Notation 2.12. For each p ∈ SpecR, we fix once and for all a system of generators

x= x1, . . . ,xt of p (as in Notation 2.9), and write K(p) :=K(x).

Let Φ be an sp-filtration of SpecR, and let

SΦ := {Σ−nK(p) | n ∈ Z,p ∈ Φ(n)}.

Using (2.12) and (2.15), we can show that

S⊥0

Φ = VΦ. (2.17)

In particular, the t-structure (UΦ,VΦ) is (compactly) generated by SΦ. (2.17) is stated in

[114, Prop. 4.14] (cf. [4, Cor. 3.9 and Th. 3.10]).

We remark that an sp-filtration Φ is nondegenerate if and only if the t-structure (UΦ,VΦ)

is nondegenerate (see the proof of [10, Th. 3.8]). Hence, combining (2.2) and (2.16), we

obtain the bijection ⎧⎨⎩
nondegenerate

sp-filtrations

of SpecR

⎫⎬⎭ ∼−→

⎧⎨⎩
cosilting t-structures

of cofinite type

in D(R)

⎫⎬⎭ (2.18)

given by Φ �→ (UΦ,VΦ).

We can also classify silting t-structures of finite type by using nondegenerate sp-

filtrations as in [10, Th. 3.8]. For the reader’s sake, we here give a more direct proof

of this fact, describing the classification explicitly. Let Φ be an sp-filtration. Applying

(−)∗ := HomR(−,R) to each object in SΦ, we obtain the set of compact objects

S∗
Φ := {Σn(K(p)∗) | n ∈ Z,p ∈ Φ(n)}.

By [114, Th. 4.15], the assignment Φ �→ (⊥0(S∗
Φ
⊥0),S∗

Φ
⊥0) yields a bijection from the

sp-filtrations to the compactly generated co-t-structures in D(R).2 Further, there is a

t-structure in D(R) of the form (S∗
Φ
⊥0 ,(S∗

Φ
⊥0)⊥0) by [114, Th. 3.11] (see also [10, Th.

3.1 and Lem. 3.2] and the two paragraphs after [10, Exam. 2.9]). Then we see that

the assignment Φ �→ (S∗
Φ
⊥0 ,(S∗

Φ
⊥0)⊥0) yields an injective map from the sp-filtrations to

the t-structures in D(R). The t-structure (S∗
Φ
⊥0 ,(S∗

Φ
⊥0)⊥0) is nondegenerate if and only

if it is induced by a silting object, which is of finite type by definition (see [6, Th.

4.11]). Moreover, non-degeneracy of the t-structure (S∗
Φ
⊥0 ,(S∗

Φ
⊥0)⊥0) is equivalent to non-

degeneracy of Φ; this fact follows from [10, Th. 3.1 and Lem. 3.2] along with (2.16) and

(2.18). Therefore, the map given by Φ �→ (S∗
Φ
⊥0 ,(S∗

Φ
⊥0)⊥0) restricts to an injective map

from the nondegenerate sp-filtrations to the silting t-structures of finite type. On the other

hand, given a silting t-structure (Y,W) of finite type, there is a compactly generated co-t-

structure of the form (⊥0Y,Y) by [1, Th. 4.3] (see also the third paragraph of [10, p. 688]).

Then [114, Th. 4.15] implies that (⊥0Y,Y) = (⊥0(S∗
Φ
⊥0),S∗

Φ
⊥0) for some sp-filtration Φ, so

that (Y,W) = (S∗
Φ
⊥0 ,(S∗

Φ
⊥0)⊥0). Now, we define

YΦ := {X ∈D(R) | widthR(p,X)> n ∀n ∈ Z ∀p ∈ Φ(n)},

2 We here follow the definition of co-t-structures in [10, §2.5]. If one follows [114, Def. 4.2], the above
co-t-structure should be just written as (⊥0(S∗

Φ
⊥0),Σ−1(S∗

Φ
⊥0)).
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and remark that

S∗
Φ
⊥0 = YΦ (2.19)

for each sp-filtration Φ (see (2.13) and the proof of [114, Th. 4.15]). Then it follows from

the above argument that there is a bijection

⎧⎨⎩
nondegenerate

sp-filtrations

of SpecR

⎫⎬⎭ ∼−→

⎧⎨⎩
silting t-structures

of finite type

in D(R)

⎫⎬⎭ (2.20)

given by Φ �→ (YΦ,Y⊥0

Φ ).

Given a nondegenerate sp-filtration Φ, the t-structures (UΦ,VΦ) and (YΦ,Y⊥0

Φ ) are

induced by some cosilting object C and some silting object T, respectively, by (2.18) and

(2.20), but the classifications do not concretely tell us what C and T are in general. One of

our main purposes is to explicitly realize such a cosilting object and a silting object under

some assumption on Φ.

We will first deal with the silting side in Sections 3 and 4. When we next deal with the

cosilting side in Section 5, it will be important to know that the injection mentioned in

Section 2.1.5 becomes bijective for any commutative noetherian ring R. That is, there is a

bijection

⎧⎨⎩
equivalence classes of

silting objects of finite type

in D(R)

⎫⎬⎭ ∼−→

⎧⎨⎩
equivalence classes of

cosilting objects of cofinite type

in D(R)

⎫⎬⎭ (2.21)

given by T �→ T+, where (−)+ := RHomR(−,E) and E is any injective cogenerator E

in ModR (see [10, Th. 3.8] and the last paragraph of Section 2.1.6). This bijection is

compatible with (2.18) and (2.20) in the following sense: If T is a silting object with

(T⊥>0 ,T⊥≤0) = (YΦ,Y⊥0

Φ ) for a nondegenerate sp-filtration Φ, then T+ is a cosilting object

with (⊥≤0(T+),⊥>0(T+)) = (UΦ,VΦ) (see [10, Ths. 3.2 and 3.3], (2.17), and (2.19)).

Remark 2.13. Let S, R, and E be as in Section 2.1.5. Then R is a tilting object

of finite type in D(R) and it induces the standard t-structure (D≤0(R),D>0(R)), while

R+ := RHomS(R,E) is a cotilting object of cofinite type in D(Rop) and it induces the

(shifted) standard t-structure (D≤−1(Rop),D>−1(Rop)).

If R is a commutative noetherian ring and S =R, these t-structures can be described by

a nondegenerate sp-filtration, as explained above. Indeed, take the sp-filtration Φ defined by

Φ(n) := SpecR for n≤−1 and Φ(n) := ∅ for n>−1. Then (D≤−1(R),D>−1(R)) = (UΦ,VΦ)

clearly, so (D≤0(R),D>0(R)) = (YΦ,Y⊥0

Φ ) by (2.21).

2.5 Dualizing complexes

Let R be a commutative noetherian ring. We state here various facts about dualizing

complexes. We allow them to have infinite injective dimension, following Neeman’s approach

[90, Def. 3.1].
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2.5.1.

We say that a complex X of R-module is cohomologically bounded if Hi(X) = 0 for all

i� 0 and i� 0. We denote by Db
fg(R) the subcategory of D(R) formed by cohomologically

bounded complexes X with finitely generated cohomology modules.

A complex D ∈ Db
fg(R) is called a dualizing complex for R if the functor

RHomR(−,D) : D(R)op → D(R) induces a duality Db
fg(R)op ∼−→ Db

fg(R), or equivalently,

if for every X ∈ Db
fg(R), we have RHomR(X,D) ∈ Db

fg(R) and the canonical morphism

X →RHomR(RHomR(X,D),D) is an isomorphism (see [90, Prop. 3.6]).

Remark 2.14. Recall that a complex D of R-modules is called a pointwise dualizing

complex for R if Dp = Rp⊗RD is a dualizing complex for Rp at each point p ∈ SpecR. A

complex D of R-modules is a dualizing complex in our sense if and only if D is a pointwise

dualizing complex and cohomologically bounded. This characterization is due to Gabber

(see [37, Lem. 3.1.5]) and he called a complex satisfying the latter conditions a strongly

pointwise dualizing complex, as stated in [90, Footnote 1]. See also [19, Th. 6.2.2], where

the above characterization is recovered.

We say that a dualizing complex is classical if it is isomorphic to a bounded complex of

injective modules. A complex of R-modules is a classical dualizing complex if and only if it

is a pointwise dualizing complex and R has finite Krull dimension (see [52, Chap. V, Cor.

7.2, and Prop. 8.2]). In the literature, dualizing complexes usually refer to classical ones.

If D is a pointwise dualizing complex, then, for each p ∈ SpecR, there is a unique integer

dD(p) such that Ext
dD(p)
Rp

(κ(p),Dp) �= 0 (see [52, pp. 282 and 287]). Moreover, it holds that

RΓpDp
∼=Σ−dD(p)ER(R/p) (2.22)

for each p (see [52, Chap. V and Prop. 6.1]), where ER(R/p) stands for the injective hull

of R/p over R.

If D and D′ are dualizing complexes for R, then there is an invertible complex L ∈D(R)

(in the sense of [19, §5]) such that D ∼=D′⊗L
RL in D(R); see [90, Lem. 3.9] and [19, Prop.

5.1] (cf. [52, Chap. V, Th. 3.1]). In particular, if R is local and admits a dualizing complex

D, then D is uniquely determined in D(R) up to shift and isomorphism.

Notation 2.15. If R is a local ring having a dualizing complex, we denote by DR a

dualizing complex for R such that infDR = 0.

Remark 2.16. Suppose that R admits a dualizing complex D.

(1) If S is a multiplicatively closed subset of R, then S−1R⊗RD is a dualizing complex for

S−1R.

(2) If R is local and m is the maximal ideal of R, then R̂⊗L
RDR

∼= R̂⊗RDR
∼=D

̂R in D(R)

and in D(R̂) (see [52, Chap. V, Cor. 3.5] and [79, Th. 8.14]), where R̂ := ΛmR.

(3) If R→ A is a homomorphism of commutative noetherian rings such that A is finitely

generated as an R-module, then RHomR(A,D) ∈Db
fg(A) is a dualizing complex for A

(see Remark 2.14 and [19, Cor. 6.2.4]). If R is a Gorenstein ring (i.e., Rm has finite

injective dimension over Rm for every maximal ideal m), then R itself is a dualizing

complex for R (by Remark 2.14 and [52, Chap. V, Th. 9.1]), and hence, given any ideal

I of R, RHomR(R/I,R) ∈Db
fg(R/I) is a dualizing complex for R/I.
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If (R,m) is a local ring, then R̂ is a homomorphic image of a regular local ring by Cohen’s

structure theorem (see [79, Th. 29.4(ii)]), so R̂ admits a dualizing complex (see [52, p. 299]).

2.5.2.

Recall that a complex X of R-modules is called minimal if every homotopy equivalence

X →X is an isomorphism in C(R) (see [20, p. 397]). A complex X of R-modules is called

K-projective (resp. K-injective, K-flat), if the functor HomR(X,−) (resp. HomR(−,X),

−⊗RX) from C(R) to C(R) preserves acyclicity of complexes (see [113]). Suppose that R

admits a dualizing complex D. According to the proof of [52, Chap. I, Lem. 4.6(3)], one

can construct a K-injective resolution D→ I such that I is a minimal complex of injective

modules with In = 0 for n < infD (see also [72, Appendix B]).

It essentially follows from (2.22) and the structure theorem of injective R-modules (see

[79, Ths. 18.4 and 18.5]) that

In ∼=
⊕

p∈SpecR
dD(p)=n

ER(R/p)

for every n ∈ Z. This well-known fact can be verified by noting that Rp⊗R− and Γp send

every minimal complex of injective R-modules to a minimal complex of injective R-modules

(see Remark 4.2 and [72, Lem. B.1]). If R is local and D =DR (as in Notation 2.15), then

dD(p) = dimR−dimR/p (see Section 2.5.3).

2.5.3.

A strictly increasing chain p0 � p1 � · · · � pn of prime ideals in SpecR is said to be

saturated if, for each i with 0 ≤ i < n, there is no prime ideal q such that pi � q � pi+1.

A function d : SpecR → Z is called a codimension function on SpecR if it satisfies that

d(p1) = d(p0)+1 for every saturated chain p0 � p1 of length 1 in SpecR (see [52, p. 283]).

Clearly, this definition is equivalent to that d(pn) = d(p0) + n for every saturated chain

p0 � p1 � · · ·� pn of arbitrary length n in SpecR. One can also characterize a codimension

function as a function d : SpecR→ Z satisfying d(p2)−d(p1) = ht(p2/p1) for any inclusion

p1 � p2 in SpecR, where ht(p2/p1) is the height of the prime ideal p2/p1 of R/p1.

Existence of a codimension function on SpecR implies that R is catenary (see [52, p.

284]), that is, whenever p and q are prime ideals with p� q, every saturated chain starting

from p and ending at q has the same length. When a codimension function d on SpecR

exists, d+ c is a codimension function on SpecR as well for any constant c ∈ Z, and d

is uniquely determined up to constant if SpecR is connected (e.g., [69, Def. 5.1]). More

precisely, given two codimension functions d and d′ on SpecR and a connected component

S of SpecR, d−d′ is constant on S.

If R admits a pointwise dualizing complex D, the function given by p �→ dD(p) is a

codimension function (see (2.22) and [52, p. 287]). There are cases where R may not admit

a (pointwise) dualizing complex but a codimension function exists. Indeed, if R is Cohen–

Macaulay (i.e., depthRm
Rm = dimRm for every maximal ideal m), the height function ht :

SpecR → Z is a codimension function by [79, Th. 17.4(i)] (see also the proof of [79, Th.

17.4(ii)]). Moreover, if R is catenary and local, the assignment p �→ dimR−dimR/p defines

a codimension function. We also remark that, when R is a one-dimensional ring, the height
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function and the function given by p �→ dimR−dimR/p are both codimension functions,

but R may not admit a dualizing complex (see Remark 6.16).

Example 2.17. Let k be a field.

(1) Let R := k[[x]][y] and p := (1− xy). Then ht(p) = 1 and dimR/p = 0, so dimR−
dimR/p = 2 > ht(p). Note that R is a dualizing complex for R and dR = ht. Since

SpecR is connected, a codimension function on SpecR is unique up to a constant.

Thus the function SpecR → Z given by q �→ dimR− dimR/q is not a codimension

function.

(2) Let R := k[[x,y,z]]/(xy,xz). Then dimR = 2, and p := (y,z) ⊆ R is a minimal prime

ideal, while dimR/p=1. Hence dimR−dimR/p=1> ht(p) = 0. The ring R is catenary

and local, so the function SpecR→ Z given by q �→ dimR−dimR/q is a codimension

function. Thus the height function ht : SpecR→ Z is not a codimension function, since

SpecR is connected.

2.5.4.

The existence of a dualizing complex allows us to use a powerful method, by which we

can prove Theorems 1.1 and 1.2(1) under additional yet mild conditions in a very efficient

way (see Remark 3.14). We denote by ProjR (resp. InjR, FlatR) the category of projective

(resp. injective, flat) R-modules. For an additive subcategory A of ModR, we denote by

K(A) the homotopy category of complexes of modules in A. The pure derived category

D(FlatR) of flat R-modules is defined as the Verdier quotient category of the homotopy

category K(FlatR) by the subcategory of pure acyclic complexes of flat modules (i.e.,

acyclic K-flat complexes of flat modules). If we regard FlatR as the exact category in a

natural way, then D(FlatR) is the derived category of FlatR in the sense of [31, §10].
Under the existence of a classical dualizing complex D (being a bounded complex of

injective modules), Iyengar and Krause [63, Th. 1] showed that the triangulated functor

D⊗R− : K(ProjR) → K(InjR) is an equivalence, where its quasi-inverse is given by

composing HomR(D,−) :K(InjR)→K(FlatR) with a right adjointK(FlatR)→K(ProjR)

to the inclusion K(ProjR) ↪→K(FlatR).

On the other hand, Neeman [89, Th. 1.2 and Facts 2.14] proved that the canonical functor

K(ProjR) →D(FlatR) is a triangulated equivalence (for any ring) and pointed out that

D⊗R− :K(ProjR)→K(InjR) factors through the quotient functor K(FlatR)→D(FlatR)

(see [89, Facts 2.17]).

As a consequence, if D is as above, then D⊗R− :D(FlatR)→K(InjR) is a triangulated

equivalence whose quasi-inverse is given by HomR(D,−) : K(InjR) → D(FlatR). In fact,

Neeman [91, Cor. 3.19] extended the triangulated equivalence D⊗R− : K(ProjR) →
K(InjR) to the case that D is a (strongly pointwise) dualizing complex (see Remark 2.14).

In conclusion, we have the following fact.

Theorem 2.18 [63], [89], and [91]. Let R be a commutative noetherian ring.

(1) The canonical functor

K(ProjR)→D(FlatR)

is a triangulated equivalence.
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(2) Assume that R admits a dualizing complex D and that D is a bounded below complex

of injective R-modules. Then the functor

D⊗R− :D(FlatR)→K(InjR)

is a triangulated equivalence whose quasi-inverse is given by

HomR(D,−) :K(InjR)→D(FlatR).

Remark 2.19. There is a fully faithful functor D(R) ↪→D(FlatR), which is the compo-

sition of the canonical embedding D(R) ↪→K(ProjR) with the equivalence K(ProjR) ∼−→
D(FlatR) by Theorem 2.18(1). Given any K-flat complex X of flat R-modules and

a K-projective complex P ∈ K(ProjR) with a quasi-isomorphism P → X, the functor

D(R) ↪→ K(ProjR) replaces X by P, and the mapping cone of the quasi-isomorphism

P →X is pure acyclic. Hence P and X are identified in D(FlatR). Then we see that the

image of X by the functor D(R) ↪→D(FlatR) is X up to isomorphism.

On the other hand, the canonical functor K(FlatR)→D(R) naturally induces a trian-

gulated functor D(FlatR)→D(R), which yields the canonical map HomD(FlatR)(X,Y )→
HomD(R)(X,Y ), where X and Y are complexes of flat R-modules. Suppose that X

and Y are K-flat. Then this canonical map is bijective (as observed in the proof of

[81, Th. 5.5] for schemes). Indeed, by the previous paragraph, we have the canoni-

cal bijection HomD(R)(X,Y ) ∼−→ HomD(FlatR)(X,Y ), and, composing it with the map

HomD(FlatR)(X,Y )→HomD(R)(X,Y ), we obtain the identity map on HomD(R)(X,Y ); the

last fact can be easily verified because we may assume that X and Y are K-projective

complexes of projective R-modules.

2.6 Lukas lemma for complexes

We here recall the Lukas lemma, which makes first extension groups vanish under some

conditions. We use this technical lemma to handle arbitrary commutative noetherian rings

of possibly infinite Krull dimension and their arbitrary sp-filtrations (cf. Remark 3.14 and

Footnote 6).

Let R be an arbitrary ring and X ∈C(R), where C(R) is the category of complexes of

right R-modules. Let C be a subcategory of C(R). A C-cofiltration of X is an inverse system

(Xα,πα,β | α ≤ β ≤ δ) formed by an ordinal δ and epimorphisms πα,β :Xβ →Xα in C(R)

indexed by α≤ β ≤ δ such that the following conditions are satisfied:

(i) Xδ =X,

(ii) lim←−α<β
Xα =Xβ for each limit ordinal β ≤ δ, and

(iii) X0 ∈ C and Ker(πα,α+1) ∈ C for every α < δ.

See [47, Def. 6.34(i)].

Lemma 2.20 (Lukas lemma). Let X,Y ∈C(R) and

C := {Z ∈C(R) | Ext1C(R)(X,Z) = 0}.

If Y has a C-cofiltration, then Y ∈ C.

Proof. See [47, Lem. 6.37], which is proved for modules, but the proof also works for

complexes.
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We close this section by giving an interpretation of this lemma from the view point of

the derived category. What we need for this purpose is the equivalence HomD(R)(X,Y ) =

0⇔ Ext1C(R)(ΣP,Y ) = 0 for X,Y ∈C(R) and a K-projective resolution P →X such that

P consists of projective modules (cf. [43, Cor. 3.3]). We state this classical fact in a better

way, which is also well known to specialists.

Given X,Y ∈ C(R), there is a canonical morphism HomC(R)(X,Y ) → Ext1C(R)(ΣX,Y )

of abelian groups, which assigns to each chain map f : X → Y the equivalence class of

the canonical exact sequence 0 → Y → Cone(f) → ΣX → 0. The exact sequence splits

if and only if f is null-homotopic (see [43, Lem. 3.2]), and the image of the canonical

morphism HomC(R)(X,Y ) → Ext1C(R)(ΣX,Y ) is the subgroup Ext1C(R),dw(ΣX,Y ) formed

by the equivalence classes of degreewise split exact sequences. Thus, there is a canonical

isomorphism HomK(R)(X,Y ) ∼−→Ext1C(R),dw(ΣX,Y ), where K(R) stands for the homotopy

category of complexes of R-modules. For a complex P of projective R-modules, we have

Ext1C(R),dw(ΣP,Y ) = Ext1C(R)(ΣP,Y ), so if we further assume that P is a K-projective

resolution of X, then there are canonical isomorphisms

HomD(R)(X,Y )∼=HomK(R)(P,Y )∼= Ext1C(R)(ΣP,Y ). (2.23)

Corollary 2.21. Let X,Y ∈ D(R), and consider the subcategory X⊥0 of D(R). Let

C be the subcategory of C(R) formed by all objects in X⊥0, that is, C := {Z ∈ C(R) |
HomD(R)(X,Z) = 0}. If Y has a C-cofiltration, then Y ∈X⊥0.

Proof. Let P be a K-projective resolution of X such that P consists of projective R-

modules. By definition, we have HomD(R)(X,Z) ∼= HomK(R)(P,Z) for all complexes Z,

so C = {Z ∈ C(R) | HomK(R)(P,Z) = 0}. It follows from (2.23) that C = {Z ∈ C(R) |
Ext1C(R)(ΣP,Z) = 0}, and hence, if Y has a C-cofiltration, then the Lukas lemma yields

Y ∈ C, or equivalently, Y ∈X⊥0 .

§3. Slice sp-filtrations and codimension filtrations

In the rest of this paper, R denotes a commutative noetherian ring unless otherwise

specified. For a subset W of SpecR, dimW denotes the supremum of lengths of strict

chains of prime ideals in W. In particular, dim(SpecR) is the Krull dimension of R, which

is denoted by dimR as before. Note that if W is empty, then dimW =−∞ by definition.

Definition 3.1. Let Φ be an sp-filtration of SpecR. We call Φ a slice sp-filtration of

SpecR if it is nondegenerate and dim(Φ(n)\Φ(n+1))≤ 0 for all n ∈ Z.

Slice sp-filtrations are precisely the filtrations used in [52, Chap. IV, §3] for the definition
of Cousin complexes.

Remark 3.2. The authors of the present paper would like to adopt “slice”3 (rather than

“Cousin”) to avoid a possible confusion with other notions of sp-filtrations (see Remark 3.4).

After this choice, the authors noticed that the terminology “slice filtration” is used in

the context of equivariant or motivic homotopy theory (see, e.g., [51], [54], [56], and [117]).

A basic idea behind slice filtrations is very similar to our motivation of Definition 3.1 (see

3 This terminology was initially brought from [85, Def. 7.6], which introduces a family of zero-dimensional
subsets of SpecR satisfying some conditions for a given finite-dimensional subset W to calculate the
Bousfield localization functor λW on D(R), and the authors of [85] called it a system of slices of W. The
conditions of this notion also imitate the definition of the filtrations in [52, Chap. IV and §3].
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Remark 4.3). However, our definition is not precisely compatible with the slice filtrations in

that area. We leave the prefix “sp-” so that the reader can distinguish ours from the other.

On the other hand, we remove the prefix from the filtrations considered in Example 3.3

for simplicity because we think there is no worry of confusion.

Recall that there is a bijective correspondence between the sp-filtrations of SpecR and

the order-preserving functions SpecR → Z∪ {∞,−∞}, and this restricts to a bijective

correspondence between the nondegenerate sp-filtrations of SpecR and the order-preserving

functions SpecR→ Z (see Remark 2.11). In fact, a nondegenerate sp-filtration Φ is a slice

sp-filtration if and only if its corresponding function fΦ is strictly increasing, that is, p� q

implies fΦ(p)< fΦ(q). Hence, we have the following commutative diagram:⎧⎨⎩
nondegenerate

sp-filtrations

of SpecR

⎫⎬⎭
⎧⎨⎩
order-preserving

functions

SpecR→ Z

⎫⎬⎭
⎧⎨⎩

slice

sp-filtrations

of SpecR

⎫⎬⎭
⎧⎨⎩
strictly increasing

functions

SpecR→ Z

⎫⎬⎭ .

