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Roll waves in a predictive model for
open-channel flows in the smooth turbulent case
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A depth-averaged model for turbulent open-channel flows with breaking roll waves on
a sloping smooth bottom is derived under an assumption of independence between the
wall turbulence and the roller turbulence. The model includes four variables – the water
depth, the average velocity, and two variables called enstrophy, the shear enstrophy and
the roller enstrophy – which take into account the deviations of the velocity with respect
to its depth-averaged value due to shear effect and roller turbulence, respectively. The four
equations of the model are the mass, momentum, energy and shear enstrophy balance
equations, with the mathematical structure of the Euler equations of compressible fluids,
with an additional transport equation and with source terms. The system is hyperbolic. The
roller enstrophy is created by shocks. A non-zero value of the roller enstrophy indicates
a breaking wave and a turbulent roller. The model is solved by a fast and well-known
numerical scheme, with an explicit finite-volume method in one step. The model is used to
simulate periodic and natural roll waves with a good agreement with existing experimental
results. There is no parameter to calibrate in the model, which gives it a predictive
character.

Key words: shallow water flows, hydraulics, wave breaking

1. Introduction

Open-channel flows are usually divided into gradually varied flows and rapidly varied
flows. The Saint-Venant model (Barré de Saint-Venant 1871) classically used in hydraulics
is capable of describing gradually varied flows, while rapidly varied flows, such as roll
waves or hydraulic jumps, constitute hydraulic singularities. From a mathematical point of
view, as the Saint-Venant equations form a hyperbolic system, discontinuities – also called
shocks by analogy with compressible fluid dynamics – appear in finite time and represent
the front part of roll waves and hydraulic jumps. The shock relations, associated with the
Saint-Venant equations, allow these discontinuities to be taken into account by linking flow

† Email address for correspondence: gael.richard@inrae.fr

© The Author(s), 2024. Published by Cambridge University Press 983 A31-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

15
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:gael.richard@inrae.fr
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2024.158&domain=pdf
https://doi.org/10.1017/jfm.2024.158


G.L. Richard

variables on one side of the shock to those on the other side, but do not provide an accurate
description of the depth profile. In particular, the length of the wave front, known as the
shock length, measured in the case of both roll waves (Brock 1967) and hydraulic jumps
(Hager, Bremen & Kawagoshi 1990), cannot be obtained using the Saint-Venant model.
A number of works have been developed recently to remedy these shortcomings in order
to describe rapidly varied flows. The case of roll waves has often been chosen to validate
the new approaches.

Roll waves result from an instability of free-surface turbulent flows moving down an
inclined plane if the slope is greater than some critical value. These waves appear mostly
in artificial channels as this critical slope is generally too steep for a natural river. The
instability condition was studied by Jeffreys (1925) and Whitham (1974). This instability
is convective in nature, i.e. as a disturbance is transported downstream, it increases in the
reference frame moving with the flow, but decreases in the laboratory reference frame.
As a result, the phenomenon amplifies a disturbance at the entrance of a channel, while
waves gradually grow along the channel. When these waves appear, they eventually break,
with the appearance of a succession of turbulent bores and rollers. The development of roll
waves is characterized by a coarsening dynamics; some waves overtake waves downstream,
which produces even larger waves.

A mathematical discontinuous solution for periodic roll waves was proposed by Dressler
(1949) where continuous profiles described by the Saint-Venant equations are joined by
shocks, representing turbulent bores, described by the shock relations. By construction,
the length of these shocks is zero. The experiments of Brock (1967, 1969, 1970) on both
natural (i.e. irregular) and periodic roll waves led to the measurement of the growth and
the depth profile of roll waves in a laboratory channel. One of the results of this work
is that the shock length of roll waves is not negligible and that the amplitude of the
waves is overestimated by the theory. Numerical simulations of Brock’s experiments were
obtained by Zanuttigh & Lamberti (2002). By introducing a viscous term in the equations,
continuous solutions can be obtained (Needham & Merkin 1984). However, the effect of
this term is only to produce a diffuse shock. With a small viscosity, wave amplitudes
are still overestimated, as noted by Chang, Demekhin & Kalaidin (2000) in connection
with numerical simulations of Brock’s roll wave experiments. As investigated by Hu et al.
(2016) in their discussion of the model of Huang & Lee (2015), the wave amplitude can
be reduced to the experimental result with a large viscosity, but then the shock length
is greatly overestimated and, in all cases, the model performs poorly with regard to
the depth profile. In the framework of the Saint-Venant equations, several mathematical
works studied the existence and stability of inviscid or viscous roll waves, and important
results were obtained in the near-onset regime (Kranenburg 1992; Yu & Kevorkian 1992)
and away from onset, with Whitham modulation theory (Whitham 1974), by Tamada &
Tougou (1979) and Boudlal & Liapidevskii (2005). Other stability results were obtained
by Katsoulakis & Jin (2000) and Noble (2006). A complete stability diagram for the
discontinuous roll wave solutions was obtained by Johnson et al. (2019).