⊇

∼
⊇

∼

(3.1)

As observed in (2.18) and (2.20), the silting t-structures of finite type and the cosilting

t-structures of cofinite type are classified by using the nondegenerate sp-filtrations. We will

explicitly construct a (co)silting object that induces the (co)silting t-structure corresponding

to each slice sp-filtration.

Example 3.3. A typical example of a slice sp-filtration is Φht defined by the height

function ht : SpecR→ Z as in Remark 2.11. We call Φht the height filtration of SpecR. If

R admits a codimension function d : SpecR→ Z, then Φd is also a slice sp-filtration, which

we call a codimension filtration of SpecR.

The grade function gr : SpecR→ Z is a natural example of an order-preserving function

that may not be strictly increasing, where gr(p) := depth(p,R). We call the sp-filtration Φgr

the grade filtration of SpecR. Note that gr≤ ht in general (see [30, Prop. 1.2.14]), and the

equality holds (or equivalently, gr is strictly increasing) if and only if R is Cohen–Macaulay

(see [30, Prop. 1.2.10(a)]).

Remark 3.4. An sp-filtration Φ of SpecR is said to satisfy the weak Cousin condition

if the following condition holds: For any n ∈ Z and any strict inclusion p� q in SpecR such

that p is maximal under q (i.e., p� q is a saturated chain), q ∈ Φ(n) implies p ∈ Φ(n−1).

See [4, p. 332, Def.]. If the converse implication also holds, then Φ is said to satisfy the

strong Cousin condition (see [4, p. 331, Rem.]).

Under the existence of a classical dualizing complex (resp. a pointwise dualizing complex),

the weak Cousin condition characterizes the case when the t-structure corresponding to Φ

via (2.16) restricts to a t-structure in Db
fg(R) (resp. Dfg(R)); see [4, Th. 6.9 and Cors. 3.12

and 6.10]. Here, Dfg(R) stands for the subcategory of D(R) formed by complexes with

finitely generated cohomology modules.
In general, a nondegenerate sp-filtration satisfying the weak Cousin condition need not

be a slice sp-filtration. Conversely, a slice sp-filtration need not satisfy the weak Cousin
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condition. In fact, a slice sp-filtration satisfies the weak Cousin condition if and only if it is
a codimension filtration. One can also directly check that a nondegenerate sp-filtration is a
codimension filtration if and only if it satisfies the strong Cousin condition. In conclusion:⎧⎨⎩

nondegenerate sp-filtrations
of SpecR satisfying

the strong Cousin condition

⎫⎬⎭=

⎧⎨⎩
slice sp-filtrations

of SpecR satisfying the
weak Cousin condition

⎫⎬⎭=

{
codimension filtrations

of SpecR

}
.

Definition 3.5. Let Φ be a nondegenerate sp-filtration of SpecR. We define

TΦ :=
⊕

p∈SpecR

ΣfΦ(p)RΓpRp,

which is an object in D(R).

Remark 3.6. Let p ∈ SpecR. It follows from (2.9), (2.11), and tensor-hom adjunction

that there is an isomorphism

RHomR(RΓpRp,−)∼= LΛpRHomR(Rp,−)

of functors D(R)→D(R). If m is a maximal ideal, then RΓmRm
∼=RΓmR in D(R) (see,

e.g., Remark 4.2), and so LΛm ∼= RHomR(RΓmR,−) ∼= LΛmRHomR(Rm,−) as functors

D(R)→D(R).

For each X ∈D(R), the inclusion suppRRΓpXp ⊆ {p} holds by (2.11). In particular, we

have suppRRΓpRp = {p}. It then follows from the previous paragraph that we also have

cosuppRLΛpRHomR(Rp,X)⊆ {p}.
We will show that TΦ is a silting object inducing the t-structure (YΦ,Y⊥0

Φ ) in D(R) for

every slice sp-filtration Φ of SpecR. For this, we at least need to show that T⊥>0

Φ = YΦ,

whence it follows that (T⊥>0

Φ ,(T⊥>0

Φ )⊥0) is a t-structure. However, it is still unclear if the

equality (T⊥>0

Φ )⊥0 = T
⊥≤0

Φ holds, so we have to further show that TΦ is silting in D(R) after

all. By Lemma 2.2, this is equivalent to showing the following conditions: (1) TΦ ∈ T⊥>0

Φ ;

(2) T⊥Z

Φ = 0; (3) T⊥>0

Φ is closed under coproducts. The second condition is not difficult to

check thanks to a result of Neeman.

Lemma 3.7. Let Φ be a nondegenerate sp-filtration. The object TΦ generates D(R), that

is, T⊥Z

Φ = 0.

Proof. Since suppRTΦ = SpecR by Remark 3.6, it follows from [86, Th. 2.8] that the

smallest localizing subcategory containing TΦ is D(R), or equivalently, T⊥Z

Φ = 0.

Showing the remaining two conditions (for TΦ with a slice sp-filtration Φ) requires

technical arguments. Since we have S∗
Φ
⊥0 = YΦ by (2.19), the third condition follows once

we verify the equality T⊥>0

Φ =YΦ, and this step is necessary in any case as mentioned above.

To compare these two subcategories, let us here give useful descriptions of T⊥>0

Φ and YΦ.

For every object X ∈D(R) and every integer n, we have natural isomorphisms

HomD(R)(TΦ,Σ
nX)∼=

∏
p∈SpecR

HomD(R)(Σ
fΦ(p)RΓpRp,Σ

nX)

∼=
∏

p∈SpecR

H0RHomR(Σ
fΦ(p)RΓpRp,Σ

nX)

∼=
∏

p∈SpecR

Hn−fΦ(p)LΛpRHomR(Rp,X)
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by Remark 3.6. Hence, HomD(R)(TΦ,Σ
nX) = 0 for all n > 0 if and only if it holds that

Hn−fΦ(p)LΛpRHomR(Rp,X) = 0 for all p ∈ SpecR and all n > 0, or equivalently, we have

supLΛpRHomR(Rp,X)≤−fΦ(p) for all p ∈ SpecR. Therefore

T⊥>0

Φ = {X ∈D(R) | widthRp
RHomR(Rp,X)≥ fΦ(p) ∀p ∈ SpecR}. (3.2)

On the other hand, for any X ∈D(R), the following bi-implications hold:

widthR(p,X)> n ∀n ∈ Z ∀p ∈ Φ(n)

⇔ widthR(p,X)> sup{n ∈ Z | p ∈ Φ(n)} ∀p ∈ SpecR

⇔ widthR(p,X)≥ fΦ(p) ∀p ∈ SpecR.

As a consequence,

YΦ = {X ∈D(R) | widthR(p,X)≥ fΦ(p) ∀p ∈ SpecR}. (3.3)

It will be shown in Proposition 4.5 that T⊥>0

Φ coincides with YΦ, but this is not easy. An

essential difficulty comes from non-exactness of the colocalization functors HomR(Rp,−).

It is also a delicate problem to verify the first condition TΦ ∈ T⊥>0

Φ . We provide two

approaches for this. To get the full generality, we use the Lukas lemma (Lemma 2.20) and

combine it with various facts on Bousfield localization functors (see Section 4). If R admits

a dualizing complex, then Theorem 2.18 enables us to efficiently prove the first condition

as explained below.

Let Φ be a nondegenerate sp-filtration of SpecR and assume R admits a dualizing

complex D, which we may regard as a bounded below complex of injective R-modules.

By (2.11), and using Notation 2.9, we have

TΦ
∼=

⊕
p∈SpecR

ΣfΦ(p)Č(p)p (3.4)

in D(R), where Č(p)p =Rp⊗RČ(p). Moreover, it follows from (2.11) and (2.22) that

D⊗RΣ
fΦ(p)Č(p)p ∼=ΣfΦ(p)−dD(p)ER(R/p) (3.5)

in D(R) for every p ∈ SpecR. Since (3.5) is an isomorphism between bounded below

complexes of injective modules, it can be realized as an isomorphism in K(InjR). Collecting

the isomorphisms inK(InjR) for all p∈ SpecR, and taking the coproduct of them, we obtain

an isomorphism ⊕
p∈SpecR

D⊗RΣ
fΦ(p)Č(p)p ∼=

⊕
p∈SpecR

ΣfΦ(p)−dD(p)ER(R/p) (3.6)

in K(InjR).

Proposition 3.8. Let R be a commutative noetherian ring with a dualizing complex

and Φ a nondegenerate sp-filtration of SpecR. Then the following hold.

(1) Add(TΦ)⊆ T⊥>0

Φ if and only if Φ is a slice sp-filtration.

(2) Add(TΦ)⊆ TΦ
⊥ �=0 if and only if Φ is a codimension filtration.

Proof. Let D be a dualizing complex for R, and regard D as a bounded below complex

of injective R-modules. For the sake of brevity, we write simply T, f and d instead of TΦ,

fΦ and dD, respectively.
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Let κ be a cardinal and n be an integer. By definition, we have

HomD(R)(T,Σ
nT (κ))∼=

∏
p∈SpecR

HomD(R)(Σ
f(p)RΓpRp,Σ

nT (κ)).

Fix p ∈ SpecR. It follows from (2.11) and Remark 2.19 that

HomD(R)(Σ
f(p)RΓpRp,Σ

nT (κ))∼=HomD(R)

(
Σf(p)Č(p)p,

⊕
q∈SpecR

Σn+f(q)Č(q)
(κ)
q

)
,

∼=HomD(FlatR)

(
Σf(p)Č(p)p,

⊕
q∈SpecR

Σn+f(q)Č(q)
(κ)
q

)
.

Furthermore, using Theorem 2.18(2), (3.5), and (3.6), we have

HomD(FlatR)

(
Σf(p)Č(p)p,

⊕
q∈SpecR

Σn+f(q)Č(q)
(κ)
q

)
∼=HomK(InjR)

(
Σf(p)D⊗RČ(p)p,D⊗R

( ⊕
q∈SpecR

Σn+f(q)Č(q)
(κ)
q

))
∼=HomK(InjR)

(
Σf(p)−d(p)ER(R/p),

⊕
q∈SpecR

Σn+f(q)−d(q)ER(R/q)(κ)
)

∼=HomK(InjR)

(
ER(R/p),

⊕
q∈SpecR

Σn+f(q)−f(p)−d(q)+d(p)ER(R/q)(κ)
)

∼=HomK(InjR)

(
ER(R/p),

⊕
i∈Z

( ⊕
q∈SpecR

n+f(q)−f(p)−d(q)+d(p)=i

ΣiER(R/q)(κ)

))

∼=HomK(InjR)

(
ER(R/p),

⊕
q∈SpecR

n+f(q)−f(p)−d(q)+d(p)=0

ER(R/q)(κ)

)

∼=HomK(InjR)

(
ER(R/p),

⊕
q∈V (p)

n+f(q)−f(p)−d(q)+d(p)=0

ER(R/q)(κ)

)
,

where the last isomorphism follows from Remark 3.9(1).

As a consequence, there is an isomorphism

HomD(R)(T,Σ
nT (κ))∼=

∏
p∈SpecR

HomK(InjR)

(
ER(R/p),

⊕
q∈V (p)

n+f(q)−f(p)=d(q)−d(p)

ER(R/q)(κ)

)
.

Then we see from Remark 3.9(1) that

Add(T )⊆ T⊥n ⇔ there is no p⊆ q in SpecR such that n+ f(q)− f(p) = d(q)−d(p).

Now, let us complete the proof.

(1): Suppose that Φ is a slice sp-filtration, or equivalently, f is strictly increasing (see

(3.1)). Take any inclusion p⊆ q in SpecR. Then f(q)− f(p)≥ d(q)−d(p) by Remark 3.9(2).

Therefore, n+ f(q)− f(p)> d(q)−d(p) for every n > 0. This implies Add(T )⊆ T⊥>0 by the

above equivalence.
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Conversely, suppose that Add(T )⊆ T⊥>0 . If the order-preserving function f : SpecR→Z
is not strictly increasing, then there is a strict inclusion p� q in SpecR such that f(q)−f(p)<

d(q)− d(p) by Remark 3.9(2). So, setting n := −f(q)+ f(p)+ d(q)− d(p) > 0, we have the

equality n+ f(q)− f(p) = d(q)− d(p), and then Add(T ) �⊆ T⊥n by the above equivalence.

This is a contradiction. Hence f must be strictly increasing.

(2): Suppose that Φ is a codimension filtration, or equivalently, f is a codimension

function. Take an inclusion p ⊆ q in SpecR. Then f(q)− f(p) = d(q)− d(p) by Remark

3.9(2). Thus Add(T )⊆ T⊥ �=0 by the above equivalence.

Conversely, suppose that Add(T )⊆ T⊥ �=0 . By (1), the function f : SpecR→ Z is strictly

increasing, so f(q)− f(p)≥ d(q)−d(p) for every inclusion p� q in SpecR by Remark 3.9(2).

If the inequality f(q)− f(p) > d(q)− d(p) occurs for some inclusion p � q in SpecR, then

setting n :=−f(q)+ f(p)+d(q)−d(p)< 0, we have the equality n+ f(q)− f(p) = d(q)−d(p).

Hence Add(T ) �⊆ T⊥n by the above equivalence, but this can not happen as we supposed

that Add(T ) ⊆ T⊥ �=0 . Thus we have f(q)− f(p) = d(q)− d(p) for every inclusion p � q in

SpecR, that is, f is a codimension function.

Remark 3.9. We here summarize two elementary facts used in the above proof.

(1) Let p,q∈ SpecR. Then HomR(ER(R/p),ER(R/q)) �=0 if and only if p⊆ q. The “if” part

follows because there is a nonzero R-linear map ER(R/p)→ER(R/q) that extends the

composition of the canonical map R/p�R/q and the given map R/q ↪→ER(R/q). The

“only if” part follows because ER(R/q) is q-local (i.e., the canonical map ER(R/q)→
ER(R/q)q is bijective) and ER(R/p) is p-torsion (i.e., the canonical map ΓpER(R/p)→
ER(R/p) is bijective); see [79, Th. 18.4(v) and (vi)]. Indeed, this fact implies that there

is no nonzero R-linear map from ER(R/p) to any coproduct of q-local R-modules for

all q ∈ SpecR with q /∈ V (p).

(2) Let p,q ∈ SpecR with p� q. Since R is noetherian, there is a saturated chain

p= q0 � q1 � q2 � · · ·� qk = q

in SpecR. Then the inequality f(q)− f(p)≥ k holds for each strictly increasing function

f : SpecR → Z. Moreover, if a codimension function d exists, then d(q)− d(p) = k by

definition. In fact, under the existence of a codimension function d, an order-preserving

function f : SpecR→ Z is strictly increasing if and only if f(q)− f(p) ≥ d(q)−d(p) for

every inclusion p⊆ q in SpecR. Note also that we simply have f(q)− f(p) = d(q)−d(p)

when p= q.

We say that an sp-filtration Φ of SpecR is bounded if there are integers s and t such that

Φ(s) = SpecR and Φ(t) = ∅ (cf. [4, §5.1, Def.]), or equivalently, such that s < fΦ(p)≤ t for

all p ∈ SpecR. Every bounded sp-filtration is nondegenerate by definition.

In the rest of this section, using Proposition 3.8, we establish a short proof for the claims

in Theorems 1.1 and 1.2, provided that R admits a classical dualizing complex and Φ is a

bounded slice sp-filtration (see Remark 3.14).

Lemma 3.10. Assume that R has finite Krull dimension. Let Φ be a bounded sp-filtration

of SpecR. Then TΦ is isomorphic to a bounded complex of projective R-modules in D(R).

Proof. For each p ∈ SpecR, RΓpRp is isomorphic to a complex of flat R-modules

concentrated in degrees from 0 to ht(p) (see Remark 3.11). Since ht(p) ≤ dimR <∞ and

Φ is bounded, TΦ is isomorphic to a bounded complex of flat R-modules. Then the lemma
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follows from [104, Part II, Cor. 3.2.7], which states that every flat R-module has projective

dimension at most dimR.

Remark 3.11. Let (R,m) be a commutative noetherian local ring, and take a system

of parameters x= x1, . . . ,xd of R, where d=dimR (see [79, §14]). If I is the ideal generated

by x, it has the same radical as the maximal ideal m, so that ΓI = Γm (see [64, Prop. 7.3]).

Thus we have a natural isomorphism

RΓmX ∼= Č(x)⊗RX

for every X ∈D(R) by (2.11), where Č(x) is a complex of flat R-modules concentrated in

degrees from 0 to d.

Let R be an arbitrary commutative noetherian ring, and take p ∈ SpecR. Regard

RΓpRp
Rp ∈D(Rp) as an object in D(R) via the (fully faithful) scalar restriction functor

D(Rp)→D(R). Then we have a natural isomorphism

RΓpRp
∼=RΓpRp

Rp

in D(R) (cf. [64, Prop. 7.15(3)]). Moreover, by the first paragraph, RΓpRp
Rp is isomorphic

in D(Rp) to a bounded complex of flat Rp-modules concentrated in degrees from 0 to

dimRp = ht(p). Therefore RΓpRp is isomorphic in D(R) to a bounded complex of flat

R-modules concentrated in degrees from 0 to ht(p).

Example 3.12. SpecZ has a slice sp-filtration which is not bounded.4 For this, choose

a function f : SpecZ→ Z such that f((0)) = 0 and f((p)) = p for every prime p. Then f is

strictly increasing, as f((0))< f((p)) for every prime p, so the sp-filtration Φf corresponding

to f is a slice sp-filtration, but this is not bounded.

Lemma 3.13. Assume that R admits a classical dualizing complex. Let Φ be a bounded

sp-filtration of SpecR. Then R ∈ thick(Add(TΦ)). Therefore, all bounded complexes of

projective R-modules belong to thick(Add(TΦ)).

Proof. We first show that thick(Add(TΦ)) = thick(Add(X)) for X :=
⊕

p∈SpecRRΓpRp.

Let I be the image of the function fΦ : SpecR → Z. By assumption, I is a finite set.

Setting Xi :=
⊕

fΦ(p)=iRΓpRp, we can write TΦ =
⊕

i∈IΣ
iXi. Then it follows that TΦ ∈

thick(Add(X)) and X ∈ thick(Add(TΦ)).

Next, let D be a classical dualizing complex and assume that D is a bounded complex

of injective R-modules. Let d be the codimension function associated with D, that is,

d := dD (see (2.22)). The above argument implies that thick(Add(TΦ)) = thick(Add(X)) =

thick(Add(TΦd
)), where TΦd

=
⊕

p∈SpecRΣd(p)RΓpRp. Hence it suffices to show R ∈
thick(Add(TΦd

)).

In the rest of the proof, using (3.4), we regard TΦd
as
⊕

p∈SpecRΣd(p)Č(p)p. By Remark

2.19, we have the canonical embedding D(R) ↪→D(FlatR) and this sends TΦd
to TΦd

. In

addition, the canonical embedding D(R) ↪→K(InjR) sends E :=
⊕

p∈SpecRER(R/p) to E.

By (3.6), the equivalence D⊗R− : D(FlatR) ∼−→ K(InjR) in Theorem 2.18(2) sends TΦd

to E. Hence this equivalence induces an equivalence thick(Add(TΦd
)) ∼−→ thick(Add(E))

of the subcategories of D(R). Since thick(Add(E)) contains all bounded complexes

4 This does not conflict with [4, Cor. 4.8(3)], which implicitly assumes the weak Cousin condition. See also
Remark 3.4.
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of injective R-modules, we have D ∈ thick(Add(E)). The quasi-inverse HomR(D,−) :

K(InjR) ∼−→D(FlatR) sends D ∈K(InjR) to HomR(D,D) ∈D(FlatR), so it follows that

R∼=HomR(D,D) ∈ thick(Add(TΦd
)).

The second claim follows from Remark 2.7.

Remark 3.14. Assume R admits a classical dualizing complex. Then Proposition 3.8

implies, in conjunction with Proposition 2.5 and Lemmas 3.10 and 3.13, that TΦ is a silting

object in D(R) for every bounded slice sp-filtration Φ, and that TΦ is a tilting object in

D(R) for every codimension filtration Φ. Hence Proposition 3.8 gives a quite reasonable

approach to know whether TΦ can be silting and tilting. Having established the silting

property of TΦ for a bounded slice sp-filtration Φ, it is also not difficult to show the equality

T⊥>0

Φ = YΦ by a direct argument. Indeed, since TΦ is a bounded silting object, it is of finite

type (see Section 2.1.4), and therefore T⊥>0

Φ = YΦ′ for some nondegenerate sp-filtration

Φ′ by (2.20). It remains to show that Φ = Φ′, or equivalently, fΦ = fΦ′ . Fix q ∈ SpecR.

Since RHomR(Rq,κ(q)) ∼= κ(q), it follows that widthRq
RHomR(Rq,Σ

iκ(q)) = −i for all

i ∈ Z. In addition, widthRp
RHomR(Rp,κ(q)) =∞ whenever q �= p ∈ SpecR. Thus, we have

Σiκ(q) ∈ T⊥>0

Φ if and only if −i≥ fΦ(q) by (3.2). On the other hand, given p ∈ SpecR with

p⊆ q, we have widthR(p,Σ
iκ(q)) =−i for all i∈Z, and if p �⊆ q, then widthR(p,Σ

iκ(q)) =∞.

Hence, it follows from (3.3) that Σiκ(q) ∈ YΦ′ if and only if −i≥ fΦ′(q). Since T⊥>0

Φ = YΦ′ ,

it has been shown that −i ≥ fΦ(q) if and only if −i ≥ fΦ′(q) for all i ∈ Z. In other words,

fΦ(q) = fΦ′(q). Therefore Φ = Φ′.

In the next section, for any slice sp-filtration Φ of SpecR, we will prove the equality

T⊥>0

Φ =YΦ and that TΦ is silting in D(R) without any additional assumption (see Theorem

4.6). Its proof is independent from Proposition 3.8, while we will need it and Proposition

3.8(2) both to prove Theorem 4.7. We also mention that, by Theorem 4.6 and Proposition

6.10(1), the assumption on the existence of a dualizing complex in Proposition 3.8 can be

removed from (1) and from the “only if” part of (2).

§4. Proof of Theorem 1.1

Let R be a commutative noetherian ring. To prove Theorem 1.1 in full generality, we

need to treat a possibly larger dimension (as defined below) than dimR. Given a subset

W ⊆ SpecR, we denote by maxW (resp. minW ) the set of maximal (resp. minimal) elements

in the poset W.

We recursively define specialization subsets Wα of SpecR for each ordinal α in the

following way. First, let W0 be the set of maximal ideals of R. If Wα is defined for some

ordinal α, and Wα � SpecR, then we put Wα+1 :=Wα∪max(SpecR \Wα). If β is a limit

ordinal and Wα is defined for every α < β, then we put Wβ :=
⋃

α<βWα. In this way, we

obtain the least ordinal δ satisfying Wδ = SpecR. Writing KdimR for δ, we call it the large

Krull dimension of R.

By construction, Wα is specialization closed for every α ≤ KdimR, and Wα � Wβ

whenever α < β ≤ KdimR. Moreover, KdimR = δ is always a successor ordinal because

R has only finitely many minimal prime ideals.

If dimR is infinite, we may interpret it as the first infinite ordinal, in terms of the

definition of dimR. Under this convention, we always have dimR≤KdimR, and the equality
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holds if dimR is finite. We remark that KdimR could be uncountable in general (see [48,

Cor. 8.14, and Th. 9.8]).5

The main task of this section is to show the equality T⊥>0

Φ = YΦ for a slice sp-filtration

Φ of SpecR. To this end, for an ordinal α≤KdimR, we define the following subcategories:

Y(Φ,α) := {X ∈D(R) | widthR(p,X)> n ∀n ∈ Z ∀p ∈ Φ(n)∩Wα},
Y ′
(Φ,α) := {X ∈D(R) | widthRp

RHomR(Rp,X)≥ fΦ(p) ∀p ∈Wα},
Y ′′
(Φ,α) := {X ∈D(R) | widthR(V,X)> n ∀n ∈ Z ∀V ⊆ Φ(n)∩Wα}.

Note that V in the last definition is assumed to be specialization closed. We will show

Y(Φ,α) = Y ′
(Φ,α) = Y ′′

(Φ,α) for every ordinal α ≤ KdimR by using transfinite induction

(Proposition 4.5). The only trivial inclusion is: Y ′′
(Φ,α) ⊆Y(Φ,α). Notice also from (3.3) that

Y(Φ,α) = {X ∈D(R) | widthR(p,X)≥ fΦ(p) ∀p ∈Wα}. (4.1)

We start with the following lemma. For simplicity, we will write a triangle X → Y →
Z → ΣX in D(R) as X → Y → Z

+−→ throughout the rest of the paper.

Lemma 4.1. Let V0 ⊆ V be specialization closed subsets of SpecR. If dim(V \V0) ≤ 0,

then there is a triangle of the form∏
p∈V \V0

LΛpRHomR(Rp,X)→ λV X → λV0X
+−→

for every X ∈D(R).

Proof. We first remark that the canonical morphism RΓV0R
∼= RΓV0RΓV R → RΓV R

yields a triangle

RΓV0R→RΓV R→
⊕

p∈V \V0

RΓpRp
+−→

(see Remark 4.2). Next, let X ∈ D(R), and apply RHomR(−,X) to the above triangle.

Then we obtain the following triangle:∏
p∈V \V0

RHomR(RΓpRp,X)→RHomR(RΓV R,X)→RHomR(RΓV0R,X)
+−→ .

Hence we have the triangle in the lemma by (2.7) and Remark 3.6.

Remark 4.2. For the reader’s convenience, we here summarize some basic facts on a

complex I of injective R-modules; part of them are used in the proofs of Lemma 4.1 and

Proposition 4.5.

For each n ∈ Z, we may write In =
⊕

p∈SpecRER(R/p)(μ
n
p) by some cardinals μn

p (see

[79, Th. 18.5]). Given a multiplicatively closed subset S ⊂R, the canonical chain map I →
I⊗RS

−1R is degreewise split surjective, where each map In → In⊗RS
−1 can be identified

with the canonical surjection
⊕

p∈SpecRER(R/p)(μ
n
p) →

⊕
p∩S=∅ER(R/p)(μ

n
p). Moreover,

5 The large Krull dimension of R is greater than or equal to the “classical Krull dimension” of R in the sense
of [48, p. 48]. To obtain the latter ordinal, we only need to choose (

⋃
α<βWα)∪max(SpecR\

⋃
α<βWα)

instead of
⋃

α<βWα when Wβ is defined for each limit ordinal β. Then we see that the difference of
the two ordinals is up to one. We define KdimR as above because it is slightly better for our transfinite
induction in the proof of Proposition 4.5.
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for a specialization closed subset V, the nth component of the canonical chain map ΓV I → I

can be identified with the canonical injection
⊕

p∈V ER(R/p)(μ
n
p) →

⊕
p∈SpecRER(R/p)(μ

n
p).

If V0 ⊆ V are specialization closed subsets of SpecR, then the canonical morphism ΓV0
∼=

ΓV0ΓV → ΓV of functors induces a degreewise split exact sequence

0→ ΓV0I → ΓV I → ΓV I/ΓV0I → 0, (4.2)

where (ΓV I/ΓV0I)
n ∼=

⊕
p∈V \V0

ER(R/p)(μ
n
p). Assume dim(V/V0) ≤ 0. Then we have a

decomposition ΓV I/ΓV0I
∼=
⊕

p∈V/V0
ΓpIp as complexes (see Remark 3.9(1)). If I is

K-injective, then (4.2) clearly realizes the triangle

RΓV0X →RΓV X →
⊕

p∈V \V0

RΓpXp
+−→ (4.3)

in D(R) for every complex X quasi-isomorphic to I. In particular, letting I be an injective

resolution of R, we may put X :=R in (4.3).

In fact, the triangle (4.3) exists for any complex X ∈ D(R) by the isomorphism

(RΓWR)⊗L
RX ∼= RΓWX for a specialization closed subset W (see [77, Prop. 3.5.5(ii)]).

More precisely, (4.2) realizes (4.3) whenever I is a complex of injective modules that is

quasi-isomorphic to a given complex X, because RΓW I ∼= ΓW I holds without K-injectivity

on I (see [77, Lem. 3.5.1]).

Remark 4.3. Given specialization closed subsets V0 ⊆ V of SpecR, we have the triangle

γV0γV X → γV X → λV c
0 γV X

+−→

by (2.3), where γV0γV X
∼= γV0X by (2.4). If dim(V/V0) ≤ 0, we see from (2.7) that the

above triangle coincides with (4.3). It is also possible to deduce the isomorphism λV c
0 γV X ∼=⊕

p∈V \V0
RΓpXp from a more formal argument.

We may regard the composite functor λV c
0 γV as an analogue of a “slice functor” in [51,

§2.2]; which is used to decompose spectra in that context into computable pieces called

slices (see [51, §1] and also [57, §4]). In our case, the condition dim(V \V0)≤ 0 yields such

a computable situation, and this fact leads to the definition of our slice sp-filtrations.

For the proof of the next proposition, we make a remark.

Remark 4.4. Let X ∈ D(R). For an integer n and a specialization closed subset

V ⊆ SpecR, widthR(V,X) > n if and only if supRHomR(RΓV R,X) < −n, that is,

HiRHomR(RΓV R,X) = 0 for every i ≥ −n. The last condition is equivalent to that

HomD(R)(RΓV R,Σi−nX) = 0 for every i≥ 0, and we can rewrite this as the single equality:∏
i≥0

HomD(R)(Σ
n−iRΓV R,X) = 0.

Hence it holds that

widthR(V,X)> n⇔X ∈
(⊕

i≥0

Σn−iRΓV R
)
⊥0 .
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Now, let Φ be a slice sp-filtration of SpecR. It then follows, for an ordinal α≤KdimR,

that

X ∈ Y ′′
(Φ,α) ⇔X ∈

(⊕
i≥0

Σn−iRΓV R
)
⊥0 ∀V ⊆ Φ(n)∩Wα ∀n ∈ Z

⇔X ∈
(⊕

n∈Z

( ⊕
V⊆Φ(n)∩Wα

(⊕
i≥0

Σn−iRΓV R
)))

⊥0 .

This will allow us to use the Lukas lemma via Corollary 2.21.

Proposition 4.5. Let Φ be a slice sp-filtration of SpecR. For each ordinal α ≤
Kdim(R), we have the equalities

Y(Φ,α) = Y ′
(Φ,α) = Y ′′

(Φ,α).

Proof. For brevity, we simply write Yα, Y ′
α, and Y ′′

α instead of Y(Φ,α), Y ′
(Φ,α), and Y ′′

(Φ,α)

respectively. We proceed by transfinite induction on α≤KdimR. If α= 0, then W0 consists

of the maximal ideals of R. Hence, for every V ⊆W0, we have∏
m∈V

LΛm ∼=
∏
p∈V

LΛmRHomR(Rm,−)∼= λV

by Remark 3.6 and Lemma 4.1 applied to V and V0 := ∅. Thus the equality Y0 = Y ′′
0 holds.

The equality Y0 = Y ′
0 follows from the first isomorphism above and (4.1).

We next establish the successor step. Assume that Yα = Y ′
α = Y ′′

α for some ordinal

α < KdimR. For the desired equality Yα+1 = Y ′
α+1 = Y ′′

α+1, it suffices to show that

Yα+1 ⊆ Y ′
α+1 ⊆ Y ′′

α+1 because Y ′′
α+1 ⊆ Yα+1 by definition. Let X ∈ Yα+1. Note that

Yα+1 ⊆ Yα = Y ′
α = Y ′′

α by definition and assumption. Moreover, since X ∈ Yα+1 ⊆ Y ′
α,

X ∈ Y ′
α+1 ⇔ widthRp

RHomR(Rp,X)≥ fΦ(p) ∀p ∈Wα+1 =Wα∪ (Wα+1 \Wα)

⇔ widthRp
RHomR(Rp,X)≥ fΦ(p) ∀p ∈Wα+1 \Wα.

We have dim(Wα+1 \Wα) = 0 by construction, so dim(V \Wα) ≤ 0 for any integer n and

any specialization closed subset V ⊆ Φ(n)∩Wα+1. Thus Lemma 4.1 yields the triangle∏
p∈V \Wα

LΛpRHomR(Rp,X)→ λV X → λV ∩WαX
+−→ . (4.4)

Now, take q ∈ Wα+1 \Wα and put n := fΦ(q)− 1, so that V (q)∩Wα = V (q) \ {q} and

q∈Φ(n). Then q∈Φ(n)∩Wα+1, and hence widthR(q,X)>n since X ∈Yα+1. Furthermore,

Φ is a slice sp-filtration, so dim(Φ(n)\Φ(n+1))≤ 0, and this along with the inclusion V (q)⊆
Φ(n) implies that V (q) \ {q} ⊆ Φ(n+1). In particular, we have V (q)∩Wα = V (q) \ {q} ⊆
Φ(n+1)∩Wα, so widthR(V (q)∩Wα,X) > n+1 since X ∈ Yα+1 ⊆ Y ′′

α. We have observed

that

supλV (q)X <−n and supλV (q)∩WαX <−n−1.

By (4.4) applied to V (q)⊆ Φ(n)∩Wα+1, we obtain the triangle

LΛqRHomR(Rq,X)→ λV (q)X → λV (q)∩WαX
+−→ .

It then follows that supLΛqRHomR(Rq,X)<−n, that is, widthRq
RHomR(Rq,X)≥ f(q).

We have shown that X ∈ Y ′
α+1 (see the previous paragraph). Thus Yα+1 ⊆ Y ′

α+1.
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To prove the remaining inclusion Y ′
α+1 ⊆Y ′′

α+1, take X ∈ Y ′
α+1. Let V ⊆Φ(n)∩Wα+1 be

a specialization closed subset for an integer n∈Z. Since X ∈Y ′
α+1 ⊆Y ′

α =Y ′′
α and V ∩Wα ⊆

Φ(n)∩Wα, it follows that widthR(V ∩Wα,X)> n. On the other hand, if p ∈ V \Wα, then

p ∈ Φ(n)∩Wα+1 as V ⊆ Φ(n)∩Wα+1. Thus we have widthRp
RHomR(Rp,X) ≥ fΦ(p) > n

by definition and assumption. We have observed that

supλV ∩WαX <−n and supLΛpRHomR(Rp,X)<−n.

Thus we have supλV X < −n by (4.4), that is, widthR(V,X) > n, and hence X ∈ Y ′′
α+1.

Therefore, the inclusion Y ′
α+1 ⊆ Y ′′

α+1 follows.

Finally, let us establish the limit step of the induction.6 Let β < KdimR be a limit

ordinal, and suppose that Yα = Y ′
α = Y ′′

α for all α < β. Since Wβ =
⋃

α<βWα, it follows

that Yβ =
⋂

α<βYα and Y ′
β =
⋂

α<βY ′
α. Thus we have Yβ = Y ′

β. For the remaining equality

Y ′
β = Y ′′

β , it suffices to show that Y ′
β ⊆Y ′′

β because Y ′′
β ⊆Yβ by definition. Take X ∈ Y ′

β. We

first observe that X(p) :=LΛpRHomR(Rp,X)∈Y ′′
β for an arbitrary p∈ SpecR. Let n be an

integer and V ⊆Φ(n)∩Wβ be a specialization closed subset. Recall that cosuppRX(p)⊆{p}
(Remark 3.6). If p /∈ V , (2.5) implies that λV X(p) = 0, that is, widthR(V,X(p)) =∞ > n.

If p ∈ V , then λV X(p)∼=X(p), so

widthR(V,X(p)) =−supX(p) = widthRp
RHomR(Rp,X)≥ fΦ(p)> n.

Thus X(p) ∈ Y ′′
β .

We next show that there is a complex Y such that X ∼= Y in D(R) and Y has a C-
cofiltration, where C denotes the subcategory of C(R) formed by all objects in Y ′′

β . If this

is done, then Corollary 2.21 implies that X ∼= Y ∈ Y ′′
β (see Remark 4.4), so Y ′

β ⊆Y ′′
β . Hence

the proof will be completed.

To this end, take K-injective resolutions R→ I and X → J such that I and J consist of

injective R-modules. Then X ∼=RHomR(R,X)∼=HomR(I,J) in D(R). We put

Y := HomR(I,J) and Yα := HomR(ΓWαI,J)

for each α≤KdimR, where RHomR(RΓWαR,X)∼= Yα in D(R). Consider a direct system

formed by the canonical chain maps ια,ν : ΓWαI → ΓWνI for all α≤ ν ≤ δ =KdimR, where

every ια,ν is degreewise split injective (see Remark 4.2) and lim−→α≤δ
ΓWαI

∼= ΓWδ
I ∼= I

in C(R). Then we obtain the inverse system (Yα,πα,ν | α ≤ ν ≤ δ) formed by πα,ν :=

HomR(ια,ν ,J) for all α≤ ν ≤ δ, where every πα,ν is degreewise split surjective and

Y =HomR(I,J)∼= lim←−
α≤δ

HomR(ΓWαI,J) = lim←−
α≤δ

Yα

in C(R). If ν is a limit ordinal, then Wν =
⋃

α<νWα by definition, so ΓWνI
∼= lim−→α<ν

ΓWαI,

and hence Yν
∼= lim←−α<ν

Yα.

We remark that Y ′′
β is closed under products since λV ∼= RHomR(RΓV R,−) for any

specialization closed subset V ⊆ SpecR. Moreover,∏
m∈W0

X(m)∼=
∏

m∈W0

RHomR(RΓmR,X)∼=
∏

m∈W0

HomR(ΓmI,J)∼=HomR(ΓW0I,J) = Y0

6 If dimR is finite, then dimR=KdimR, so the limit step can be omitted.
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in D(R) by Remarks 3.6 and 4.2. Since we know that X(p)∈Y ′′
β for all p∈ SpecR, it follows

that Y0
∼=
∏

m∈W0
X(m) ∈ Y ′′

β , that is, Y0 ∈ C. To observe that the kernel of πα,α+1 belongs

to C for each α < δ, consider the degreewise split exact sequence

0→ ΓWαI
ια,α+1−−−−→ ΓWα+1I → ΓWα+1I/ΓWαI → 0.

Applying HomR(−,J) to it, we obtain the exact sequence

0→HomR(ΓWα+1I/ΓWαI,J)→ Yα+1
πα,α+1−−−−→ Yα → 0. (4.5)

Sending this to D(R), we obtain the triangle in Lemma 4.1 applied to Wα ⊆Wα+1 (see the

proof of the lemma). Furthermore, putting Y (p) := HomR(ΓpIp,J), we have

HomR(ΓWα+1I/ΓWαI,J)
∼=

∏
p∈Wα+1\Wα

HomR(ΓpIp,J) =
∏

p∈Wα+1\Wα

Y (p)

in C(R) (see Remark 4.2). As a consequence, there are isomorphisms∏
p∈Wα+1\Wα

Y (p)∼=
∏

p∈Wα+1\Wα

LΛpRHomR(Rp,X) =
∏

p∈Wα+1\Wα

X(p)

in D(R). Since the last one belongs to Y ′′
β , so does the first, and hence

∏
p∈Wα+1\Wα

Y (p)∼=
Kerπα,α+1 ∈ C. Therefore, we have shown that the inverse system (Yα,πα,ν | α≤ ν ≤ δ) is a

C-cofiltration, as desired.

We now prove one of the main results of this paper (Theorem 1.1).

Theorem 4.6. Let R be a commutative noetherian ring, and let Φ be a slice sp-filtration

of SpecR. Then TΦ is a silting object in D(R) such that (T⊥>0

Φ ,T
⊥≤0

Φ ) = (YΦ,Y⊥0

Φ ).

Proof. Since Wδ = SpecR, we have Y(Φ,δ) = YΦ for δ = KdimR, and T⊥>0

Φ = Y ′
(Φ,δ) by

(3.2). Thus T⊥>0

Φ = YΦ by Proposition 4.5. In particular, T⊥>0

Φ is closed under coproducts

by (2.19). By Lemma 3.7, we have TΦ
⊥Z = 0. Hence it remains to show that TΦ ∈ T⊥>0

Φ (see

Lemma 2.2).

Since T⊥>0

Φ = YΦ is closed under coproducts, it suffices to show that ΣfΦ(p)RΓpRp ∈ YΦ

for each p ∈ SpecR. Thus, if we observe that

widthR(q,Σ
fΦ(p)RΓpRp)> n

for any n ∈ Z and q ∈ Φ(n), then the proof will be completed.

It follows from (2.13) and (2.11) that

widthR(q,Σ
fΦ(p)RΓpRp) =−sup(R/q)⊗L

RΣfΦ(p)RΓpRp =−supΣfΦ(p)RΓp(Rp/qp). (4.6)

Moreover, we have supRΓp(Rp/qp)= supRΓpRp
(Rp/qp)=dimRp/qp (see [30, Th. 3.5.7 and

p. 413]). Since Φ is a slice sp-filtration, we also have dim(Rp/qp) = ht(p/q)≤ fΦ(p)− fΦ(q)

(see Section 2.5.3 and Remark 3.9(2)). Then

supΣfΦ(p)RΓp(Rp/qp) = supRΓp(Rp/qp)− fΦ(p)≤−fΦ(q).

Therefore

widthR(q,Σ
fΦ(p)RΓpRp)≥ fΦ(q)> n

by (4.6), as desired.
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The next theorem is also part of our main results (Theorem 1.2(1)). Recall that a

dualizing complex in our sense may have infinite injective dimension (see Section 2.5).

Moreover, if D is a dualizing complex, then dD is a codimension function (see Section

2.5.3), so ΦdD is a codimension filtration of SpecR.

Theorem 4.7. Let R be commutative noetherian ring with a dualizing complex, and let

Φ a nondegenerate sp-filtration of SpecR. Then TΦ is a tilting object in D(R) if and only

if Φ is a codimension filtration of SpecR.

Proof. This follows from Lemma 2.2, Theorem 4.6, and Proposition 3.8(2).

As mentioned in Remark 3.14, Theorems 4.6 and 4.7 can be proved in a simpler way if

Φ is bounded and R admits a classical dualizing complex.

Remark 4.8. If (R,m) is a d -dimensional Cohen–Macaulay local ring, then RΓmR ∼=
Σ−dHd

mR by [30, Th. 3.5.7], where Hd
mR := HdRΓmR is called the dth local cohomology

module of R with respect tom.

Suppose that R is a (possibly nonlocal) Cohen–Macaulay ring. Then Rp is a Cohen–

Macaulay local ring for each p ∈ SpecR by definition. Thus RΓpRp
∼= Σ−ht(p)H

ht(p)
p Rp

for every p ∈ SpecR, where H
ht(p)
p Rp := Hht(p)RΓpRp = H

dimRp

pRp
Rp. Therefore, for every

nondegenerate sp-filtration Φ of SpecR, we have

TΦ =
⊕

p∈SpecR

ΣfΦ(p)RΓpRp
∼=

⊕
p∈SpecR

ΣfΦ(p)−ht(p)H
ht(p)
p Rp

in D(R).

The following is a corollary of Theorem 4.6. Notice that it does not assume the existence

of a dualizing complex.

Corollary 4.9. Let R be a Cohen–Macaulay ring and Φ a codimension filtration. Then

TΦ is a tilting object in D(R).

In particular, TΦht
∼=
⊕

p∈SpecRH
ht(p)
p Rp is a tilting object.

Proof. First, T := TΦ is a silting object by Theorem 4.6. Thus it remains to show that

Add(T ) ∈ T⊥<0 . Write SpecR as a disjoint union S1 � · · · �Sn of connected components.

Letting Ti :=
⊕

p∈Si
ΣfΦ(p)RΓpRp, we can write T =

⊕
1≤i≤nTi. By assumption, fΦ is a

codimension function on SpecR, while the height function ht is a codimension function on

SpecR as well since R is Cohen–Macaulay (see Section 2.5.3). Therefore, ht−fΦ is constant

on each component Si. Then we see from Remark 4.8 that each Ti is isomorphic to a stalk

complex, that is, a complex concentrated in some degree. Since modules do not admit

nontrivial negative self-extensions, it follows that Add(Ti)⊆ Ti
⊥<0 . Moreover, we also have

Add(Ti) ⊆ Tj
⊥Z whenever i �= j (see Remark 4.10). Hence we have Add(T ) ∈ T⊥<0 , as

desired.

Remark 4.10. For any commutative noetherian ring R, SpecR decomposes into a

finite disjoint union SpecR1�SpecR2�· · ·�SpecRn of connected components SpecRi and

we have an isomorphism R ∼−→
∏

1≤i≤nRi of rings (cf. [53, Chap. II, Exer. 2.19]). This

isomorphism yields an equivalence from ModR is to the product category
∏

1≤i≤nModRi,

and so D(R) is equivalent to the product category
∏

1≤i≤nD(Ri) as well. In particular, if

Xi ∈D(Ri) and Xj ∈D(Rj) and i �= j, regarding Xi and Xj as objects in D(R), we have

Add(Xi)⊆Xj
⊥Z . See also (2.5).
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If d and d′ are different codimension functions on SpecR, then the two t-structures

(YΦd
,Y⊥0

Φd
) and (YΦd′ ,Y

⊥0

Φd′
) in D(R) are different. However, if we restrict them to each

derived category D(Ri), then this difference can be omitted up to shift, since d− d′ is

constant on the connected component SpecRi. In other words, we have YΦd
∩D(Ri) =

Σm(YΦd′ ∩D(Ri))= (ΣmYΦd′ )∩D(Ri) for some integerm. An important consequence is that

the heart YΦd
∩Σ(Y⊥0

Φd
) of the t-structure (YΦd

,Y⊥0

Φd
) is equivalent to the heart YΦd′ ∩Σ(Y⊥0

Φd′
)

of the other t-structure (YΦd′ ,Y
⊥0

Φd′
). Therefore, if R admits a codimension function d, then

(YΦd
,Y⊥0

Φd
) is the t-structure (induced by TΦd

) such that its heart does not depend on the

choice of d, up to equivalence.

By the same token, although the silting objects TΦd
and TΦd′ are not equivalent in

general, RHomR(TΦd
,T

(κ)
Φd

) and RHomR(TΦd′ ,T
(κ)
Φd′

) are isomorphic as objects of D(R) for

any cardinal κ. Consequently, the silting object TΦd
is tilting if and only if TΦd′ is tilting.

If this is the case, then EndD(R)(TΦd
)∼= EndD(R)(TΦd′ ) as rings.

These facts can be also stated focusing on the cosilting side.

As essentially observed in the proof of Corollary 4.9, once a module M (over any ring R)

is silting in the derived category D(R), then M is tilting in D(R) (cf. [119, Cor. 3.7]). We

should remark that, although tilting modules in the sense of [7] are tilting objects in the

derived category D(R) (Remark 2.8), silting modules in the sense of [14] need not be silting

objects in D(R); a silting module is defined to be the cokernel of a morphism P−1 → P 0 of

projective modules such that the 2-term complex (0→ P−1 → P 0 →) is a silting object in

D(R) (see [14, Th. 4.9.]).

We will later observe that every 2-term silting complex over a commutative noetherian

ring is a tilting object in the derived category (Theorem 6.18).

Remark 4.11. Let R be a Cohen–Macaulay ring of finite Krull dimension. Then the

R-module T :=
⊕

p∈SpecRH
ht(p)
p Rp is a bounded tilting object in D(R) by Lemma 3.10

and Corollary 4.9, and therefore it is a tilting module (Remark 2.8). In fact, the tilting

module T is good in the sense of [23, Def. 1.2], that is, there is an exact sequence of the

form 0→R→ T0 → T1 → ·· · → Tn → 0 where Ti is a direct summand of a finite coproduct

of copies of T for all i = 0, . . . ,n. Indeed, the Cousin complex C(R) for R (in the sense of

Sharp [109]) gives such an exact sequence (see [109, Ths. 3.5 and 4.7] and [111, Th.]), where

C(R)−1 =R and C(R)i ∼=
⊕

ht(p)=iH
ht(p)
p Rp for 0≤ i≤ d (see also [49, Prop. 2.8.2(5)]).

As a consequence, [23, Th. 2.2] is available for T =
⊕

p∈SpecRH
ht(p)
p Rp. In particular,

letting S := EndR(T ), the functor RHomR(T,−) :D(R)→D(S) is fully faithful (see [23,

Th. 2.2(2)]), and the essential image of this functor is E⊥0 ⊆D(S), where E is the kernel

of the functor −⊗L
ST :D(S)→D(R) (see [23, Cor. 2.4]).