A new set of equations was obtained in Richard & Gavrilyuk (2012), following an initial
work of Teshukov (2007), by depth-averaging the Euler equations in the case of shallow
flows. Contrary to the assumptions made in deriving the Saint-Venant equations, the fluid
velocity is not assumed to be uniform in the depth. The closure of the problem is obtained
with the weakly sheared flow assumption. This approach introduces a new variable, called
enstrophy because it is related to the square of the vorticity, modelling the variations of
the velocity in the depth. The enstrophy is decomposed into two terms, one representing
wall shearing, and the other modelling the roller turbulence generated by wave breaking.
Periodic roll waves were obtained with this model and compared successfully to
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Brock’s experiments. In particular, the front (or shock) length, the wave amplitude and
the depth profiles are in good agreement with the experiments. This work was extended
by Ivanova et al. (2017) to the formation and the coarsening of roll waves, with a
numerical study of the stability. The performance improvement over the Saint-Venant
model is attributable to a more accurate description of the energy balance. It is important
to highlight that this approach is based not on the Reynolds-averaged Navier–Stokes
equations but on the Euler equations. Consequently, the velocity variations in the depth,
and therefore the enstrophy variable, include not only the variations of the mean velocity,
but also the turbulent fluctuation. The depth-averaged energy balance equation is one of
the equations of the system, and the energy of the system includes an extra term due,
in particular, to the turbulence in the roller. The system being hyperbolic, shocks are
created in finite time, which are characterized by a creation of enstrophy representing
the creation of turbulent energy due to the apparition of a turbulent roller. This turbulent
energy decreases by turbulent dissipation, which is modelled in the depth-averaged energy
equation. However, there are two parameters in the model, which are calibrated with
experimental data. In this respect, an improvement is needed to obtain a truly predictive
model. This system was studied from a mathematical point of view by Rodrigues, Yang
& Zumbrun (2023), who showed that a new type of convective wave can appear in this
system, which is not present in the standard Saint-Venant system. Their work showed that
the dynamics of this system is much more complex, and their numerical experiments
suggest that this model supports time-quasi-periodic solutions, seemingly obtained by
superposing convective waves and roll waves.

A completely different approach was followed by Cao et al. (2015), who used a
depth-averaged system based on the Reynolds-averaged Navier–Stokes equations with an
eddy viscosity assumption and a k–ε turbulence model used by Rastogi & Rodi (1978).
However, as the resulting model performs poorly compared to Brock’s experimental data,
an empirical term is added to the Reynolds stress, with a coefficient to be calibrated
using observed data. This modified model, called SWE-TM, was compared successfully
to Brock’s experimental results, with good agreement for both natural and periodic roll
waves. The SWE-TM is a parabolic system with diffusive terms in the depth-averaged
momentum, turbulent kinetic energy and turbulent dissipation balance equations, which
are handled with an implicit discretization in the second step of a splitting scheme.

Although their approaches differ in principle, the improvement in roll wave modelling
by Richard & Gavrilyuk (2012) and Cao et al. (2015) over the viscous or inviscid
Saint-Venant model was achieved by taking into account the turbulence generated in the
wave front.

In a recent work on coastal waves, Kazakova & Richard (2019) derived a model with
a structure similar to that of the model of Richard & Gavrilyuk (2012), except that there
is no wall friction and shearing, but extended to include dispersive effects, and with a
different model for turbulent dissipation, involving only a coefficient of constant value
for all breaking waves. We conjecture here that the value of this coefficient is universal
for all breaking waves, roll waves or turbulent bores. If this conjecture is valid, then this
new form of the dissipative term gives the model a predictive character, since it is no
longer necessary to calibrate this parameter on experimental data, thus removing one of
the two tunable parameters of the model of Richard & Gavrilyuk (2012). The model of
Kazakova & Richard (2019) was extended to the two-dimensional (2-D) case by Richard,
Duran & Fabrèges (2019) and Duran & Richard (2020), and validated by comparison to
experimental data on shoaling and breaking waves.
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The second tunable parameter of the model of Richard & Gavrilyuk (2012) is the value
of the wall enstrophy, which was assumed to be transported by the flow and constant
in all practical cases. This point was studied in depth by Richard, Couderc & Vila
(2023), who derived a 2-D depth-averaged model for open-channel flows down an inclined
plane in the smooth turbulent case in the absence of hydraulic jumps, bores or breaking
waves. Using a mixing length model of turbulence and a method of matched asymptotic
expansions in the outer and inner layers, a three-equation model was derived where the
variations in the depth of the mean velocity, in the Reynolds sense, are modelled by an
enstrophy variable, similar to the wall enstrophy of the model of Richard & Gavrilyuk
(2012). In this new approach, the wall enstrophy is still transported by the flow, but the
depth-averaged momentum, energy and enstrophy equations include relaxation source
terms with no tunable parameters. The model is determined entirely by the mixing length
of the model of Prandtl modified by the damping function of Van Driest (1956), and
thus by the constant κ of von Kármán and the constant A+ of van Driest. This mixing
length approach is widely recognized as being able to provide an accurate description of
open-channel flows over a smooth plane (Nezu & Rodi 1986; Cardoso, Graf & Gust 1989).
The asymptotic method used by Richard et al. (2023) enables us to calculate consistently
the first-order corrections, leading to a system of equations capable of modelling unsteady
flows. The model was compared to one-dimensional (1-D) and 2-D experimental measures
on unsteady open-channel flows (Yuen 1989; Nezu, Kadota & Nakagawa 1997; Onitsuka
& Nezu 2000; Nezu & Onitsuka 2002), with good agreement on the reconstructed 2-D
and three-dimensional velocity profiles, the bottom shear stress and the flow depth during
a flood event.