If dimR = 1, the projective dimension of T is equal to one by Lemma 3.10 and [104,

Part II, Th. 3.2.6] (see also [83, Th. 4.9]), so the result [32, Th. 1.1] is available, producing

a recollement linking D(S) with D(R) and the derived module category of a suitable ring.

In addition, we can compute S =EndR(T ) explicitly as the lower triangular matrix ring in

Example 6.8. More generally, when R has any finite Krull dimension, there is a recollement

linking D(S) with D(R) and the derived category of dg modules over a suitable dg algebra

(see [24, Prop. 5.2] and the four paragraphs preceding it).

It is also possible to describe derived equivalences induced by good tilting modules by

using techniques of contramodules over a topological ring (see [100]). The endomorphism
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ring S = EndR(T ) admits a naturally induced linear topology called the finite topology,

and the category CtraS of right contramodules over the topological ring S is an abelian

category (see [100, §§6.2 and 7.1]). There is a natural forgetful functor CtraS → ModS,

and T being good implies that the functor induces a fully faithful functor D(CtraS) →
D(S) between the unbounded derived categories. Moreover, the functor RHomR(T,−) :

D(R) → D(S) naturally restricts to a triangulated equivalence D(R) ∼−→ D(CtraS), and

this further restricts to an equivalence HT
∼−→ CtraS, where HT is the heart of the tilting

t-structure induced by T. See [100, Prop. 8.2]; also cf. [100, Cor. 6.3, Th. 7.1, and Prop. 7.3].

Note that the equivalence HT
∼−→ CtraS induces the triangulated equivalence D(HT ) ∼−→

D(CtraS).

We now have the triangulated equivalence RHomR(T,−) : D(R) ∼−→ D(CtraS), while

we also have the realization functor D(HT ) → D(R) (due to Virili) that is a tri-

angulated equivalence as T is a tilting module (Sections 2.1.6 and 2.1.7). At least

when restricted to the respective bounded derived categories, we can choose a real-

ization functor Db(HT ) ∼−→ Db(R) so that it is compatible with the other equivalence

RHomR(T,−) :Db(R) ∼−→Db(CtraS), under the identification Db(HT )∼=Db(CtraS). This

fact is explained in the recent preprint [60] (see the proofs of [60, Prop. 4.6 and Th. 4.7] in

particular).

In [60], the above-mentioned results of [100] have been generalized from good tilting

modules to a large class of tilting complexes, which includes our tilting complexes available

by Remark 3.14 and Theorem 7.5 (see [60, §§3–4]).

We close this section by attempting to explain how Definition 3.5 is natural in terms

of a more general approach that can yield silting objects under suitable assumptions. The

reader may freely skip this part. We also remark that the explanation below does not mean

that our results in this section can be deduced from other existing results.

Let R be any ring and assume that there is a decreasing chain of smashing subcategories

ofD(R) indexed by the integers: . . .⊇Ln−1 ⊇Ln ⊇Ln+1 ⊇ . . .. Denote by λn the localization

functor D(R)→D(R) with Kerλn = Ln for each n ∈ Z. Since application of λn makes the

canonical morphism IdD(R) → λn+1 invertible, we can identify Sn := λnR with λnSn+1.

Then we have the canonical morphism Sn+1 → λnSn+1 = Sn. Embed this morphism to a

triangle Sn+1 →Sn →Tn
+−→ inD(R), and put T :=

⊕
n∈Z

ΣnTn. If, for each n, the morphism

R→ Sn can be regarded as a homological ring epimorphism, Sn is of projective dimension

at most one over R, and the chain of smashing subcategories is nondegenerate in the sense

that
⋂

n∈Z
Ln = 0 and (

⋃
n∈Z

Ln)
⊥Z = 0, then T is a silting object in D(R) (see [17, Th.

3.5] and [10, Prop. 5.15]).

Now, let R be a commutative noetherian ring. Given a silting t-structure of finite type, we

have its corresponding nondegenerate sp-filtration Φ by (2.20). Then we obtain a decreasing

chain of smashing subcategories by putting Ln := LΦ(n), and this chain is nondegenerate

in the above sense. Assume Φ is a slice sp-filtration, and consider the object T :=⊕
n∈Z

ΣnTn of D(R) constructed as above. We can observe that Tn
∼= ΣγΦ(n)λΦ(n+1)R =

ΣγΦ(n)λ
Φ(n+1)cR ∼= ΣλΦ(n+1)cγΦ(n)R (see (2.3) and [26, Prop. 6.1(3)]). Since dim(Φ(n) \

Φ(n + 1)) ≤ 0 for each n ∈ Z, it follows from Remark 4.3 that ΣλΦ(n+1)cγΦ(n)R ∼=⊕
p∈Un

ΣRΓpRp, where Un := Φ(n) \Φ(n+1). Therefore, we have Tn
∼=
⊕

p∈Un
ΣRΓpRp.

Since Φ is nondegenerate, each p ∈ SpecR belongs to Un if and only if n+1 = fΦ(p), and

thus we arrive to the expression T =
⊕

p∈SpecRΣfΦ(p)RΓpRp of Definition 3.5.
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§5. Cosilting objects corresponding to slice sp-filtrations

Let R be a commutative noetherian ring, and let Φ be a slice sp-filtration of

SpecR. In this section, we give an explicit description of a cosilting object inducing the

t-structure (UΦ,VΦ). Although (2.21) can translate Theorem 4.6 into the cosilting case,

this is not the best formulation for us. We more carefully dualize each summand of

TΦ =
⊕

p∈SpecRΣfΦ(p)RΓpRp. We start with an observation on local duality and Matlis

duality.

We first treat a (commutative noetherian) local ring R with maximal ideal m and residue

field k, and assume that R admits a dualizing complex DR (see Notation 2.15). Set d :=

dimR. There is a canonical isomorphism

RΓmR∼=HomR(DR,Σ
−dER(k)) (5.1)

in D(R) by local duality (see [52, Chap. V, Th. 6.2]). Moreover, there is a canonical

isomorphism HomR(ER(k),ER(k)) ∼= R̂ := ΛmR by Matlis duality (see [64, Th. A.31]).

Since DR ∈ Db
fg(R) and DR⊗RR̂ ∼= D

̂R in D(R) by Remark 2.16(2), application of

RHomR(−,Σ−dER(k)) to (5.1) yields a natural isomorphism

RHomR(RΓmR,Σ−dER(k))∼=D
̂R, (5.2)

in D(R) by a standard argument (see [45, (1.4)]). In fact, (5.2) holds without the existence

of DR, as explained below.

Let (R,m,k) be a local ring that may not admit a dualizing complex. The m-adic

completion R̂ of R is a d-dimensional local ring with maximal ideal m̂ = mR̂ and residue

field R̂/m̂∼= k (see [79, p. 63]). By [77, Cor. 3.4.4], there is a canonical isomorphism

(RΓmR)⊗L
R R̂ ∼−→RΓm̂R̂ (5.3)

inD(R̂). Since ER(k)∼=E
̂R(k) =Hom

̂R(R̂,E
̂R(k)) in ModR and ModR̂ (see [64, Th. A.31]),

(5.3) and tensor-hom adjunction yields the natural isomorphisms

RHomR(RΓmR,ER(k))∼=RHom
̂R((RΓmR)⊗L

R R̂,E
̂R(k))

∼=RHom
̂R(RΓm̂R̂,E

̂R(k)),

(5.4)

in D(R). Recall that R̂ admits a dualizing complex D
̂R, so the isomorphism (5.2) holds for

R̂. Combining this fact with (5.4), we see that (5.2) holds for R.

Let us next give a version of (5.1) that also works without a dualizing complex. Regard

RΓm̂R̂ as an object in D(R) by the scalar restriction functor D(R̂) → D(R). We have

canonical isomorphisms

RΓmR ∼−→RΓmR̂∼= (RΓmR)⊗L
R R̂ ∼−→RΓm̂R̂ (5.5)

in D(R), where the first is an isomorphism induced by the canonical morphism R→ R̂ (see

[77, Cor. 3.4.5.] or [30, Prop. 3.5.4(d)]), the second is given by (2.11), and the third is (5.3)

sent to D(R). On the other hand, since R̂ admits a dualizing complex D
̂R, the isomorphism

(5.1) holds for R̂, and we can send it to D(R). Combining this fact with (5.5), we obtain a

canonical isomorphism

RΓmR∼=Hom
̂R(D ̂R,Σ

−dE
̂R(k)) (5.6)

in D(R).
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We finally treat an arbitrary commutative noetherian ring R. Let p ∈ SpecR and

write R̂p := ΛpRp, which is a complete local ring with maximal ideal pR̂p and residue

field R̂p/pR̂p
∼= κ(p), where ht(p) = dimRp = dimR̂p. Recall that ER(R/p) coincides with

ERp
(κ(p)) (see [79, Th. 18.4(vi)]). Regard RΓpRp

Rp and RHomRp
(RΓpRp

Rp,ERp
(κ(p)))

as objects in D(R) by the (fully faithful) scalar restriction functor D(Rp)→D(R). They

naturally coincide with RΓpRp and RHomR(RΓpRp,ER(R/p)) respectively. Therefore, we

can deduce from (5.2) and (5.6) that there are canonical isomorphisms in D(R):

RHomR(RΓpRp,ER(R/p))∼=Σht(p)D
̂Rp
, (5.7)

RΓpRp
∼=Hom

̂Rp
(Σht(p)D

̂Rp
,ER(R/p)). (5.8)

These isomorphisms lead us to the following definition.

Definition 5.1. Let Φ be a nondegenerate sp-filtration of SpecR. We define

CΦ :=
∏

p∈SpecR

Σht(p)−fΦ(p)D
̂Rp
,

which is an object in D(R).

Theorem 5.2. Let R be a commutative noetherian ring, and let Φ be a slice sp-filtration

of SpecR. Then CΦ is a cosilting object in D(R), which corresponds to the silting object TΦ

via (2.21), so that (⊥≤0CΦ,
⊥>0CΦ) = (UΦ,VΦ).

Proof. Let E be an injective cogenerator in ModR. By Theorem 4.6, TΦ is a silting

object of finite type in D(R), and hence its dual T+
Φ := RHomR(TΦ,E) ∈ D(R) is a

cosilting object by (2.21). What remains to show is that Prod(T+
Φ ) = Prod(CΦ) (see Section

2.1.3). Since T+
Φ
∼=
∏

p∈SpecRΣ−fΦ(p)(RΓpRp)
+, it suffices to prove that Prod((RΓpRp)

+) =

Prod(Σht(p)D
̂Rp
) for each p ∈ SpecR. This follows from (5.7) and Remark 5.3.

Remark 5.3. Let p∈ SpecR and X a complex of Rp-modules. Then X+ ∼=HomR(X,E)

in D(R), and HomR(X,E)∼=HomRp
(X,HomR(Rp,E)) in C(R). Notice that HomR(Rp,E)

is an injective cogenerator in ModRp, while ER(R/p) ∼= ERp
(κ(p)) is an injective cogen-

erator in ModRp as well (see [64, Th. A.20 and Lem. A.27]). Hence the product closure

of HomR(Rp,E) and that of ER(R/p), taken in ModRp ⊆ ModR, are the same. Then

it is easily seen that the product closure of X+ ∼= HomRp
(X,HomR(Rp,E)) and that of

HomR(X,ER(R/p))∼=HomRp
(X,ER(R/p)), taken in D(Rp)⊆D(R), are the same.

We do not know if the correspondence (2.21) can translate the tilting condition into

the cotilting condition; indeed, there is no way to check these conditions by using sets of

compact objects. However, we can directly prove a dual result to Theorem 4.7.

Theorem 5.4. Let R be commutative noetherian ring with a dualizing complex, and let

Φ be a nondegenerate sp-filtration of SpecR. Then CΦ is a cotilting object in D(R) if and

only if Φ is a codimension filtration of SpecR.

Proof. Let D be a dualizing complex for R. We may assume that D is a bounded below

complex of injective modules. Moreover, for each p ∈ SpecR, we may interpret D
̂Rp

as a

complex of injective R̂p-modules concentrated in degrees from 0 to ht(p) (see Section 2.5.2).

By Remark 2.16 (1) and (2), R̂p⊗RD= R̂p⊗Rp
Dp is also a dualizing complex for R̂p. Recall
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that a dualizing complex for the local ring R̂p is unique up to shift and isomorphism in

D(R̂p). In addition, since R̂p is flat over R, R̂p⊗RD consists of injective R-modules by

[42, Th. 3.2.16], and so does D
̂Rp

=Hom
̂Rp
(R̂p,D̂Rp

) by tensor-hom adjunction. Note that

inf(R̂p⊗RD) = inf(Dp) = d(p)−ht(p), where d := dD, and thus inf(Σd(p)−ht(p)R̂p⊗RD) = 0.

Hence we can check using (2.22) and (5.5) that there is a quasi-isomorphism

Σd(p)−ht(p)R̂p⊗RD →D
̂Rp

in C(R). Applying Hom
̂Rp
(−,D

̂Rp
) to this, we get the natural quasi-isomorphism

Hom
̂Rp
(D

̂Rp
,D

̂Rp
)→Hom

̂Rp
(Σd(p)−ht(p)R̂p⊗RD,D

̂Rp
)

since D
̂Rp

is K-injective. Furthermore, we have the standard isomorphism in C(R):

Hom
̂Rp
(Σd(p)−ht(p)R̂p⊗RD,D

̂Rp
)∼=HomR(Σ

d(p)−ht(p)D,D
̂Rp
).

Composing the last two chain maps and the canonical quasi-isomorphism R̂p →
Hom

̂Rp
(D

̂Rp
,D

̂Rp
), we have the quasi-isomorphism

R̂p →HomR(Σ
d(p)−ht(p)D,D

̂Rp
). (5.9)

The both sides are bounded above complexes of flat modules, so the mapping cone of this

morphism is a pure acyclic complex of flat modules, that is, an acyclic complex of flat

modules whose cycle modules are flat. Let f := fΦ. By (5.9), we have the quasi-isomorphism

Σd(p)−f(p)R̂p →HomR(D,Σht(p)−f(p)D
̂Rp
) for each p ∈ SpecR. Hence we obtain the induced

quasi-isomorphism∏
p∈SpecR

Σd(p)−f(p)R̂p →
∏

p∈SpecR

HomR(D,Σht(p)−f(p)D
̂Rp
)

whose mapping cone is a pure acyclic complex of flat modules. Set C :=CΦ, and note that C

is a bounded below complex of injective R-modules (since f = fΦ has a lower bound by non-

degeneracy of Φ; see the first paragraph of Section 2.4). We can interpret the right-hand side

of the above quasi-isomorphism as HomR(D,C), so that we have the quasi-isomorphism∏
p∈SpecR

Σd(p)−f(p)R̂p →HomR(D,C), (5.10)

which can be regarded as an isomorphism in the pure derived category D(FlatR).

Now, since C is K-injective, there is a canonical isomorphism

HomD(R)(C
κ,C)∼=HomK(InjR)(C

κ,C) (5.11)

for any cardinal κ. Furthermore, by (5.11), Theorem 2.18(2), (5.10), Remark 2.19, and

(2.5), we have the following isomorphisms:

HomD(R)(C
κ,C)∼=HomK(InjR)(C

κ,C)

∼=HomD(FlatR)(HomR(D,Cκ),HomR(D,C))

∼=HomD(FlatR)(HomR(D,C)κ,HomR(D,C))
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∼=HomD(FlatR)

( ∏
q∈SpecR

Σd(q)−f(q)R̂q

κ

,
∏

p∈SpecR

Σd(p)−f(p)R̂p

)
∼=

∏
p∈SpecR

HomD(FlatR)

( ∏
q∈SpecR

Σd(q)−f(q)R̂q

κ

,Σd(p)−f(p)R̂p

)
∼=

∏
p∈SpecR

HomD(R)

( ∏
q∈SpecR

Σd(q)−f(q)R̂q

κ

,Σd(p)−f(p)R̂p

)
∼=

∏
p∈SpecR

HomD(R)

( ∏
q∈V (p)

Σd(q)−f(q)R̂q

κ

,Σd(p)−f(p)R̂p

)
,

where R̂q ∈ C{q} = CU(q) ∩ CV (q) for every q ∈ SpecR by (2.6) and (2.8); note also that

LΛpR̂p
∼= R̂p (see [77, p. 69]).

Let us prove the “if” part of the theorem. Suppose that Φ is a codimension filtration.

Then it is a slice sp-filtration, so CΦ is a cosilting object in D(R) by Theorem 5.2. Further,

f is a codimension function, so we have d(q)−d(p) = f(q)− f(p) for any inclusion p ⊆ q in

SpecR. Thus

HomD(R)(C
κ,ΣnC)∼=

∏
p∈SpecR

HomD(R)

( ∏
q∈V (p)

R̂q

κ

,ΣnR̂p

)
∼=

∏
p∈SpecR

HomD(R)

( ∏
q∈V (p)

R̂q

κ

,ΣnRHomR

(
ER(R/p),ER(R/p)

))
∼=

∏
p∈SpecR

HomD(R)

(
(
∏

q∈SpecR

R̂q

κ

)⊗L
RER(R/p),ΣnER(R/p)

)
= 0

whenever n �= 0, where R̂p
∼= HomR

(
ER(R/p),ER(R/p)

)
by Matlis duality. Therefore,

Prod(C)⊆ ⊥<0C, so C is cotilting in D(R). The “only if” part can be shown by modifying

this argument (cf. the proof of Proposition 3.8) or follows from Proposition 6.10(2).

We remark that Q⊕ (Q/Z) is a cotilting object of cofinite type in D(Z) such that it

induces the standard t-structure in D(Z), but its character dual HomZ(Q⊕ (Q/Z),Q/Z) is
not a silting object in D(Z) (see [5, §3.3]). Thus, the assignment C �→C+ does not provide

a formal way to obtain a silting object from a cosilting object of finite type C ∈D(R) for a

commutative noetherian ring R. This is the reason why we first studied the silting case and

deduced the cosilting case, even though the latter is often more tractable than the former

when we work with large modules.

In fact, the Z-module Q⊕ (Q/Z) is (not only cotilting but) tilting of finite type in D(Z)
(see Example 5.5), and hence HomZ(Q⊕ (Q/Z),Q/Z) is cotilting of cofinite type by (2.21).

Example 5.5. Suppose that R is a Gorenstein ring with possibly infinite Krull

dimension. Then R itself is a dualizing complex (see [52, Chap. V, Th. 9.1] and Remark

2.14). The codimension function dR associated with the dualizing complex R coincides with

the height function (see [79, Th. 18.8]). For the height filtration Φht, we have

TΦht
∼=

⊕
p∈SpecR

ER(R/p) and CΦht
∼=

∏
p∈SpecR

R̂p
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in D(R). The first isomorphism follows from (2.22), and the second follows from Remark

2.16(1) and (2). As we explain in the two remarks below, TΦht
(resp. CΦht

) naturally

induces the subcategory of all Gorenstein injective (resp. Gorenstein flat) modules as the

tilting (resp. cotilting) class. This was well known in the case when the Krull dimension is

finite (Remark 5.6), but it turns out the finiteness assumption assumption is not necessary

(Remark 5.7).

Remark 5.6. Let R be an Iwanaga-Gorenstein ring, that is, a (possibly noncommu-

tative) noetherian ring with finite injective dimension as a left and right R-module. Let

0→R→ I0 → ·· ·→ In → 0 be a minimal injective resolution of R as a right R-module. It is

well known that the coproduct T :=
⊕

0≤i≤n I
i is an n-tilting right module (see [5, Exam.

5.7]). Thus C := HomZ(T,Q/Z) is an n-cotilting left module (see Sections 2.1.4 and 2.1.5).

The tilting class T := {M ∈ModR | ExtiR(T,M) = 0 ∀i > 0} induced by T coincides with

the class of Gorenstein injective right modules (see [80, Cor. 4.7] and [42, Cor. 11.2.2]), and

the cotilting class C := {M ∈ModRop | ExtiRop(M,C) = 0 ∀i > 0} induced by C coincides

with the class of Gorenstein flat left modules (see [42, Th. 10.3.8]). If R is commutative

(so R is a Gorenstein ring of Krull dimension n), then the tilting module T is nothing but⊕
p∈SpecRER(R/p).

Remark 5.7. Let R be a (commutative) Gorenstein ring of infinite Krull dimension,

and set T :=
⊕

p∈SpecRER(R/p) and C :=
∏

p∈SpecR R̂p. It follows from Corollary 4.9 (resp.

Corollary 5.9) and Example 5.5 that T (resp. C ) is tilting (resp. cotilting) in D(R), but

this has infinite projective (resp. injective) dimension. Therefore T (resp. C ) is not a tilting

(resp. cotilting) module in the classical sense (see Remark 2.8). However, T (resp. C ) is an

∞-tilting (resp. ∞-cotilting) object in ModR in the sense of Positselski and Šťov́ıček (see

[99, §2]). More precisely, setting T := T⊥>0 ∩ModR and C := ⊥>0C ∩ModR, we can show

that (T,T ) (resp. (C,C)) is an ∞-tilting pair (resp. an ∞-cotilting pair) in ModR (see [99,

§3]). Let us briefly explain how this fact can be checked.

We first show that T (resp. C) coincides with GI (resp. GF), the class of Gorenstein

injective (resp. Gorenstein flat) R-modules. Recall from [58, Th. 3.6] that M ∈ ModR

is Gorenstein flat if and only if M+ := HomZ(M,Q/Z) is Gorenstein injective. On the

other hand, it follows from [35, Th. 1.1] that if M is Gorenstein injective, then M+ is

Gorenstein flat. Hence [41, Lem. 1] implies that M is Gorenstein injective if and only if

M+ is Gorenstein flat. As a consequence, (GI,GF) is a duality pair over R in the sense of

[59, Def. 2.1] (see also [58, Th. 3.7]), so that GI is closed under pure submodules by [59,

Th. 3.1]. Further, GI is closed under taking direct products and direct limits by [35, Th.

1.1] and [41, Th. 1]. Thus GI is a definable class (see [102, §3.4.1]), and so the class {M ∈
ModR |M+ ∈ GI} is definable as well (cf. [10, Rem. 2.4] and [102, Th. 1.3.15]). Moreover,

GF = {M ∈ModR |M+ ∈GI} and GI = {M ∈ModR |M+ ∈GF} by the above observation.

Since GI (resp. GF) is definable, a standard argument (cf. [61, Lem. 3.5]) shows that

M ∈ModR is Gorenstein injective (resp. Gorenstein flat) if and only if Mm is Gorenstein

injective (resp. Gorenstein flat) in ModRm for all maximal ideals m of R. Hence, noting that

ER(R/p)∼=ERp
(κ(p)) and C =

∏
p∈SpecR R̂p is equivalent to T

+ ∼=HomR(T,HomZ(R,Q/Z))
as cotilting objects in D(R) (see the proof of Theorem 5.2 and Example 5.5), we can deduce

from [42, Th. 10.3.8] and tensor-hom adjunction that M ∈ModR belongs to C if and only

if M is Gorenstein flat, that is, C = GF . We have T = {M ∈ModR |M+ ∈ C} by (2.17),

(2.19), and [10, Lem. 2.5], so it follows that T = {M ∈ModR |M+ ∈ GF}= GI.
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Now, (T,T ) = (T,GI) is an ∞-tilting pair in ModR by the above argument and [99,

Exam. 6.4]. Moreover, we can directly show that (C,C) = (C,GF) satisfies (i∗)-(iii∗) in [99,

p. 311], and (C,GF) also satisfies (iv∗) by [58, Th. 3.7]. Thus, to see that (C,C) is an

∞-cotilting pair in ModR, it remains to show that (C,C) satisfies (v∗). For this purpose,

it suffices to show that, for any M ∈ GF , there exists an injection M → N such that

N ∈ Prod(C)∩ModR. This follows because there exists an injection from M to a flat R-

module F by definition and the pure-injective envelope of F is a direct summand of some

object in Prod(C)∩ModR (see [42, Th. 5.3.28 and Cor. 6.7.2] and [65, Rem. 7.8]).

Remark 5.8. By local duality (5.1), any commutative noetherian local ring admitting

a dualizing complex DR (Notation 2.15) is Cohen–Macaulay if and only if DR is quasi-

isomorphic to an R-module, which is called a canonical module of R and denoted by ωR (cf.

[52, Chap. V, Prop. 3.4] and [30, §3.3]). The canonical module is unique up to isomorphism.

Suppose that R is a (possibly nonlocal) Cohen–Macaulay ring. Then Rp is a Cohen–

Macaulay local ring for each p ∈ SpecR by definition, and so is R̂p (see [79, Th. 17.5]).

Hence D
̂Rp

is quasi-isomorphic to ω
̂Rp
. Therefore

CΦ
∼=

∏
p∈SpecR

Σht(p)−fΦ(p)ω
̂Rp

in D(R) for every nondegenerate sp-filtration Φ of SpecR.

The following is a corollary of Theorem 5.2.

Corollary 5.9. Let R be a Cohen–Macaulay ring, and let Φ be a codimension filtration.

Then CΦ is a cotilting object in D(R).

In particular, CΦht
∼=
∏

p∈SpecRω
̂Rp

is a cotilting object in D(R).

Proof. By Theorem 5.2, CΦ is a cosilting object in D(R), so it only remains to

check that Prod(CΦ) ⊆ ⊥<0CΦ. This follows from a parallel argument to the proof of

Corollary 4.9.

Remark 5.10. Let R be a commutative noetherian ring. For each p ∈ SpecR, D
̂Rp

is

quasi-isomorphic to a complex of injective R̂p-modules concentrated in degrees between

0 and ht(p) (see Section 2.5.2). The canonical ring homomorphism R → Rp → R̂p is flat,

and then it easily follows that every injective R̂p-module is injective over R. Therefore, if

dimR <∞ and Φ is a bounded sp-filtration of SpecR, then CΦ is isomorphic in D(R) to

a bounded complex of injective R-modules. In particular, CΦht
isomorphic in D(R) to a

bounded complex of injective R-modules concentrated in degrees from 0 to dimR.

Remark 5.11. Let R be a commutative noetherian ring, and let n be an integer with

n ≥ 1. By [16, Th. 4.2], there are bijections among the equivalence classes of n-tilting

modules, those of n-cotilting modules, and the characteristic sequences of length n (see

[16, Def. 3.1]). Each characteristic sequence Y := (Y1, . . . ,Yn) constitutes the sp-filtration

ΦY with ΦY(−1) = SpecR, ΦY(0) = Y1,. . ., ΦY(n−1) = Yn, and ΦY(n) = ∅. By [18, Cor.

3.5] and (2.21), an n-tilting (resp. n-cotilting) module corresponding to the characteristic

sequence Y induces the t-structure in D(R) corresponding to the sp-filtration ΦY via

(2.20) (resp. (2.18)); see also the first sentence of [16, §4]. In general, an sp-filtration Φ

comes from a characteristic sequence Y = (Y1, . . . ,Yn) if and only if the order-preserving

function fΦ : SpecR→Z∪{∞,−∞} corestricts to fΦ : SpecR→{0,1, . . . ,n} and fΦ ≤ gr (see
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Example 3.3). This fact essentially follows from [16, Lem. 4.1] (see also [18, Cor. 3.5] and

[39, Def. 1.1 and Th. 1.2]).

As mentioned in [16, p. 3499], the classification [16, Th. 4.2] does not concretely describe

(co)tilting modules corresponding to each characteristic sequence. However, if R is a Cohen–

Macaulay ring of finite Krull dimension d, then our Corollaries 4.9 and 5.9 can explicitly

give the d -tilting module
⊕

p∈SpecRH
ht(p)
p Rp and the d -cotilting module

∏
p∈SpecRω

̂Rp
.

The tilting (resp. cotilting) module is a new example as far as d > 0 (resp. d > 1) and

it corresponds to the characteristic sequence (Y1, . . . ,Yd) given by Yi := Φht(i− 1). The

cotilting module for the case d= 1 is available in [38, Exam. 6.12], which also covers non-

affine noetherian schemes.

In fact, given a commutative noetherian ring R and a slice sp-filtration Φ of SpecR, it

directly follows from the definitions of depth and Cohen–Macaulay rings that the silting

object TΦ is isomorphic in D(R) to an R-module if and only if R is Cohen–Macaulay

and Φ is the height filtration. By (2.21), the same fact holds true for the cosilting

object CΦ. As a consequence, TΦ (resp. CΦ) is equivalent to a tilting (resp. cotilting)

module if and only if R is Cohen–Macaulay of finite Krull dimension and Φ is the height

filtration.

§6. Endomorphism rings of (co)tilting objects induced by codimension

functions

In this section, we study the endomorphism rings of the tilting object and the cotilting

object corresponding to a codimension filtration.

Let R be a commutative noetherian ring. Let p ∈ SpecR and κ be any cardinal. There

are standard isomorphisms

RHomR(RΓpRp,RΓpR
(κ)
p )∼=RHomR(RΓpRp,R

(κ)
p )∼=RHomRp

(RΓpRp
Rp,R

(κ)
p )

in D(R), and the last object coincides with LΛpRp(R
(κ)
p ) =ΛpRp(R

(κ)
p ) =Λp(R

(κ)
p ) by (2.9).

Hence we have a natural isomorphism

RHomR(RΓpRp,RΓpR
(κ)
p )∼= ̂

R
(κ)
p (6.1)

in D(R). Since the right-hand side has neither positive nor negative cohomologies, (6.1)

can be naturally identified with an isomorphism

HomD(R)(RΓpRp,RΓpR
(κ)
p )∼= ̂

R
(κ)
p (6.2)

in D(R). If κ = 1, (6.2) is of the form

EndD(R)(RΓpRp)∼= R̂p, (6.3)

which is an isomorphism of rings. For later use, let us verify the last fact in more detail.

It suffices to treat the case when R is local and p is the maximal ideal m. Consider the

canonical ring homomorphism f :R→EndD(R)(RΓmR), and compose it with the standard

isomorphisms
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EndD(R)(RΓmR) = HomD(R)(RΓmR,RΓmR)

∼=HomD(R)(RΓmR,R)

∼=RHomR(RΓmR,R)

in D(R). Then we obtain a natural morphism R → RHomR(RΓmR,R), which is in fact

induced by the canonical morphismRΓmR→R under the identification R=RHomR(R,R).

Thus the morphism R→RHomR(RΓmR,R) coincides with the canonical morphism R→
LΛmR = R̂ via (2.9) applied to I := m (see, e.g., [108, Prop. 7.5.16]). We see from this

observation that the composition of f : R → EndD(R)(RΓmR) and the isomorphism g :

EndD(R)(RΓmR) ∼−→ R̂ of R-modules given by (6.3) is just the completion map c :R→ R̂,

that is, c = gf . Moreover, we can naturally extend f to a ring homomorphism h : R̂ →
EndD(R)(RΓmRm) ∼= EndD(R)(RΓmR̂), that is, f = hc (see (5.5)). Since c = gf , we have

c= ghc. Hence Id
̂R =Λm(c) =Λm(gh)Λm(c) =Λm(gh), but clearly Λm(g) = g and Λm(h) = h

because the domains and the codomains are m-adically complete. Consequently Id
̂R = gh.

This means that the ring homomorphism h : R̂→ EndD(R)(RΓmRm) is the inverse map to

the isomorphism g : EndD(R)(RΓmR) ∼−→ R̂ of R-modules. Therefore g is an isomorphism

of rings, and so is (6.3), as desired.

Let p� q be a chain in SpecR and κ a cardinal. Although computing RHomR(RΓpRp,

RΓqR
(κ)
q ) is not easy in general, we can explicitly do this if the chain is saturated by the

theorem below, which is formulated in a more general situation. To prove it, we recall the

natural isomorphism

λ{p} ∼= LΛp(−⊗L
RRp) (6.4)

of functors D(R)→D(R) for any p ∈ SpecR (see [85, Cor. 3.7]).

Theorem 6.1. Let p ∈ SpecR and W ⊆min(V (p)\{p}). Let κ be any cardinal. Then

there is a natural isomorphism

RHomR(RΓpRp,
⊕
q∈W

ΣRΓqR
(κ)
q )∼= Λp((

∏
q∈W

R̂
(κ)
q )p)

in D(R).

Proof. Put V0 := V (p)\{p}, and consider the approximation triangle

γV0R→ γV (p)R→ λV c
0 γV (p)R

+−→,

where γV0γV (p)R ∼= γV0R by (2.4) and λV c
0 γV (p)R ∼= RΓpRp by Remark 4.3. Putting

X :=
⊕

q∈W RΓqR
(κ)
q and applying RHomR(−,ΣX) to the above triangle, we obtain the

following triangle:

RHomR(ΣγV0R,ΣX)→RHomR(RΓpRp,ΣX)→RHomR(γV (p)R,ΣX)
+−→ . (6.5)

Let W
g
be the generalization closure of W (i.e., the smallest generalization closed subset

containing W ). Since X ∈ LW
g = CW

g

by (2.5), there is a canonical isomorphism

RHomR(γV0R,X)∼=RHomR(λ
W

g

γV0R,X). (6.6)
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Consider the approximation triangle

γ(W g
)cγV0R→ γV0R→ λW

g

γV0R
+−→,

where γ(W g
)cγV0R

∼= γ(W g
)c∩V0

R (see, e.g., [26, Prop. 6.1]. Since the composition

γ(W g
)c∩V0

R ∼= γ(W g
)cγV0R → γV0R is the canonical one, letting V1 := (W

g
)c ∩V0, we may

regard the above triangle as the approximation triangle

γV1R→ γV0R→ λV c
1 γV0R

+−→ .

Note that V0\V1 = V0∩V c
1 = V0∩W

g
=W and dimW ≤ 0 by assumption. Hence λV c

1 γV0R
∼=⊕

q∈W RΓqRq by Remark 4.3. This fact and (6.6) yield the natural isomorphisms

RHomR(γV0R,X)∼=RHomR(
⊕
q∈W

RΓqRq,X)∼=
∏
q∈W

RHomR(RΓqRq,X). (6.7)

Since dimW ≤ 0, we have

RHomR(RΓqRq,X)∼=RHomR(RΓqRq,RΓqR
(κ)
q ) (6.8)

for each q ∈W by (2.5) and the second paragraph of Remark 3.6. Therefore

RHomR(γV0R,X)∼=
∏
q∈W

RHomR(RΓqRq,RΓqR
(κ)
q )∼=

∏
q∈W

̂
R

(κ)
q , (6.9)

where the first isomorphism holds by (6.6) to (6.8) and the second holds by (6.1).

Now, we remark that

λ{p}RHomR(γV (p)R,ΣX)∼= λ{p}λV (p)ΣX ∼= λ{p}ΣX ∼= LΛp(
⊕
q∈W

Σ(RΓqR
(κ)
q )p) = 0

by (2.4), (2.7), and (6.4), where the last equality holds because (RΓqR
(κ)
q )p = 0 for every

q ∈W . Hence, applying λ{p} to (6.5), we obtain the isomorphism

λ{p}RHomR(ΣγV0R,ΣX) ∼−→ λ{p}RHomR(RΓpRp,ΣX) (6.10)

induced by the canonical morphism RΓpRp
∼= λV c

0 γV (p)R→ ΣγV0R. Notice that

λ{p}RHomR(RΓpRp,ΣX)∼= LΛpRHomR(RΓpRp,ΣX)∼=RHomR(RΓpRp,ΣX), (6.11)

where the first isomorphism follows from (6.4) along with the isomorphismRHomR(RΓpRp,

ΣX) ∼= RHomR(RΓpRp,ΣX)p and the second follows from Remark 3.6. Thus combining

(6.9) to (6.11), we obtain a natural isomorphism

RHomR(RΓpRp,ΣX)∼= Λp((
∏
q∈W

̂
R

(κ)
q )p).

Notation 6.2. For each p ∈ SpecR, we write Ap = Λp(−⊗RRp), which is a functor

ModR → ModR. Moreover, for a subset W ⊆ SpecR with dimW ≤ 0, we write AW =∏
p∈W Ap. If W = ∅, then AW is the zero functor.
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Corollary 6.3. Assume that R admits a codimension function d. For each n ∈ Z, set
Wn := {p∈ SpecR | d(p) = n}, T (n) :=

⊕
p∈Wn

ΣnRΓpRp, and Y (n) := T (n)⊕T (n+1). Let

κ be any cardinal. Then there is an isomorphism

RHomR(Y (n),Y (n)(κ))∼=AWn(R(κ))⊕AWn+1(R(κ))⊕AWnAWn+1(R(κ)) (6.12)

in D(R) for any n ∈ Z, and this is induced by the following collection of natural

isomorphisms:

RHomR(T (i),T (j)
(κ))∼=

⎧⎨⎩
AWi(R(κ)), (n≤ i= j ≤ n+1),

AWnAWn+1(R(κ)), (i= n, j = n+1),

0, (i= n+1, j = n).

(6.13)

Proof. Let i and j be integers. There are natural isomorphisms

RHomR(T (i),T (j)
(κ))∼=

∏
p∈Wi

RHomR(RΓpRp,
⊕
q∈Wj

Σj−iRΓqR
(κ)
q )

∼=
∏

p∈Wi

RHomR(RΓpRp,
⊕

q∈V (p)∩Wj

Σj−iRΓpR
(κ)
p )

in D(R), where the second isomorphism follows from (2.5).

If i= j and p ∈Wi, then V (p)∩Wi = {p}, so we have

RHomR(T (i),T (i)
(κ))∼=

∏
p∈Wi

RHomR(RΓpRp,RΓpR
(κ)
p )∼=

∏
p∈Wi

Ap(R(κ)) = AWi(R(κ))

by (6.1). This shows the first isomorphism of (6.13).

If (i, j) = (n,n+1) for some integer n, then we have

RHomR(RΓpRp,
⊕

q∈V (p)∩Wn+1

ΣRΓqR
(κ)
q )∼= Λp((

∏
q∈V (p)∩Wn+1

̂
R

(κ)
q )p)

∼= Λp((
∏

q∈Wn+1

̂
R

(κ)
q )p)

= ApAWn+1(R(κ))

for every p ∈Wn by Theorem 6.1, where the second isomorphism holds because

(
∏

q∈Wn+1\V (p)

̂
R

(κ)
q )p⊗RR/pt ∼= (

∏
q∈Wn+1\V (p)

(
̂
R

(κ)
q ⊗RR/pt))p = 0

for all t≥ 1. Hence there is a natural isomorphism

RHomR(T (n),T (n+1)(κ))∼=
∏

p∈Wn

ApAWn+1(R(κ)) = AWnAWn+1(R(κ))

in D(R), from which the second isomorphism of (6.13) follows.

If i > j and p ∈Wi, then V (p)∩Wj = ∅, so

RHomR(T (i),T (j)
(κ)) = 0

in D(R). This shows the third case of (6.13).
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Corollary 6.4. Let R, Y (n), and κ be as in Corollary 6.3. Then there is a natural

isomorphism

RHomR(Y (n),Y (n)(κ))∼=HomD(R)(Y (n),Y (n)(κ))

in D(R) for any n ∈ Z. The right-hand side is a flat R-module.

Proof. This follows from Corollary 6.3. See also Remark 6.22 for the second

statement.

If dimR ≤ 1, a codimension function d on SpecR always exists; for example, choose

d as the height function ht : SpecR → Z or the function defined by the assignment p �→
dimR−dimR/p.

Theorem 6.5. Assume that the Krull dimension of R is at most one. Let Φ be a

codimension filtration Φ of SpecR. Then TΦ is a tilting object in D(R).

Proof. By Theorem 4.6, TΦ is a silting object in D(R). To show that TΦ is tilting, we

may assume that Φ is the height filtration (see the last paragraph of Remark 4.10). Then

the theorem follows from Corollary 6.4.

For the proof of the next theorem, we make a remark.

Remark 6.6. Let R be any commutative noetherian ring andW ⊆ SpecR with dimW ≤
0. For each q∈W , let hq : R̂q

∼−→EndD(R)(RΓqRq) be the canonical ring isomorphism given

by (6.3). Let n be an integer and X :=
⊕

p∈W ΣnRΓpRp. Take any element (rq)q∈W of∏
q∈W R̂q = AWR. Then we have the coproduct

⊕
q∈W Σnhq(rq) : X → X of morphisms

Σnhq(rq) : Σ
nRΓqRq → ΣnRΓqRq. Since

EndD(R)(X)∼=
∏
q∈W

EndD(R)(RΓqRq)

by (2.5), the assignment (rq)q∈W �→
⊕

q∈W Σnhq(rq) induces a ring isomorphism

AWR=
∏
q∈W

R̂q
∼−→ EndD(R)(X). (6.14)

This gives the first isomorphism of (6.13) if W =Wn, X = T (n), and κ = 1. Note that if

W = ∅, then the both sides of (6.14) are the zero ring.

Let U ⊆ SpecR with dimU ≤ 0. Let us observe that AUAWR has an (AWR,AUR)-

bimodule structure. Regard the (commutative) R-algebra AWR as a left AWR-module.

Each element a ∈ AWR induces an R-homomorphism AWR
a·−→ AWR, and it is sent to an

R-homomorphism by the functor AU : ModR→ModR. Hence we can define the a-action

on AUAWR as the induced map AU (a·) : AUAWR→AUAWR, so AUAWR is a left AWR-

module. On the other hand, we may interpret Ap as a functor ModR→ModRp →ModR̂p

for each p ∈ SpecR (see, e.g., [65, Rem. A.11]). Thus AU =
∏

p∈U Ap is a functor ModR→
ModAUR. In particular, the (commutative) ring AUR naturally acts on AUAWR from the

right. As a consequence, AUAWR has an (AWR,AUR)-bimodule structure. Indeed, given

a∈AWR, b∈AUR, and x∈AUAWR, we have (ax)b= (AU (a·))(x)b= (AU (a·))(xb) = a(xb),

where the second equality holds because AU (a·) : AUAWR → AUAWR is a morphism in

ModAUR, that is, an AUR-homomorphism.
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Theorem 6.7. Let R, Wn, and Y (n) be as in Corollary 6.3. For each n ∈ Z, there is a

natural isomorphism

EndD(R)(Y (n))∼=
(

AWnR 0

AWnAWn+1R AWn+1R

)
of rings.

Proof. By definition and the third case of (6.13), we have the ring isomorphism

EndD(R)(Y (n))∼=
(

EndD(R)(T (n)) 0

HomD(R)(T (n),T (n+1)) EndD(R)(T (n+1))

)
.

Moreover, by the first and the second cases of (6.13), we have the following isomorphisms

of R-modules:

AWnR∼= EndD(R)(T (n)), (6.15)

AWn+1R∼= EndD(R)(T (n+1)), (6.16)

AWnAWn+1R∼=HomD(R)(T (n),T (n+1)). (6.17)

Here, (6.15) and (6.16) are isomorphisms of rings by (6.14). Thus it remains to show

that, through (6.15), (6.16), and (6.17), the (AWn+1R,AWnR)-bimodule structure on

AWnAWn+1R agrees with the (EndD(R)(T (n+ 1)),EndD(R)(T (n)))-module structure on

HomD(R)(T (n),T (n+1)).

Take p ∈Wn. Let W := V (p)∩Wn+1 and X :=
⊕

q∈W RΓqRq. By the proof of Corollary

6.3, we have a natural isomorphism

RHomR(RΓpRp,ΣX)∼=RHomR(Σ
nRΓpRp,T (n+1)) (6.18)

in D(R). Let V0 := V (p)\{p}. Since W ⊆minV0, we have a natural morphism

RHomR(ΣγV0R,ΣX)→RHomR(RΓpRp,ΣX), (6.19)

which is the first morphism of (6.5). Moreover, there is a natural isomorphism

AWR∼=RHomR(ΣγV0R,ΣX) (6.20)

by (6.9). By construction, the left AWR-action on AWR agrees with the left EndD(R)(X)-

action on RHomR(ΣγV0R,ΣX), through (6.20) and the ring isomorphism AWR ∼−→
EndD(R)(X) given by (6.14). Composing (6.18), (6.19), and (6.20), we obtain a natural

morphism

AWR→RHomR(Σ
nRΓpRp,T (n+1)) (6.21)

in D(R). We remark that, by (6.10) and (6.18), the morphism (6.19) becomes an

isomorphism upon application of λ{p}. Furthermore, we have λ{p}AWR ∼= ApAWR ∼=
ApAWn+1R in D(R) (see (6.4) and the proof of Corollary 6.3). Thus, application of λ{p} to

(6.21) induces a natural isomorphism

ApAWn+1R ∼−→RHomR(Σ
nRΓpRp,T (n+1)) (6.22)
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in D(R) (see also (6.11)). By construction, the left AWn+1R-action on ApAWn+1R agrees

with the left EndD(R)(T (n+1))-action on RHomR(Σ
nRΓpRp,T (n+1)) through (6.16) and

(6.22). Taking the product of (6.22) for all p ∈Wn, and using (6.13) (or Corollary 6.4), we

obtain the following natural isomorphisms:

AWnAWn+1R∼=
∏

p∈Wn

RHomR(Σ
nRΓpRp,T (n+1))

∼=RHomR(T (n),T (n+1))

∼=HomD(R)(T (n),T (n+1))

in D(R), whose composition is nothing but (6.17). By construction, the left AWn+1R-action

on AWnAWn+1R agrees with the left EndD(R)(T (n+1))-action on HomD(R)(T (n),T (n+1))

through (6.16) and (6.17).

We next show that the right AWnR-action on AWnAWn+1R agrees with the right

EndD(R)(T (n))-action on HomD(R)(T (n),T (n+1)) through (6.15) and (6.17). Since the

isomorphism (6.17) restricts to the isomorphism

ApAWn+1R∼=HomD(R)(Σ
nRΓpRp,T (n+1)) (6.23)

of Rp-modules for each p ∈Wn, it suffices to show that the right R̂p-action on ApAWn+1R

agrees with the right EndD(R)(Σ
nRΓpRp)-action on M := HomD(R)(Σ

nRΓpRp,T (n+1))

through (6.3) and (6.23).

The right R̂p-action on ApAWn+1R induces an R̂p-action onM through (6.23). Further,M

has the right EndD(R)(Σ
nRΓpRp)-action, which can be regarded as an R̂p-action through

(6.3). Consequently, M has two (right) R̂p-module structures extending its Rp-module

structure. Then the two R̂p-module structures coincide by [65, Prop. A.15]. This argument

shows that the right R̂p-action on ApAWn+1R agrees with the right EndD(R)(Σ
nRΓpRp)-

action on M through (6.3) and (6.23).

We denote by mSpecR the set of maximal ideals of R. The following partly generalizes

[32, Exams. 7.5 and 7.6(2)] and [100, Exam. 8.4].

Example 6.8. In the setting of Theorem 6.5, we can explicitly compute the endo-

morphism ring EndD(R)(TΦ) of the tilting object TΦ. By Remark 4.10, we may assume

that Φ is the sp-filtration Φd for the codimension function d : SpecR → Z given by

p �→ dimR− dimR/p (see Remark 2.11). If dimR = 0, then TΦ
∼=
∏

p∈SpecRRp
∼= R, so

EndD(R)(TΦ) ∼= R. Hence assume dimR = 1. In the notation of Corollary 6.3, we have

TΦ = T (0)⊕ T (1) = Y (0), where W1 = mSpecR and W0 = SpecR \W1. Then AW0 =∏
p∈W0

(−⊗RRp), and this functor coincides with −⊗RS
−1R, where S = R \

⋃
p∈W0

p (see,

e.g., [79, §8, Th. 8.15, and Rem. 2]). By Theorem 6.7, we obtain the description (1.1) of

EndD(R)(TΦ). If R= Z, (
∏

m∈mSpecZ Ẑm)⊗ZQ is known as the ring of finite adeles.

The endomorphism ring EndD(R)(TΦ) does not depend (up to isomorphism) on the

choice of a codimension filtration, but if the height filtration is chosen as Φ, then one

would apply Theorem 6.7 (and Corollary 6.3) to d := ht. In this case, and if SpecR is not

connected, Theorem 6.7 could give a slightly different description of the endomorphism

ring:
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EndD(R)(TΦ)∼=

⎛⎝ S−1R 0

(
∏

ht(m)=1

R̂m)⊗RS
−1R

∏
ht(m)=1

R̂m

⎞⎠ ,

where S is the complement of the set of height-zero prime ideals. If R is Cohen–Macaulay,

S is the set of nonzero divisors (see [79, Ths. 6.1(ii) and 17.3(i)]), so S−1R is the total

quotient ring.

The next result allows us to partly dualize the tilting condition to the cotilting condition.

Proposition 6.9. Let p⊆ q be prime ideals of R and let κ be a nonzero cardinal. For

each i ∈ Z, the following conditions are equivalent:

(1) HiRHomR(RΓpRp,RΓqR
(κ)
q ) = 0.

(2) HiRHomR(RΓpRp,RΓqRq) = 0.

(3) Hht(q)−iRΓp(Rp⊗L
RD

̂Rq
) = 0.

(4) Hi−ht(q)+ht(p)RHomR(D
κ

̂Rq

,D
̂Rp
) = 0.

(5) Hi−ht(q)+ht(p)RHomR(D̂Rq
,D

̂Rp
) = 0.

Proof. For any complex X of Rp-modules and any complex Y of Rq-modules, there is

a standard isomorphism RHomR(X,Y )∼=RHomRq
(X,Y ). Hence, it is enough to treat the

case when (R,m,k) is a local ring, q is the maximal ideal m, and p is a prime ideal of the

local ring R. Then R̂q = R̂. In addition, we may regard D
̂R as a bounded complex of finitely

generated R̂-modules. Noting that ER(k)∼=E
̂R(k) is an injective cogenerator in ModR̂ (see

[64, Lem. A.27 and Th. A.31]), we have

HiRHomR(RΓpRp,RΓmR
(κ)) = 0

⇔Hi−ht(m)RHomR(RΓpRp,Σ
ht(m)RΓmR

(κ)) = 0

⇔Hi−ht(m)RHomR(RΓpRp,Hom ̂R(D ̂R,ER(k))
(κ)) = 0

⇔Hi−ht(m)RHomR(RΓpRp,RHom
̂R(D ̂R,ER(k)

(κ))) = 0

⇔Hi−ht(m)RHom
̂R(RΓpRp⊗L

RD
̂R,ER(k)

(κ)) = 0

⇔Hht(m)−i(RΓpRp⊗L
RD

̂R) = 0,

where the second bi-implication follows from (5.8) as RΓmR
(κ) ∼= (RΓmR)(κ), the third

follows as D
̂R consists of finitely generated R̂-modules and ER(k)

(κ) is injective, and the

fourth follows by the adjunction

D(R) D(R̂).

−⊗L
RD

̂R

RHom
̂R(D

̂R,−)

Then it is seen that the equivalences among (1)–(3) hold.

Next, we recall that, for any finitely generated R̂-module N, the functor N⊗
̂R− :

ModR̂→ModR̂ commutes with products because R̂ is noetherian. Thus we have a natural

isomorphism

D
̂R⊗ ̂RR̂

κ ∼−→Dκ

̂R
(6.24)
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in C(R̂). Using this, (5.7), and (2.11), we obtain natural isomorphisms

RHomR(D
κ

̂R
,D

̂Rp
)∼=RHomR(D ̂R⊗ ̂RR̂

κ,D
̂Rp
)

∼=RHomR(D ̂R⊗ ̂RR̂
κ,Σ−ht(p)RHomR(RΓpRp,ER(R/p)))

∼=Σ−ht(p)RHomR(RΓpRp⊗L
R(D ̂R⊗ ̂RR̂

κ),ER(R/p))

∼=Σ−ht(p)HomR(Č(p)p⊗RD ̂R⊗ ̂RR̂
κ,ER(R/p))

in D(R), where ER(R/p) ∼= ERp
(κ(p)) is an injective cogenerator in ModRp and the last

HomR can be replaced by HomRp
. Therefore we have

Hi−ht(m)+ht(p)RHomR(D
κ

̂R
,D

̂Rp
) = 0

⇔Hi−ht(m)HomRp
(Č(p)p⊗RD ̂R⊗ ̂RR̂

κ,ER(R/p)) = 0

⇔Hht(m)−i(Č(p)p⊗RD ̂R⊗ ̂RR̂
κ) = 0

⇔Hht(m)−i(Č(p)p⊗RD ̂R) = 0

⇔Hht(m)−i(RΓpRp⊗L
RD

̂R) = 0,

where the third bi-implication follows since R̂κ is a faithfully flat R̂-module. This shows

that the equivalences among (3)–(5) hold.

Proposition 6.10. Let Φ be a nondegenerate sp-filtration of SpecR.

(1) If TΦ is a silting object in D(R), then Φ is a slice sp-filtration. If TΦ is a tilting object

in D(R), then Φ is a codimension filtration, and so R admits a codimension function.

(2) If CΦ is a cosilting object in D(R), then Φ is a slice sp-filtration. If CΦ is a cotilting

object in D(R), then Φ is a codimension filtration, and so R admits a codimension

function.

Proof. (1): Let T :=TΦ and f := fΦ, where fΦ : SpecR→Z is the order-preserving function

corresponding to Φ (Remark 2.11). Suppose that T is silting. Then T ∈ T⊥>0 by Lemma

2.2. Take any saturated chain p� q in SpecR and consider the direct summand

X :=RHomR(Σ
f(p)RΓpRp,Σ

f(q)RΓqRq)

of RHomR(T,T ). If f(p) = f(q), then Theorem 6.1 implies that X ∼= Σ−1Λp(R̂q⊗RRp) �= 0

in D(R). Thus H1RHomR(T,T ) �= 0, but this contradicts that T ∈ T⊥>0 . Therefore f = fΦ
is strictly increasing, that is, Φ is a slice sp-filtration (see (3.1)).

Next, suppose that T is tilting. Then f is strictly increasing by the above argument. If

f is not a codimension function, there is a saturated chain p � q such that f(q)− f(p) > 1.

Putting n := f(q)− f(p), we have

RHomR(Σ
f(p)RΓpRp,Σ

f(q)RΓqRq) =RHomR(RΓpRp,Σ
nRΓqRq)∼=Σn−1Λp(R̂q⊗RRp)

by Theorem 6.1. Hence H−n+1RHomR(T,T ) �= 0 and −n+1< 0, but this contradicts that

T ∈ T⊥<0 . Thus f = fΦ is a codimension function, that is, Φ is a codimension filtration.

(2): Let C := CΦ and f := fΦ. Suppose that C is cosilting. Then C ∈ ⊥>0C (see

the first paragraph of Section 2.1.3). Take any saturated chain p � q in SpecR.

By Theorem 6.1, RHomR(RΓpRp,RΓqRq) ∼= Σ−1Λp(R̂q⊗RRp) in D(R), and hence

H1RHomR(RΓpRp,RΓqRq) �= 0. It then follows from Proposition 6.9, applied to i = 1,
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that H1−ht(q)+ht(p)RHomR(D̂Rq
,D

̂Rp
) �= 0, that is, H1RHomR(Σ

ht(q)D
̂Rq
,Σht(p)D

̂Rp
) �= 0.

If f(p) = f(q), RHomR(CΦ,CΦ) contains

RHomR(Σ
ht(q)−f(q)D

̂Rq
,Σht(p)−f(p)D

̂Rp
) =RHomR(Σ

ht(q)D
̂Rq
,Σht(p)D

̂Rp
)

as a direct summand. Thus H1RHomR(C,C) �= 0, but this contradicts that C ∈ ⊥>0C.

Therefore f = fΦ is strictly increasing, that is, Φ is a slice sp-filtration.

Next, suppose that C is cotilting. Then f is strictly increasing by the above argument. If

f is not a codimension function, there is a saturated chain p � q such that f(q)− f(p) > 1.

Putting n := f(q)− f(p), we have

Y :=RHomR(Σ
ht(q)−f(q)D

̂Rq
,Σht(p)−f(p)D

̂Rp
) = Σn−ht(q)+ht(p)RHomR(D̂Rq

,D
̂Rp
).

Recall that H1RHomR(RΓpRp,RΓqRq) �= 0 by Theorem 6.1. Hence Proposition 6.9,

applied to i= 1, yields H1−ht(q)+ht(p)RHomR(D̂Rq
,D

̂Rp
) �= 0. Therefore

H−n+1Y =H1−ht(q)+ht(p)RHomR(D̂Rq
,D

̂Rp
) �= 0,

where −n+1 < 0. Then C /∈ C⊥<0 as Y is a direct summand of C, but this contradicts

that C is cotilting. Thus f = fΦ is a codimension function, that is, Φ is a codimension

filtration.

Theorem 6.11 and Corollary 6.12 are cotilting versions of Theorem 6.1 and Corollary 6.4,

respectively.

Theorem 6.11. Let p ∈ SpecR and W ⊆min(V (p)\{p}). Let κ be any cardinal. Then

there is a natural isomorphism

RHomR(
∏
q∈W

Σht(q)−ht(p)−1Dκ

̂Rq

,D
̂Rp
)∼=HomD(R)(

∏
q∈W

Σht(q)−ht(p)−1Dκ

̂Rq

,D
̂Rp
)

in D(R). Moreover, the right-hand side is a flat R-module.

Corollary 6.12. Assume that R admits a codimension function d. For each n∈Z, set
Wn := {p ∈ SpecR | d(p) = n}, C(n) :=

∏
p∈Wn

Σht(p)−nD
̂Rp
, and Y (n) := C(n)⊕C(n+1).

Let κ be any cardinal. Then there is a natural isomorphism

RHomR(Y (n)κ,Y (n))∼=HomD(R)(Y (n)κ,Y (n))

in D(R). Moreover, the right-hand side is a flat R-module.

It will be seen in the proof of Corollary 6.12 that RHomR(C(n)κ,C(n+1)) = 0, so

EndD(R)(Y (n)) naturally becomes an upper triangular matrix ring. However, the proof of

Theorem 6.11 will show that a more concrete description of the right-hand side in Theorem

6.11 is more complicated than that of Theorem 6.1. Hence, for the cotilting side, we do not

give a result like Theorem 6.7 (see also Example 6.15).

Corollary 6.12 yields the next theorem. As already mentioned, there is no formal way to

dualize the tilting condition to the cotilting condition, so we can not deduce this theorem

directly from Theorem 6.5.

Theorem 6.13. Assume that the Krull dimension of R is at most one. Let Φ be a

codimension filtration Φ of SpecR. Then CΦ is a cotilting object in D(R).
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Proof. By Theorem 5.2, CΦ is a cosilting object in D(R). To show that CΦ is cotilting,

we may assume that Φ is the height filtration (see Remark 4.10). Then this theorem follows

from Corollary 6.12.

Let R be as in Theorem 6.13 and Φ the height filtration. Then CΦ =
∏

p∈SpecRD
̂Rp
, and

in the derived category D(R), we may interpret CΦ as a complex of injective R-modules

concentrated in degrees 0 and 1 (see Remark 5.10). Hence, instead of using Corollary 6.12,

one can also complete the proof of Theorem 6.13 by the following result due to Pavon and

Vitória. For its proof, see also [98, Rem. 4.8] and Remark 6.20.

Theorem 6.14 [98, Cor. 5.12]. Let R be a commutative noetherian ring and C a 2-term

cosilting complex over R. Then C is a cotilting object in D(R).

Let us now prove Theorem 6.11 and Corollary 6.12. For this purpose, we remark that

cosuppRD
̂Rp

= {p} (6.25)

for each p ∈ SpecR. Moreover, given a subset W of SpecR, Y ∈ CW , and p ∈ SpecR with

W ∩U(p) = ∅, we have

RHomR(X,Y ) = 0 (6.26)

for every complex X of Rp-modules becauseX ∈LU(p) =
⊥0CV by (2.5) and CW ⊆CV , where

V :=U(p)c. We will also need the fact that, for any p∈ SpecR, there is a quasi-isomorphism

Č(p)⊗RD̂Rp
→ Σ−ht(p)ER(R/p) (6.27)

of complexes of R̂p-modules (see (2.11), (2.22), and (5.3)).

Proof of Theorem 6.11. Let X :=
∏

q∈W Σht(q)−ht(p)−1Dκ

̂Rq

. By (5.2), we have

RHomR(X,D
̂Rp
)∼=RHomRp

(X⊗L
RΣht(p)RΓpRp,ER(R/p)). (6.28)

Note that ER(R/p) ∼= ERp
(κ(p)) is an injective cogenerator in ModRp and

X⊗L
RΣht(p)RΓpRp

∼= Σht(p)RΓpXp in D(R) by (2.11). Hence, it suffices to show that

Σht(p)RΓpXp is isomorphic to an injective R-module in D(R) (see [42, Th. 3.2.16]).

Consider the approximation triangle

γU(p)cX →X →Xp
+−→, (6.29)

where Xp
∼= λU(p)X by (2.6). Since W ⊆ U(p)c by assumption, it follows from (6.25) and

(6.26) that RHomR(Rp,X) = 0. Thus application of RΓpRHomR(Rp,−) to (6.29) yields

the natural isomorphism

RΓpXp
∼−→ ΣRΓpRHomR(Rp,γU(p)cX). (6.30)

Moreover, by (2.8)–(2.10), tensor-hom adjunction, and [26, Prop. 6.1], there are natural

isomorphisms

RΓpRHomR(Rp,γU(p)cX)∼=RΓpRHomR(RΓpR,RHomR(Rp,γU(p)cX))

∼=RΓpRHomR(Rp,RHomR(RΓpR,γU(p)cX))

∼=RΓpRHomR(Rp,RHomR(RΓpR,γV (p)∩U(p)cX))
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∼=RΓpRHomR(RΓpR,RHomR(Rp,γV (p)∩U(p)cX))

∼=RΓpRHomR(Rp,γV (p)∩U(p)cX).

Thus, we can rewrite (6.30) to

RΓpXp
∼−→ ΣRΓpRHomR(Rp,γV (p)∩U(p)cX). (6.31)

Since X ∈ CW
g

and V (p) ∩ U(p)c ∩ W
g
= (V (p) \ {p}) ∩ W

g
= W , we have natural

isomorphisms

γV (p)∩U(p)cX ∼= γV (p)∩U(p)cγW gX ∼= γV (p)∩U(p)c∩W
gX ∼=

⊕
q∈W

RΓqRHomR(Rq,X)

in D(R), where the second and the third isomorphisms follow from [85, Prop. 3.21] and [84,

Th. 3.12], respectively. Moreover, we see from (6.25) and (6.26) that

RΓqRHomR(Rq,X)∼=RΓqRHomR(Rq,Σ
ht(q)−ht(p)−1Dκ

̂Rq

)∼=Σht(q)−ht(p)−1RΓqD
κ

̂Rq

.

Thus, we can rewrite (6.31) to

RΓpXp
∼−→ Σht(q)−ht(p)RΓpRHomR(Rp,

⊕
q∈W

RΓqD
κ

̂Rq

). (6.32)

Now, using (2.11), (6.24), and (6.27), we compute

RΓqD
κ

̂Rq

∼= Č(q)⊗RD
κ

̂Rq

∼= Č(q)⊗R(D̂Rq
⊗

̂Rq
R̂q

κ

)

∼= (Č(q)⊗RD̂Rq
)⊗

̂Rq
R̂q

κ

∼=Σ−ht(q)ER(R/q)⊗
̂Rq
R̂q

κ

in D(R). Combining this with (6.32), we have

Σht(p)RΓpXp
∼=Σht(q)RΓpRHomR(Rp,

⊕
q∈W

RΓqD
κ

̂Rq

)

∼= ΓpHomR(Rp,
⊕
q∈W

ER(R/q)⊗
̂Rq
R̂q

κ

)

in D(R), where the second isomorphism holds because the R-modules ER(R/q)⊗
̂Rq
R̂q

κ

and HomR(Rp,
⊕

q∈W ER(R/q)⊗
̂Rq
R̂q

κ

) are both injective (see [42, Ths. 3.2.9 and 3.2.16]).

Therefore, it follows from Remark 4.2 that Σht(p)RΓpXp is isomorphic to an injective R-

module, as desired.

Proof of Corollary 6.12. Let i and j be integers. There are natural isomorphisms

RHomR(C(i)κ,C(j))∼=
∏

p∈Wj

RHomR(
∏

q∈Wi

Σht(q)−iDκ

̂Rq

,Σht(p)−jD
̂Rp
)

∼=
∏

p∈Wj

RHomR(
∏

q∈V (p)∩Wi

Σht(q)−iDκ

̂Rq

,Σht(p)−jD
̂Rp
),

where the second isomorphism follows from (2.5) and (6.25).
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If i= j and p ∈Wi, then V (p)∩Wi = {p}, so we have

RHomR(C(i)κ,C(i))∼=
∏

p∈Wi

RHomR(D
κ

̂Rp

,D
̂Rp
)∼=

∏
p∈Wi

HomD(R)(D
κ

̂Rp

,D
̂Rp
), (6.33)

where the second follows from (2.11), (5.7), (6.24), and (6.27) because

RHomR(D
κ

̂Rp

,D
̂Rp
)∼=RHomR(RΓpD

κ

̂Rp

,Σ−ht(p)ER(R/p))

∼=RHomR(ER(R/p)⊗
̂Rp
R̂p

κ

,ER(R/p))

∼=HomR(ER(R/p)⊗
̂Rp
R̂p

κ

,ER(R/p)).

The last R-module is flat since ER(R/p)⊗
̂Rp
R̂p

κ

is injective over R (see [42, Ths. 3.2.9 and

3.2.16]).

If (i, j) = (n+1,n) for some integer n, then we have

RHomR(C(n+1)κ,C(n))∼=
∏

p∈Wn

RHomR(
∏

q∈V (p)∩Wn+1

Σht(q)−n−1Dκ

̂Rq

,Σht(p)−nD
̂Rp
)

=
∏

p∈Wn

RHomR(
∏

q∈V (p)∩Wn+1

Σht(q)−ht(p)−1Dκ

̂Rq

,D
̂Rp
)

∼=
∏

p∈Wn

HomD(R)(
∏

q∈V (p)∩Wn+1

Σht(q)−ht(p)−1Dκ

̂Rq

,D
̂Rp
)

in D(R), where the third isomorphism holds by Theorem 6.11, which also shows that the

last R-module is flat.

If i < j and p ∈Wj , then V (p)∩Wi = ∅, so

RHomR(C(i)κ,C(j)) = 0

in D(R). We have completed the proof.

Example 6.15. Let R be a one-dimensional Gorenstein ring. The cotilting object CΦht

for the height filtration Φht is of the form (
∏

ht(p)=0 R̂p)⊕(
∏

ht(m)=1 R̂m) (see Example 5.5),

where
∏

ht(p)=0 R̂p =
∏

ht(p)=0Rp can be identified with the total quotient ring Q(R) of R.

By [120, Lem. 4.1.8] or by the proof of Corollary 6.12 applied to κ = 1 and Matlis duality,

we can verify that there is a natural ring isomorphism

EndD(R)(CΦht
)∼=

⎛⎜⎜⎝
Q(R) HomR(

∏
ht(m)=1

R̂m,Q(R))

0
∏

ht(m)=1

R̂m

⎞⎟⎟⎠ .

Remark 6.16. By [44, Prop. 3.1], there exists a one-dimensional local domain that does

not admit a dualizing complex (see also [110, Th. 3.8] and [96, Prop. 3.7]). Thus Theorems

6.5 and 6.13 are not covered by Theorems 4.7 and 5.4. A principle hidden here would be

that R is a homomorphic image of a Cohen–Macaulay ring. We will discuss this theme in

the next section.

Remark 6.17. The existence of a codimension function is not essential for Corollaries

6.3 and 6.4 as explained in the following: Let R be a commutative noetherian ring and fix

an integer n. Let Wn and Wn+1 be subsets of SpecR with dimWn ≤ 0 and dimWn+1 ≤ 0.
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Assume that Wn ∩V (q) = ∅ for any q ∈Wn+1 and that any chain p � q in Wn ∪Wn+1 is

saturated. Set T (i) :=
⊕

p∈Wi
ΣiRΓpRp for i= n,n+1 and Y (n) := T (n)⊕T (n+1). Then

we have the isomorphisms in Corollaries 6.3 and 6.4, and the second claim of Corollary 6.4

also holds.

Similarly, letting Wn and Wn+1 be as above, and setting C(i) :=
∏

p∈Wi
Σht(p)−iD

̂Rp

for i = n,n+1 and Y (n) := C(n)⊕C(n+1), we have the isomorphism in Corollary 6.12,

and the second claim of the corollary also holds. So the existence of a codimension function

is not essential for the corollary.

The next result is the silting counterpart of Theorem 6.14.

Theorem 6.18. Let R be a commutative noetherian ring, and let T be a 2-term silting

complex over R. Then T is a tilting object in D(R).

It is possible to deduce Theorem 6.18 from Theorem 6.14 of Pavon and Vitória by some

duality argument, but we here prove Theorem 6.18 in a more direct way. There does not

seem to be any duality argument which recovers the cosilting result Theorem 6.14 from

Theorem 6.18.

Remark 6.19. Assume d := dimR <∞. If p is minimal, then RΓpRp
∼= Rp in D(R),

so RΓpRp is isomorphic to a bounded complex of projective R-modules concentrated in

degrees from −d to 0 (see the proof of Lemma 3.10).

If m is maximal, then RΓmRm
∼=RΓmR in D(R) (see Remark 3.6). Let x = x1, . . . ,xdm

be a sequence of elements in R such that their images in Rm form a system of parameters

of Rm, where dm = dimRm (see Remark 3.11). Let I be the ideal generated by x. Then

Rm/IRm is an Artinian local ring, so we see that the (Zariski) closed subset V (I) of SpecR

decomposes into the disjoint union of V (m) and another closed set V (J), where V (J) may

be empty (i.e., J may be R). Hence, ΓI
∼= ΓV (I)

∼= ΓV (m) ⊕ΓV (J)
∼= Γm ⊕ΓJ as functors

ModR → ModR; the second isomorphism easily follows from Remark 4.2. Thus, RΓmR

is a direct summand of RΓIR ∼= Č(x) in D(R). Since Č(x) is isomorphic in D(R) to a

bounded complex of projective R-modules concentrated in degrees from 0 to dm = ht(m)

(see, e.g., [40, Lem. 6.9]), so is RΓmR∼=RΓmRm.

When d= 1, the above observation implies that, in D(R), TΦht
=
⊕

p∈SpecRΣht(p)RΓpRp

is isomorphic to a complex P of projective R-modules concentrated in degrees from −1 to

0, and P is a 2-term silting complex by Theorem 4.6. Thus one may also use Theorem 6.18

to complete the proof of Theorem 6.5 instead of Corollary 6.4.

Remark 6.20. Silting and cosilting modules were introduced in [14] and [29] as

module-theoretic alternatives to 2-term silting and cosilting complexes. The assignment

X �→ H0X induces a bijection between equivalence classes of silting (resp. cosilting)

complexes concentrated in degrees −1 and 0 (resp. degrees 0 and 1) and equivalence classes

of silting (resp. cosilting) modules.

Over a commutative noetherian ring R, any cosilting module M in ModR cogenerates a

hereditary torsion pair with torsion class ModR∩⊥0M , and in fact, all hereditary torsion

pairs in ModR are of this form. Then cosilting (resp. silting) modules in ModR are, up to

equivalence, in bijection with specialization closed subsets of SpecR. Under this bijection, a

cosilting (resp. silting) module M corresponds to a specialization closed subset W such that

for any ideal I we have HomR(R/I,M) = 0 (resp. (R/I)⊗RM = 0) if and only if V (I)⊆W .

Moreover, if T is a silting module corresponding to a specialization closed subset W, its
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dual T+ = HomR(T,E) by any injective cogenerator E is, up to equivalence, a cosilting

module corresponding to W. See [9, Cors. 3.7 and 4.1, Lem. 4.2, and Th. 5.1] for details.

This classification of (co)silting modules is compatible with (2.18) and (2.20) in the

following sense: If C is a 2-term cosilting complex concentrated in degrees 0 and 1, then the

sp-filtration Φ associated with C by (2.18) satisfies Φ(−1) = SpecR and Φ(1) = ∅ (see the

references in the last paragraph of Section 2.1.3), and Φ(0) corresponds, up to equivalence,

to the cosilting module H0C via [9, Th. 5.1]; see [22, Prop. 2.8] (cf. [61, §5.2]). By duality

(2.21), we have a 2-term silting complex T such that the cosilting complex T+ is equivalent

to C, and Φ is the sp-filtration associated with T by (2.20). Since the cosilting module

(H0T )+ ∼=H0(T+) is equivalent to H0C, the silting module H0T corresponds to Φ(0) via

[9, Th. 5.1].

Proof of Theorem 6.18. We need to show that T (κ) ⊆ T⊥<0 for any cardinal κ. By
shifting T appropriately, we can assume that T is a complex of projective R-modules

concentrated in degrees −1 and 0. Clearly, HomD(R)(T,Σ
iT (κ)) = 0 for any i < −1, so we

only need to show HomD(R)(T,Σ
−1T (κ)) = 0. Note that

HomD(R)(T,Σ
−1T (κ))∼=HomR(H

0T,(H−1T )(κ)).

Therefore, it is enough to show that there is no nonzero R-homomorphism from H0T to

H−1T .

Denote by Gen(H0T ) the class of all epimorphic images of all coproducts of copies of

the module H0T in ModR. The specialization closed subset W corresponding to H0T via

[9, Th. 5.1] (see Remark 6.20) is determined by the property that Gen(H0T ) equals the

class of all R-modules M with M = IM for any ideal I satisfying V (I) ⊆ W . If W = ∅,
the classification implies that the silting complex T is equivalent to the tilting complex R.

Hence we may assume W �= ∅. Take an arbitrary f ∈HomR(H
0T,H−1T ).

Suppose first that R is local and let N denote the image of f in H−1T . By definition,

N belongs to Gen(H0T ), so N = pN for any p ∈W . Since N is contained in the projective

R-module T−1, we can find a nonzero R-homomorphism g :N →R whenever N is nonzero,

but then Nakayama Lemma implies that the image of g is zero; consequently N must be

zero. Hence f is zero as well.

If R is nonlocal, Tm is a 2-term silting complex over Rm for each maximal ideal m (see

[61, Lem. 6.3]). Then the induced map

f⊗RRm : (H0T )⊗RRm
∼=H0(Tm)→H−1(Tm)∼= (H−1T )⊗RRm

is zero for each maximal ideal m by the previous paragraph. This implies that the image of

f is zero, so that f is zero, as desired.

We close this section by showing the following result, which will be used in the next

section.

Proposition 6.21. Let R be a Cohen–Macaulay ring of finite Krull dimension, and let

Φ be a codimension filtration of SpecR. Let κ be any cardinal. Then the following hold:

(1) HomD(R)(TΦ,T
(κ)
Φ ) is a flat R-module. In particular, the canonical ring homomorphism

R→ EndD(R)(TΦ) is faithfully flat.

(2) HomD(R)(C
κ

Φ ,CΦ) is a flat R-module. In particular, the canonical ring homomorphism

R→ EndD(R)(CΦ) is faithfully flat.
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Proof. In view of Remark 4.10, we may assume that SpecR is connected. Then the

codimension function fΦ : SpecR→ Z coincides with the height function ht : SpecR→ Z up

to shift (see Section 2.5.3). So we may assume that Φ is the height filtration.

(1): By Corollary 4.9, we have

TΦ =
⊕

p∈SpecR

Σht(p)RΓpRp
∼=

⊕
p∈SpecR

H
ht(p)
p Rp

in D(R) and the corollary also shows that there is a natural isomorphism

RHomR(TΦ,T
(κ)
Φ )∼=HomD(R)(TΦ,T

(κ)
Φ ) (6.34)

in D(R). Moreover,

RHomR(TΦ,T
(κ)
Φ )∼=

∏
p∈SpecR

RHomR(RΓpRp,Σ
−ht(p)T

(κ)
Φ )

∼=
∏

p∈SpecR

LΛpRHomR(Rp,Σ
−ht(p)T

(κ)
Φ )

by Remark 3.6. Each component LΛpRHomR(Rp,Σ
−ht(p)T

(κ)
Φ ) is isomorphic in D(R) to

an Rp-module M(p) by (6.34), and any product of flat modules is flat since R is noetherian

(see [42, Th. 3.2.24]). So once we show that M(p) is a flat R-module for each p ∈ SpecR,

HomD(R)(TΦ,T
(κ)
Φ ) will be a flat R-module.

Recall that Rp and T
(κ)
Φ are isomorphic to bounded complexes of flat R-modules in

D(R) (see Lemma 3.10 and its proof). Hence, RHomR(Rp,Σ
−ht(p)T

(κ)
Φ ) is isomorphic to a

bounded complex of flat R-modules, but it can be further replaced by a bounded complex

F of flat Rp-modules because RHomR(Rp,Σ
−ht(p)T

(κ)
Φ )∼=RHomR(Rp,Σ

−ht(p)T
(κ)
Φ )⊗RRp.

Then we have

LΛpRHomR(Rp,Σ
−ht(p)T

(κ)
Φ )∼= LΛpF ∼= ΛpF

in D(R), where ΛpF is a bounded complex of p-adic completions of flat Rp-modules.

Note that the modules constituting ΛpF can be identified with p-adic completions of free

Rp-modules (see [42, Lem. 6.7.4]). Thus, according to [83, Lem. 1.5], the complex ΛpF

decomposes as a coproduct F ′⊕F” in C(R) such that κ(p)⊗Rp
F ′ has zero differential and

F” is contractible (i.e., isomorphic to the zero complex in K(R)). As a consequence, M(p)

is isomorphic to F ′ in D(R). By a version of the Auslander–Buchsbaum formula (see, e.g.,

[46, Th. 2.4]), we have

depthRp
M(p) = depthRp

Rp+inf κ(p)⊗Rp
F ′,

where depthRp
Rp = dimRp since Rp is Cohen–Macaulay. Hence

depthRp
M(p)−dimRp = inf κ(p)⊗Rp

F ′.

If we show depthRp
M(p) ≥ dimRp, then inf κ(p)⊗Rp

F ′ ≥ 0, and this means that F ′ is

concentrated in nonnegative degrees because κ(p)⊗Rp
F ′ has zero differential, F ′ consists of

p-adic completions of free Rp-modules, and κ(p)⊗Rp
Λp(R

(μ)
p )∼= κ(p)(μ) for any cardinal μ.

Thus, noting that κ(p)⊗L
Rp

M(p)∼= κ(p)⊗Rp
F ′ in D(Rp) by construction, we can conclude

that the complex F ′ is concentrated in degree zero. In particular, F ′ is a flat R-module and

M(p)∼= F ′.
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Hence it remains to show the inequality depthRp
M(p) ≥ dimRp. This follows from the

following equalities:

depthRp
M(p) = infRHomR(κ(p),M(p))

= infRHomR(κ(p),LΛ
pRHomR(Rp,Σ

−ht(p)T
(κ)
Φ ))

= infRHomR(RΓpκ(p),RHomR(Rp,Σ
−ht(p)T

(κ)
Φ ))

= infRHomR(κ(p),RHomR(Rp,Σ
−ht(p)T

(κ)
Φ ))

= infRHomR(κ(p)⊗L
RRp,Σ

−ht(p)T
(κ)
Φ ))

= infRHomR(κ(p),Σ
−ht(p)T

(κ)
Φ ))

= infRHomR(κ(p),Σ
−ht(p)⊕

q∈SpecRH
ht(q)
q R

(κ)
q )

≥ ht(p) = dimRp.

The second statement of (1) follows from (6.3) because EndR(TΦ) contains
∏

p∈SpecR R̂p

as a direct summand and
∏

p∈SpecR R̂p is a faithfully flat R-module (see [79, Ths. 4.6 and

8.14]).

(2): As assumed, Φ is the height filtration, so that

CΦ =
∏

p∈SpecR

D
̂Rp

∼=
∏

p∈SpecR

ω
̂Rp

by Corollary 5.9. The corollary also shows that

RHomR(C
κ

Φ ,CΦ)∼=HomD(R)(C
κ

Φ ,CΦ) (6.35)

in D(R). Moreover, using (5.2), we have

RHomR(C
κ

Φ ,CΦ)∼=
∏

p∈SpecR

RHomR(C
κ

Φ ⊗L
RΣht(p)RΓpRp,ER(R/p)),

where RHomR in the right-hand side can be replaced by RHomRp
, and ER(R/p) ∼=

ERp
(κ(p)) is an injective cogenerator in ModRp. For each p ∈ SpecR, Cκ

Φ ⊗L
RΣht(p)RΓpRp

is isomorphic in D(R) to an Rp-module N(p) by (6.35). Thus, HomD(R)(C
κ

Φ ,CΦ) is the

product of HomR(N(p),ER(R/p)) for all p ∈ SpecR. So once we show that N(p) is an

injective R-module for each p ∈ SpecR, then HomD(R)(C
κ

Φ ,CΦ) will be a flat R-module.

Since dimR < ∞ and Φ is the height filtration, CΦ
∼=
∏

p∈SpecRω
̂Rp

is an R-module

of finite injective dimension (Remark 5.10). It follows that Cκ

Φ⊗RRp is an Rp-module of

injective dimension bounded by dimRp = ht(p) (see [21, Cor. 5.5]). Thus Cκ

Φ ⊗L
RRΓpRp

∼=
RΓp(C

κ

Φ⊗RRp) is isomorphic in D(R) to a bounded complex of injective R-modules

concentrated in degrees from 0 to ht(p) (Remark 4.2). On the other hand, we know that

Cκ

Φ ⊗L
RΣht(p)RΓpRp is isomorphic in D(R) to the module N(p), so

infCκ

Φ ⊗L
RRΓpRp = infRΓp(C

κ

Φ⊗RRp)≥ ht(p).

Consequently, there is an injective R-module E such that RΓp(C
κ

Φ⊗RRp) is isomorphic in

D(R) to Σ−ht(p)E. This fact in turn shows that N(p)∼=Σht(p)RΓp(C
κ

Φ⊗RRp)∼=E, so N(p)

is an injective R-module.

The second statement of (2) follows similarly as in (1); see the second paragraph of the

proof of Corollary 6.12 and use Matlis duality.
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Remark 6.22. An R-module M is called cotorsion if Ext1R(F,M) = 0 for any flat

R-module. A flat cotorsion R-module means an R-module which is flat and cotorsion. It is

known that an R-module M is flat cotorsion if and only if M is isomorphic to a product∏
p∈SpecRTp, where Tp is the p-adic completion of a free Rp-module (see [42, Th. 5.3.28]).

We see from Corollary 6.3 that the right-hand side of the isomorphism in Corollary 6.4

is in fact a flat cotorsion R-module. Similarly, the right-hand side of the isomorphism in

Theorem 6.11 is a flat cotorsion R-module.

More generally, HomD(R)(TΦ,T
(κ)
Φ ) and HomD(R)(C

κ

Φ ,CΦ) in Proposition 6.21 are not

only flat but cotorsion as R-modules. Indeed, the proof of Proposition 6.21(1) shows that

HomD(R)(TΦ,T
(κ)
Φ ) is isomorphic to the direct product

∏
p∈SpecRM(p). By Remark 3.6,

each M(p) belongs to C{p}, and then [85, Lem. 4.2] implies that M(p) is cotorsion. So

the product
∏

p∈SpecRM(p) is cotorsion. To see that HomD(R)(C
κ

Φ ,CΦ) is cotorsion, recall

from the proof of Proposition 6.21(2) that HomD(R)(C
κ

Φ ,CΦ) is isomorphic to the product∏
p∈SpecRHomR(N(p),ER(R/p)). Then each HomR(N(p),ER(R/p)) is pure-injective (see

the proof of [42, Prop. 5.3.7] or [102, Prop. 4.3.29]), so it is cotorsion (see [42, Lem. 5.3.23]).

Thus
∏

p∈SpecRHomR(N(p),ER(R/p)) is cotorsion.

§7. Homomorphic images of Cohen–Macaulay rings

We proved in Corollaries 4.9 and 5.9 that if R is a Cohen–Macaulay ring and Φ is a

codimension filtration of SpecR, then TΦ is tilting and CΦ is cotilting. In this section,

we will show that every homomorphic image of R inherits this property whenever R is a

Cohen–Macaulay ring of finite Krull dimension (Theorem 7.5). This fact will lead us to the

deep theme on characterizing homomorphic images of Cohen–Macaulay rings. Indeed, it

will turn out that this theme is closely related to the tilting and the cotilting conditions on

TΦ and CΦ, respectively (Theorem 7.18 and Corollary 7.24).

We begin with an elementary observation on sp-filtrations via change of rings. Let

ϕ : R → A be a homomorphism of commutative noetherian rings, and let f : SpecA →
SpecR be the canonical map induced by ϕ. Let Φ be an sp-filtration of SpecR, and

define f−1Φ : Z → 2SpecA as the map given by n �→ f−1(Φ(n)). Clearly, f−1Φ is an sp-

filtration of SpecA. Moreover, if Φ is nondegenerate, then so is f−1Φ. Indeed, we have⋂
n∈Z

f−1(Φ(n)) = f−1(
⋂

n∈Z
Φ(n)) = f−1(∅) = ∅ and

⋃
n∈Z

f−1(Φ(n)) = f−1(
⋃

n∈Z
Φ(n)) =

f−1(SpecR) = SpecA.

Recall that there is a canonical homeomorphism f−1{p} ∼−→ SpecA⊗Rκ(p) for each

p ∈ SpecR (see [79, p. 47]). Suppose ϕ is finite, that is, A is finitely generated as an

R-module. Then the fiber f−1{p} over p is a (possibly empty) finite set and dimf−1{p} ≤ 0

since the ring A⊗Rκ(p) is Artinian.

Lemma 7.1. Let ϕ :R→A be a finite homomorphism of commutative noetherian rings,

and let f : SpecA→ SpecR be the canonical map induced by ϕ. If Φ is a slice sp-filtration

of SpecR, then f−1Φ is a slice sp-filtration of SpecA.

Proof. Let Φ be a slice sp-filtration of SpecR. If P,Q ∈ f−1(Φ(n))\f−1(Φ(n+1)) and

P ⊆Q, then f(P),f(Q) ∈ Φ(n) \Φ(n+1) and f(P) ⊆ f(Q). It follows that f(P) = f(Q)

because Φ is a slice sp-filtration. Putting p := f(P) = f(Q), we have P,Q ∈ f−1{p} and

P⊆Q, but then P=Q as dimf−1{p}= 0.
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Let R be a commutative noetherian ring. In the rest of the section, by an R-algebra, we

will mean a commutative R-algebra for simplicity. A module-finite R-algebra will mean a

(commutative) R-algebra A with structure map ϕ : R → A such that ϕ is finite. Assume

(R,m,k) is a local ring and let A be a module-finite R-algebra with structure map ϕ :R→A.

Let f : SpecA→ SpecR be the canonical map induced by ϕ. The set of maximal ideals of A

equals the fiber f−1(m) over m, and there is a canonical bijection between this and that of

the Artinian ring A/mA= A⊗Rk; in particular, A is semi-local. It then follows that there

is a natural isomorphism

RΓmAA∼=
⊕

P∈mSpecA

RΓPAP

in D(A) (see Remarks 3.9(1) and 4.2). Let x = x1, . . . ,xn be a system of generators of m.

Since RΓmR ∼= Č(x) in D(R), regarding −⊗L
RA as a functor D(R)→D(A), we obtain a

natural isomorphism

(RΓmR)⊗L
RA∼= Č(x)⊗L

RA= Č(x)⊗RA

in D(A). The ideal mA of A is generated by ϕ(x) := ϕ(x1), . . . ,ϕ(xn), so

Č(x)⊗RA= Č(ϕ(x))∼=RΓmAA

in D(A). As a consequence, there is a canonical isomorphism

(RΓmR)⊗L
RA∼=

⊕
P∈mSpecA

RΓPAP (7.1)

in D(A).

We next remark that there is a canonical isomorphism A⊗RR̂ ∼=
∏

P∈mSpecA ÂP of

rings (see [79, Ths. 8.7 and 8.15]). Notice from this isomorphism that each ÂP has

a canonical ring homomorphism from R̂, by which ÂP is a module-finite R̂-algebra.

Regarding RHomR(A,−) and RHom
̂R(ÂP,−) as functors D(R̂) → D(A), we have a

canonical isomorphism

RHomR(A,D ̂R)
∼=

∏
P∈mSpecA

RHom
̂R(ÂP,D

̂R) (7.2)

in D(A) because

RHomR(A,D ̂R) =RHomR(A,Hom ̂R(R̂,D
̂R))

∼=RHom
̂R(A⊗RR̂,D

̂R).

Moreover, we can regard RHom
̂R(ÂP,D

̂R) as a dualizing complex for ÂP since ÂP is a

module-finite R̂-algebra (see Remark 2.16(3)).

Lemma 7.2. Let R be a commutative noetherian ring, and let A be a module-finite

R-algebra. Let f : SpecA→ SpecR be the canonical map induced by the structure map R→A

and let Φ be a nondegenerate sp-filtration of SpecR. Then there are natural isomorphisms

TΦ⊗L
RA∼= Tf−1Φ and RHomR(A,CΦ)∼= Cf−1Φ in D(A).

Proof. Since TΦ =
⊕

p∈SpecRΣfΦ(p)RΓpRp and CΦ =
∏

p∈SpecRΣht(p)−fΦ(p)D
̂Rp
, this

lemma follows from (7.1) and (7.2). Note that, given p ∈ SpecR, we have fΦ(p) = ff−1Φ(P)

for every P ∈ f−1(p) (see Remark 7.3).
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Remark 7.3. Let Φ be a nondegenerate sp-filtration. Let fΦ : SpecR → Z and ff−1Φ :

SpecA→ Z be the functions associated with Φ and f−1Φ, respectively (Remark 2.11). For

each P ∈ SpecA, we have

ff−1Φ(P) = sup{n ∈ Z |P ∈ f−1(Φ(n))}+1 = sup{n ∈ Z | f(P) ∈ Φ(n)}+1 = fΦ(f(P)).

Therefore, the function ff−1Φ : SpecA→ Z is just the composition of f : SpecA→ SpecR

and fΦ : SpecR→Z. The same fact holds for any sp-filtration, replacing Z by Z∪{−∞,∞}.

Proposition 7.4. Let R be a commutative noetherian ring of finite Krull dimension,

and let A be a module-finite R-algebra. Let f : SpecA→ SpecR be the canonical map induced

by the structure map R→A, and let Φ be a bounded sp-filtration of SpecR. For any cardinal

κ, there are canonical isomorphisms in D(A):

RHomR(TΦ,T
(κ)
Φ )⊗L

RA∼=RHomA(Tf−1Φ,T
(κ)
f−1Φ),

RHomR(C
κ

Φ ,CΦ)⊗L
RA∼=RHomA(C

κ

f−1Φ,Cf−1Φ).

Proof. By Lemma 3.10, TΦ is isomorphic in D(R) to a bounded complex P of projective

R-modules. We have standard isomorphisms

HomR(P,P
(κ))⊗RA∼=HomR(P,P

(κ)⊗RA)∼=HomA(P⊗RA,P
(κ)⊗RA)

in C(A) (see, e.g., [34, Prop. 2.1(vi)] for the first isomorphism). On the other hand, CΦ is

isomorphic in D(R) to a bounded complex I of injective R-modules by Remark 5.10. We

have standard isomorphisms

HomR(I
κ, I)⊗RA∼=HomR(HomR(A,I

κ), I))∼=HomA(HomR(A,I
κ),HomR(A,I))

in C(A) (see, e.g., [34, Prop. 2.1(ii)] for the first isomorphism). Notice that both

HomR(P,P
(κ)) and HomR(I

κ, I) are bounded complexes of flat R-modules, so

RHomR(TΦ,T
(κ)
Φ )⊗L

RA∼=HomR(P,P
(κ))⊗RA,

RHomR(C
κ

Φ ,CΦ)⊗L
RA∼=HomR(I

κ, I)⊗RA

in D(A). Moreover, Lemma 7.2 implies that

HomA(P⊗RA,P
(κ)⊗RA)∼=RHomA(Tf−1Φ,T

(κ)
f−1Φ),

HomA(HomR(A,I
κ),HomR(A,I))∼=RHomA(C

κ

f−1Φ,Cf−1Φ)

in D(A). This completes the proof.

Recall that every Cohen–Macaulay ring admits a codimension function (e.g., the height

function); see Section 2.5.3. Moreover, if R is a Cohen–Macaulay ring, then the polynomial

ring R[x1, . . . ,xn] is also a Cohen–Macaulay ring for every n≥ 1 (see [79, Th. 17.7]). Hence,

whenever A is an algebra over a Cohen–Macaulay ring R such that A is finitely generated

as an R-algebra, then A admits a codimension function.

Theorem 7.5. Let R be a Cohen–Macaulay ring of finite Krull dimension, and let A

be a module-finite R-algebra. Let Φ be any codimension filtration of SpecA. Then TΦ is

tilting and CΦ is cotilting in D(A). Furthermore, both the A-modules HomD(A)(TΦ,T
(κ)
Φ )

and HomD(A)(C
κ

Φ ,CΦ) are flat for any cardinal κ.
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Proof. In view of Remark 4.10, it suffices to show the claims for some codimension

filtration of SpecA.

Let f : SpecA → SpecR be the canonical map induced by the structure map R → A.

Let Ψ be a codimension filtration of SpecR. By Lemma 7.1, Φ′ := f−1Ψ is a slice sp-

filtration of SpecA. Hence, TΦ′ is silting and CΦ′ is cosilting in D(A) by Theorems

4.6 and 5.2. Corollaries 4.9 and 5.9 yield the natural isomorphisms RHomR(TΨ,T
(κ)
Ψ ) ∼=

HomD(R)(TΨ,T
(κ)
Ψ ) and RHomR(C

κ

Ψ,CΨ)∼=HomD(R)(C
κ

Ψ,CΨ) in D(R) for any cardinal κ.
By Propositions 6.21 and 7.4, we have the following isomorphisms in D(A):

RHomA(TΦ′ ,T
(κ)
Φ′ )∼=RHomR(TΨ,T

(κ)
Ψ )⊗L

RA∼=HomD(R)(TΨ,T
(κ)
Ψ )⊗RA,

RHomA(C
κ

Φ′ ,CΦ′)∼=RHomR(C
κ

Ψ,CΨ)⊗L
RA∼=HomD(R)(C

κ

Ψ,CΨ)⊗RA.

Hence, it follows that T
(κ)
Φ′ ∈ T⊥<0

Φ′ and Cκ

Φ′ ∈⊥<0CΦ′ . Thus, TΦ′ is tilting and CΦ′ is cotilting

in D(A). Then Proposition 6.10 implies that Φ′ is a codimension filtration of SpecA. In

view of Remark 4.10, we can without loss of generality assume that Φ = Φ′. Moreover,

we see from the above isomorphisms that RHomA(TΦ,T
(κ)
Φ ) ∼= HomD(A)(TΦ,T

(κ)
Φ ) and

RHomA(C
κ

Φ ,CΦ)∼=HomD(A)(C
κ

Φ ,CΦ) in D(A). The right-hand sides of these isomorphisms

are flat A-modules because HomD(R)(TΨ,T
(κ)
Ψ ) and HomD(R)(C

κ

Ψ,CΨ) are flat R-modules

by Proposition 6.21 again.

The above proof shows that, under the assumption of the theorem, f−1Ψ is a codimension

filtration of SpecA whenever Ψ is a codimension filtration of SpecR. By the paragraph

before the theorem, R is also a homomorphic image of a Cohen–Macaulay ring of finite

Krull dimension, and hence it is in fact possible to reduce the proof to the case when the

structure map R→ A is surjective. In this case, it is obvious that f−1Ψ is a codimension

filtration by Remark 7.3.

A commutative noetherian ring R is said to be universally catenary provided that any

commutative algebra A over R is catenary whenever A is finitely generated as an R-algebra.

When R is local and p ∈ SpecR, the ring R̂⊗Rκ(p) is called the formal fiber of R over p. A

formal fiber of R means the ring R̂⊗Rκ(p) for some p ∈ SpecR. We now recall the following

deep result due to Kawasaki.

Theorem 7.6 [69, Cors. 1.2 and 1.4] and [70, Th. 1.3].

(1) A commutative noetherian ring R admits a classical dualizing complex if and only if it

is a homomorphic image of a Gorenstein ring of finite Krull dimension.

(2) A commutative noetherian local ring R is a homomorphic image of a Cohen–Macaulay

local ring if and only if it is universally catenary and all the formal fibers of R are

Cohen–Macaulay.

(3) A commutative noetherian ring R is a homomorphic image of a Cohen–Macaulay ring

if and only if it admits a codimension function and satisfies the following conditions:

(i) R is universally catenary.

(ii) all the formal fibers of all the localizations of R are Cohen–Macaulay.

(iii) the Cohen–Macaulay locus of each finitely generated R-algebra is Zariski open.

Theorems 7.5 and 7.6 make us have a naive question:

Can we characterize homomorphic images of Cohen−Macaulay rings by

(co)tilting objects?
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If we replace “Cohen–Macaulay rings” by “Gorenstein rings of finite Krull dimension,”

this question is affirmatively solved by Kawasaki in the following sense: A classical dualizing

complex for R is a cotilting object in the bounded derived category Db
fg(R) (see Remark

7.7), and the existence of a dualizing complex is equivalent to that R is a homomorphic

image of a Gorenstein ring of finite Krull dimension by Theorem 7.6(1).

Remark 7.7. Assume that R admits a classical dualizing complex D. Since the

contravariant functor RHomR(−,D) :Db
fg(R)→Db

fg(R) yields a duality, it transforms the

standard t-structure in Db
fg(R) to a t-structure in Db

fg(R), which can be written as

(Db
fg(R)∩⊥≤0D,Db

fg(R)∩⊥>0D).

In [4], this t-structure is called the Cohen–Macaulay t-structure with respect to D.

Since D ∈ ⊥ �=0D, the description of the Cohen–Macaulay t-structure implies that D is a

cotilting object in Db
fg(R) in the sense of [103]. Further, if D can be taken as an R-module

and of finite injective dimension, it is a cotilting (R,R)-bimodule in the sense of [80].

Let d be the codimension function associated with a dualizing complex D. The Cohen–

Macaulay t-structure with respect to D extends to a compactly generated t-structure in

D(R), and this is nothing but (UΦd
,VΦd

) (see Remark 3.4 and [4, §6.4]). In general, D is

not a cotilting object in D(R), while Theorem 5.2 shows that the t-structure (UΦd
,VΦd

) is

induced by CΦd
, which is cotilting in D(R) by Theorem 5.4. However, Theorem 5.2 more

generally shows that CΦd
is silting and (UΦd

,VΦd
) = (⊥≤0CΦd

,⊥>0CΦd
) for any commutative

noetherian ring R admitting a codimension function d on SpecR. This observation naturally

motivates us to replace the existence of a dualizing complex by the cotilting property of

CΦd
to determine whether R is a homomorphic image of a Cohen–Macaulay ring or not.

As a precise formulation of the above question, we suggest the following.

Question 7.8. Let R be a commutative noetherian ring with a codimension function

d. Is R a homomorphic image of a Cohen–Macaulay ring if and only if TΦd
is tilting (resp.

CΦd
is cotilting) in D(R)?

Definition 7.9. Let R be a commutative noetherian ring with a codimension function

d. Motivated by Remark 7.7, we call the heart of the compactly generated t-structure

(UΦd
,VΦd

) the Cohen–Macaulay heart of R. Although changing the codimension function

results in a different compactly generated t-structure in D(R), its heart remains equivalent

(Remark 4.10), so the Cohen–Macaulay heart is well-defined up to equivalence.

If dimR<∞ and d is a codimension function on SpecR, then CΦd
is a bounded cosilting

object by Theorem 5.2 and Remark 5.10. Hence, we see from Sections 2.1.6 and 2.1.7 and

Remark 7.7 that the cotilting part of Question 7.8 with dimR < ∞ is equivalent to the

following:

Question 7.10. Let R be a commutative noetherian ring of finite Krull dimension

and assume that R admits a codimension function. Let H be the Cohen–Macaulay heart

of R, and let Db(H) → Db(R) be a realization functor. Is R a homomorphic image of a

Cohen–Macaulay ring if and only if the realization functor is a triangulated equivalence?

Remark 7.11. We may also replace the realization functor in Question 7.10 by the

realization functor D(H)→D(R) (due to Virili) between the unbounded derived categories

(see Section 2.1.7).
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Theorem 7.5 shows that the “only if” part of Question 7.8 (and Question 7.10) holds true

when R has finite Krull dimension. Moreover, if R has Krull dimension at most one, then

R is always a homomorphic image of a Cohen–Macaulay ring of finite Krull dimension (see

Theorem 7.12). Therefore, in terms of Theorems 6.5 and 6.13, the above questions holds

true as far as dimR ≤ 1. We will later show that the “if” part of the question holds true

when R is a two-dimensional local ring (see also Remark 7.21).

The next theorem is a direct consequence of [70].

Theorem 7.12. Let R be a commutative noetherian ring of Krull dimension at most

one. Then R is a homomorphic image of a Cohen–Macaulay ring of finite Krull dimension.

Proof. If dimR= 0, there is nothing to show. So we may assume dimR= 1. Note that R

has a codimension function (e.g., the height function), and [70, (QU)] holds for any finitely

generated R-module. By [70, Th. 1.4], (i)–(iii) of Theorem 7.6(2) hold if and only if for any

finitely generated R-module M, all the cohomologies of the Cousin complex C(M) of M (in

the sense of Sharp [109]) are finitely generated, where

C(M) = (0→M
d−1
C(M)−−−−→

⊕
p∈SpecR
ht(p)=0

Mp

d0
C(M)−−−−→ Cokerd−1

C(M) → 0)

and d−1
M is the morphism induced by the localization mapsM →Mp and d0C(M) is the canoni-

cal surjection. Notice that Cokerd−1
C(M) is naturally isomorphic to

⊕
m∈SpecR
ht(m)=1

(Cokerd−1
C(M))m

because

Cokerd−1
C(M)

∼=H1RΓV M ∼=
⊕

m∈SpecR
ht(m)=1

H1RΓmMm

for V := {m ∈ SpecR | ht(m) = 1} (see Remark 4.2). This justifies the above description of

C(M) (see [70, Def. 5.1]). Then the possibly nonzero cohomology of C(M) is only Kerd−1
C(M),

which is finitely generated. Therefore, we can conclude by Theorem 7.6(3) that R is a homo-

morphic image of a Cohen–Macaulay ring, where the Cohen–Macaulay ring is constructed

so that it has finite Krull dimension (see [69, p. 123], [70, p. 2738], and [79, Th. 15.7]).

In the rest of this section, we discuss what can be deduced from the condition that TΦ

is tilting or CΦ is cotilting.

Suppose R has finite Krull dimension. Recall that R is said to be equidimensional

provided that dimR= dimR/p for every minimal prime ideal p of R.

Lemma 7.13. Let R be a commutative noetherian ring, and let p ⊆ q be a chain in

SpecR. Assume that the cohomology of RΓp(Rp⊗RD̂Rq
) is concentrated in some degree n.

Then n= dimRq−dimRq/pRq and the local ring R̂q/pR̂q is equidimensional.

Proof. By assumption, HiRΓp(Rp⊗RD̂Rq
) = 0 for all i �= n. Regard D

̂Rq
as a bounded

complex of injective R̂q-modules that is minimal (see Section 2.5.2). By Remark 5.10,

D
̂Rq

is also a complex of injective R-modules, so RΓp(Rp⊗RD̂Rq
) = Γp(Rp⊗RD̂Rq

) =

ΓpRq
(Rp⊗RD̂Rq

) in D(R). In the rest of the proof, we write R and p for Rq and pRq,

respectively. Then HiΓp(Rp⊗RD ̂R) = 0 for all i �= n in D(R). We are going to show that

n= dimR−dimR/pR and R̂/pR̂ is equidimensional.
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Let f : SpecR̂ → SpecR be the canonical map induced by the completion map R → R̂.

We remark that every minimal element P in V (pR̂) belongs to f−1(p). Indeed, we have

p⊆P∩R and the ring homomorphism R→ R̂ is flat, so the going-down theorem (see [79,

Th. 9.5]) gives an element Q ∈ SpecR̂ with Q⊆P and p=Q∩R, but then Q ∈ V (pR̂), so

the minimality of P yields Q=P. Consequently p=P∩R, that is, P ∈ f−1(p).

Now, since the complex D
̂R is minimal in C(R̂), its ith component can be written as

Di
̂R
∼=

⊕
P∈Spec ̂R

i=d−dim ̂R/P

E
̂R(R̂/P)

for every i ∈ Z, where d := dimR̂. Noting that Γp =ΓV (p ̂R) as functors ModR̂→ModR̂, we

have

Γp(Rp⊗RD
i
̂R
)∼=

⊕
P∈f−1(p)

i=d−dim ̂R/P

E
̂R(R̂/P), (7.3)

where f−1(p) ⊆ V (pR̂) (see also Remark 4.2). Since every minimal element P in V (pR̂)

belongs to f−1(p), the nontrivial components of Γp(Rp⊗RD ̂R) appear precisely from degree

d−dimR̂/pR̂ onwards. Notice from (7.3) that the complex Γp(Rp⊗RD ̂R) is also minimal

in C(R̂), so we have

inf Γp(Rp⊗RD ̂R) = d−dimR̂/pR̂= dimR−dimR/pR. (7.4)

Since HiΓp(Rp⊗RD ̂R) in D(R) for all i �= n, it follows that n= dimR−dimR/pR.

To show that R̂/pR̂ is equidimensional, suppose that there exists a minimal element P

in V (pR̂) such that dim(R̂/P) < dim(R̂/pR̂). It follows from the second paragraph of the

proof that R̂P⊗RRp
∼= R̂P. Then we have natural isomorphisms in C(R̂):

R̂P⊗
̂RΓp ̂R(Rp⊗RD ̂R)

∼= R̂P⊗
̂RΓp ̂RD ̂R

∼=Σdim ̂R/P−dim ̂RE
̂R(R̂/P),

where these isomorphisms follow from Remark 4.2 and minimality of D
̂R. The above

isomorphisms show that R̂P⊗
̂RΓp ̂R(D ̂R⊗RRp) has nontrivial cohomology in degree

m := dimR̂− dimR̂/P, but m > dimR− dimR/p = n. This is a contradiction because

Hm(R̂P⊗
̂RΓp(Rp⊗RD ̂R))

∼= R̂P⊗
̂RH

mΓp(Rp⊗RD ̂R) = 0 in D(R).

Proposition 7.14. Let R be a commutative noetherian ring, and let Φ be a codimension

filtration of SpecR. Assume TΦ is tilting or CΦ is cotilting in D(R). Then R is universally

catenary.

Proof. It suffices to show that Rq is universally catenary for each q ∈ SpecR (see,

e.g., [116, Tag 0AUN]). The local ring Rq is universally catenary if and only if R̂q/pR̂q

is equidimensional for each p ∈ SpecR with p ⊆ q (see [79, Th. 31.7]). For such a chain

p ⊆ q, there is an integer n such that HiRΓp(Rp⊗RD̂Rq
) = 0 for all i �= 0 by assumption

and Proposition 6.9. Then Lemma 7.13 implies that R̂q/pR̂q is equidimensional, as

desired.

By a stalk complex, we mean a complex X concentrated in some degree n, that is, Xi = 0

whenever i �= n.
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Proposition 7.15. Let R be a commutative noetherian ring, and let p ⊆ q be a chain

in SpecR. The following conditions are equivalent:

(1) RHomR(RΓpRp,RΓqRq) is isomorphic in D(R) to a stalk complex of a flat R-module.

(2) RΓp(Rp⊗RD̂Rq
) is isomorphic in D(R) to a stalk complex of an injective R-module.

(3) RHomR(D̂Rq
,D

̂Rp
) is isomorphic in D(R) to a stalk complex of a flat R-module.

Under each condition, the formal fiber κ(p)⊗Rq
R̂q is Cohen–Macaulay.

Proof. We may assume that R is a local ring and q is the maximal ideal m. We remark

that there are natural isomorphisms

RHomR(RΓpRp,RΓmR)∼=RHom
̂R(Σ

ht(m)RΓp(Rp⊗RD ̂R),E ̂R(k)) (7.5)

RHomR(D ̂R,D̂Rp
)∼=RHomRp

(Σht(p)RΓp(Rp⊗RD ̂R),ERp
(κ(p))) (7.6)

in D(R) (see the proof of Proposition 6.9).

Suppose that the left-hand side of (7.5) is isomorphic in D(R) to a stalk complex of a flat

R-module. Since E
̂R(k) is an injective cogenerator in ModR̂, RΓp(Rp⊗RD ̂R) is isomorphic

in D(R̂) to a stalk complex, so there are an R̂-module M and an integer n such that

Σht(m)RΓp(Rp⊗RD ̂R)
∼=ΣnM in D(R̂). It follows that Hom

̂R(M,E
̂R(k)) is a stalk complex

of a flat R-module. In other words, M is flat as an R-module, and this is equivalent to that

M is injective as an R-module (see Remark 7.16). Thus the implication (1)⇒(2) follows.

To see the converse implication, suppose that RΓp(Rp⊗RD ̂R) is isomorphic in D(R)

to a complex of an injective R-module. Then there are an R̂-module M and an integer n

such that Σht(m)RΓp(Rp⊗RD ̂R)
∼= ΣnM in D(R̂). Since ΣnM is isomorphic in D(R) to

RΓp(Rp⊗RD ̂R), it follows that M is injective as an R-module. Then the left-hand side

of (7.5) is isomorphic in D(R) to Hom
̂R(Σ

nM,E
̂R(k)), which is a stalk complex of a flat

R-module by Remark 7.16. Hence we have (2)⇒(1).

Next, suppose that RΓp(Rp⊗RD ̂R) is isomorphic in D(R) a stalk complex of an injective

R-module. Note that the injective R-module is also an injective Rp-module because we may

regard RΓp(Rp⊗RD ̂R) as a complex of Rp-modules in D(R). Letting M be the injective

Rp-module, we have Σht(p)RΓp(Rp⊗RD ̂R)
∼=ΣnM in D(Rp) for some integer n. Hence the

right-hand side of (7.6) is isomorphic in D(R) to HomRp
(ΣnM,ERp

(κ(p))), which is a stalk

complex of a flat R-module. Thus the implication (2)⇒(3) follows.

To see the converse implication, suppose that the left-hand side of (7.6) is isomorphic

in D(R) to a stalk complex of a flat R-module. Note that the flat R-module is also a

flat Rp-module. Since ERp
(κ(p)) is an injective cogenerator in ModRp, it follows that

Σht(p)RΓp(Rp⊗RD ̂R) is isomorphic in D(Rp) to a stalk complex of an injective Rp-module.

In other words, RΓp(Rp⊗RD ̂R) is isomorphic in D(R) to a stalk complex of an injective

R-module. Thus we have (3)⇒(2).

Finally, we show that κ(p)⊗RR̂ is Cohen–Macaulay, assuming that RΓp(Rp⊗RD ̂R) is

isomorphic in D(R) to a stalk complex of an injective R-module. We remark that there are

natural isomorphisms in D(R):

RHomR(R/p,RΓp(Rp⊗RD ̂R))
∼=RHomR(R/p,Rp⊗RD ̂R)

∼=HomRp
(κ(p),Rp⊗RD ̂R)
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∼=HomRp
(κ(p),HomRp⊗R

̂R(Rp⊗RR̂,Rp⊗RD ̂R))

∼=HomRp⊗R
̂R(κ(p)⊗RR̂,Rp⊗RD ̂R).

The last complex is a dualizing complex for κ(p)⊗RR̂ because κ(p)⊗RR̂ is a homomorphic

image of Rp⊗RR̂ and Rp⊗RD ̂R is a dualizing complex for Rp⊗RR̂. By assumption, the

cohomology ofRHomR(R/p,RΓm(Rp⊗RD ̂R)) is concentrated in some degree, and the same

holds for the dualizing complex for κ(p)⊗RR̂ by the isomorphisms above. This implies

that κ(p)⊗RR̂ is a Cohen–Macaulay ring by local duality (5.1) applied to the local ring

(κ(p)⊗RR̂)P for each P ∈ Spec(κ(p)⊗RR̂).

Remark 7.16. Let (R,m,k) be a commutative noetherian local ring, and let M be an

R̂-module. For any finitely generated R-module N, we have standard isomorphisms

TorRi (N,Hom
̂R(M,E

̂R(k)))
∼=Tor

̂R
i (N⊗RR̂,Hom

̂R(M,E
̂R(k)))

∼=Hom
̂R(Ext

i
̂R
(N⊗RR̂,M),E

̂R(k))

∼=Hom
̂R(Ext

i
R(N,Hom

̂R(R̂,M)),E
̂R(k))

∼=Hom
̂R(Ext

i
R(N,M),E

̂R(k))

for all i≥ 0, where the second isomorphism follows from [42, Th. 3.2.13] and the first and

third holds since R̂ is flat over R. Since E
̂R(k) is an injective cogenerator in ModR̂, it

follows from the above isomorphisms that the R̂-module M is injective over R if and only

if Hom
̂R(M,E

̂R(k)) is flat over R.

Corollary 7.17. Let R be a commutative noetherian ring, and let Φ be a codimension

filtration of SpecR. Assume that at least one of the following conditions is true:

(1) TΦ is tilting in D(R) and EndD(R)(TΦ) is a flat R-module.

(2) CΦ is cotilting in D(R) and EndD(R)(CΦ) is a flat R-module.

Then all the formal fibers of all the localizations of R are Cohen–Macaulay.

Proof. If (1) holds, then RHomR(TΦ,TΦ) is isomorphic in D(R) to the flat R-

module EndD(R)(TΦ). Furthermore, for any inclusion p ⊆ q, we have that the object

RHomR(RΓpRp,RΓqRq) is, up to a suitable shift, a direct summand of RHomR(TΦ,TΦ). It

follows that RHomR(RΓpRp,RΓqRq) is isomorphic to a stalk complex of a flat R-module

in D(R). Then Proposition 7.15 yields that the formal fiber κ(p)⊗Rq
R̂q is Cohen–Macaulay.

The proof is completely analogous when the assumption (2) is satisfied instead.

Now we are ready to prove Theorem 1.3 together with its cotilting counterpart.

Theorem 7.18. Let R be a commutative noetherian local ring with a codimension

filtration Φ. The following conditions are equivalent:

(1) TΦ is tilting and EndD(R)(TΦ) is a flat R-module.

(2) CΦ is cotilting and EndD(R)(CΦ) is a flat R-module.

(3) R is a homomorphic image of a Cohen–Macaulay local ring.

Proof. Theorem 7.5 yields both the implications (3)⇒(1), (2).

Conversely, if we assume either one of the assumptions (1) or (2) then R is universally

catenary by Proposition 7.14 and Corollary 7.17 shows that the formal fibres of R are

Cohen–Macaulay. Since R is local, the condition (3) follows by Theorem 7.6(2).
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Question 7.19. Let R be a commutative noetherian ring.

(1) Let T be a tilting object (resp. C be a cotilting object) in D(R). Is EndD(R)(T ) (resp.

EndD(R)(C)) flat as an R-module?

(2) Is the answer to (1) affirmative at least in the case T = TΦ (resp. C = CΦ) for a

codimension filtration Φ of SpecR?

Remark 7.20. By Theorem 7.18, an affirmative answer to Question 7.19(2) implies an

affirmative answer to Question 7.8 for all local rings.

By Theorem 7.5, Question 7.19(2) holds true whenever R is a module-finite algebra over

a Cohen–Macaulay ring of finite Krull dimension. Moreover, Corollaries 6.4 and 6.12 show

the validity of Question 7.19(2) when R is a commutative noetherian ring of Krull dimension

at most one; Question 7.19(2) is also verified by Theorems 7.5 and 7.12 in this case. We will

show that Question 7.19(2) holds true when R is a two-dimensional ring (Theorem 7.22).

Remark 7.21. There is a two-dimensional commutative noetherian local domain such

that its generic formal fiber is not Cohen–Macaulay (see [55, Prop. 4.5]). There is also a

two-dimensional commutative noetherian local domain which is catenary (by definition)

but not universally catenary and whose formal fibers are (geometrically) regular (see [82,

Exam. 2]; see also [95, Exam. 2.6]). These rings admit codimension functions but are not

homomorphic images of Cohen–Macaulay rings by Theorem 7.6(2).

The next theorem affirmatively answers Question 7.19(2) in the case of a ring of Krull

dimension two.

Theorem 7.22. Let R be a two-dimensional commutative noetherian ring with a

codimension filtration Φ. Then:

(1) If TΦ is tilting, then EndD(R)(TΦ) is flat as an R-module.

(2) If CΦ is cotilting, then EndD(R)(CΦ) is flat as an R-module.

To prove this theorem, we make a remark.

Remark 7.23. Let R be a commutative noetherian ring of finite Krull dimension, and

let p be a minimal prime ideal of R. Assume that X is a bounded complex of flat Rp-

modules and Y a bounded complex of flat R-modules. If RHomR(X,Y ) is concentrated

in some degree, then RHomR(X,Y ) is isomorphic in (D(R)) to a flat R-module. Indeed,

X and Y are isomorphic to bounded complexes of projective R-modules by [104, Part II,

Cor. 3.2.7]. Thus RHomR(X,Y ) is isomorphic to a bounded complex of flat R-modules.

By assumption, we have RHomR(X,Y ) ∼= ΣnM for some Rp-module M and n ∈ Z. Then
ΣnM ∼= F , and thus M has finite flat dimension over Rp. Since p is minimal, Rp is Artinian,

so that every flat Rp-module is projective (see [76, Ths. 23.20 and 24.25]). Consequently

M has finite projective dimension over Rp, which is bounded by dimRp = 0 (see [104, Th.

3.2.6]). Therefore M is a projective Rp-module. In particular, M is a flat R-module, as

desired.

Similarly, if X is a bounded complex of injective R-modules, Y a bounded com-

plex of injective Rp-modules, and RHomR(X,Y ) is concentrated in some degree, then

RHomR(X,Y ) is isomorphic to an Rp-module of finite projective dimension over Rp, so the

Rp-module is projective. Hence RHomR(X,Y ) is isomorphic in D(R) to a flat R-module.
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Proof. Let d be the codimension function on SpecR such that Φ=Φd. In view of Remark

4.10, we may assume that SpecR is connected. Moreover, since dimR= 2, we may assume

that d takes values in the interval {0,1,2}.
(1): Suppose that TΦ is tilting. Let us use the notation of Corollary 6.4: Wn =

{p ∈ SpecR | d(p) = n} and T (n) =
⊕

p∈Wn
ΣnRΓpRp. Then TΦ = T (0)⊕ T (1)⊕ T (2).

By the proof of Corollary 6.3, we have HomD(R)(T (i),T (j)) = 0 if i > j. Hence

the R-module EndD(R)(TΦ) is the direct sum of HomD(R)(T (0),T (0) ⊕ T (1) ⊕ T (2)),

HomD(R)(T (1),T (1)⊕ T (2)), and HomD(R)(T (2),T (2)). By Corollaries 6.3 and 6.4, it

suffices to show that HomD(R)(T (0),T (2)) is a flat R-module. Note that each p ∈ W0 is

necessarily a minimal prime of R and

HomD(R)(T (0),T (2))∼=
⊕
p∈W0

HomD(R)(RΓpRp,T (2)).

Then HomD(R)(T (0),T (2)) is flat as an R-module by (2.11) and Remark 7.23.

(2): This follows from a parallel argument to (1). Use Remarks 5.10 and 7.23, Proposition

6.9, and Corollary 6.12.

We conclude the paper by the following result, which affirmatively answers Question 7.8

(and Question 7.10) in the case of a local ring of Krull dimension two.

Corollary 7.24. Let (R,m,k) be a two-dimensional commutative noetherian local ring

with a codimension filtration Φ. Then the following conditions are equivalent:

(1) TΦ is a tilting object in D(R).

(2) CΦ is a cotilting object in D(R).

(3) R is a homomorphic image of a Cohen–Macaulay local ring.

Proof. By Theorem 7.5, the condition (3) implies (1) and (2). Conversely, assuming

either (1) or (2), we obtain (3) from Theorems 7.6(2) and 7.22, Proposition 7.14, and

Corollary 7.17.
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[108] P. Schenzel and A.-M. Simon, Completion, Čech and local homology and cohomology: Interactions
between them, Springer Monographs in Mathematics, Springer, Cham, 2018.

[109] R. Y. Sharp, The Cousin complex for a module over a commutative Noetherian ring, Math. Z. 112
(1969), 340–356.

[110] R. Y. Sharp, A commutative Noetherian ring which possesses a dualizing complex is acceptable, Math.
Proc. Cambridge Philos. Soc. 82 (1977), no. 2, 197–213.

[111] R. Y. Sharp Local cohomology and the Cousin complex for a commutative Noetherian ring, Math. Z.
153 (1977), no. 1, 19–22.

[112] R. Y. Sharp, “Necessary conditions for the existence of dualizing complexes in commutative algebra”
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