The aim of this paper is to combine the approach of Kazakova & Richard (2019) for the
turbulent dissipation with the model of Richard et al. (2023) for the wall enstrophy, each
of which separately removes one of the two tunable parameters of the model of Richard
& Gavrilyuk (2012), in order to obtain a fully predictive model for roll waves. Particular
attention is paid to the mathematical structure of the resulting model. Section 2 presents
the main assumption of this work: the turbulent fluctuation due to the existence of a bottom
wall is completely independent of the turbulent fluctuation related to the turbulent roller.
This assumption is needed in order to derive the equations that are averaged over the depth
in § 3, where the two enstrophies of the model are introduced. The resulting model is a
1-D model that is hyperbolic and solvable by reliable and explicit numerical schemes. As
it is validated by comparison with experiments in a channel of finite width, a method to
adapt the 1-D-model to a case of a finite width is presented in § 4. The model is validated
by comparison with the experimental results obtained by Brock (1967), on periodic roll
waves in § 5, and on natural roll waves in § 6.

2. Derivation of the equations

2.1. Assumption of independence between roller and wall turbulence
The model of Richard & Gavrilyuk (2012) is based on the distinction between the vorticity
due to the presence of a solid surface at the bottom and the vorticity created in the front of
the wave, or between the turbulence due to the bottom wall and the turbulence created in
the turbulent roller. This distinction leads to the decomposition of the enstrophy variable
into two terms. In the case of roll waves, both types of turbulence coexist.

The modelling of roller turbulence dissipation was improved by Kazakova & Richard
(2019) in the case of the related phenomenon of coastal waves. The propagation of these
waves is dominated by the dispersive and breaking effects, whereas the wall friction can
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Figure 1. Definition sketch with roller and wall domains.

often be neglected. The depth profiles of breaking waves obtained by this model was
validated by comparison with a large range of experiments in various conditions, with
very good agreement (Kazakova & Richard 2019; Richard et al. 2019; Duran & Richard
2020). The coefficient in the dissipation term has a universal value for all coastal waves
and does not need to be calibrated with experimental data.

On the other hand, only the wall turbulence was taken into account in the hydraulic
model of Richard et al. (2023) as the presence of jumps or turbulent rollers was not
considered. This led to a model of the bottom shear stress and of the wall friction for
unsteady flows, which was also validated by comparison with experiments.

These two approaches led to separate improvements on the two types of turbulence that
appear in roll waves, by studying systems where only one of the two types of turbulence is
present or considered. The goal now is to superimpose these two descriptions in order to
obtain an improved model of roll waves without any tunable coefficients. This implies the
formulation of a basic hypothesis, without which the envisaged modelling is impossible,
or in any case considerably more complex.

We assume the complete independence between the wall turbulence and the roller
turbulence. In Reynolds decomposition, the turbulent fluctuation v′ is decomposed into
a wall turbulent fluctuation v′

W and a roller turbulent fluctuation v′
R as

v′ = v′
W + v′

R. (2.1)

The flow domain is also decomposed into a roller domain DR for the turbulent roller
at the breaking wave fronts, and a wall domain DW for the remaining part of the
flow (see figure 1). For a point M of the flow, the independence assumption means
that v′

W = 0 if M ∈ DR, and v′
R = 0 if M ∈ DW . This assumption of spatial separation

automatically implies the independence of the two turbulent fluctuations, i.e. v′
W = 0,

v′
R = 0, v′

Wv′
R = 0, v′

W ⊗ v′
R = 0 and v′

R ⊗ v′
W = 0, where the bar denotes the mean

value. This assumption leads to a complete decoupling of the two types of turbulence.
Interactions exist in reality up to a certain point, but they are assumed to be negligible. The
independence assumption simplifies the problem considerably and is sufficient to obtain
accurate results. In the following, all equations are defined over the entire domain.

Similar or stronger assumptions have been made to model wave propagation. The
concept of surface rollers proposed for breaking waves by Svendsen (1984) and Schäffer,
Madsen & Deigaard (1993) assumes a clear separation between the surface roller, seen
as a volume of water carried shorewards with the breaker, and the remaining part of the
flow. This hypothesis is implicit in the roll wave model of Richard & Gavrilyuk (2012).
In fact, most models of roll waves assume a constant friction coefficient and a constant
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velocity profile coefficient (often taken equal to 1) in spite of the presence of a surface
roller (Kranenburg 1992; Zanuttigh & Lamberti 2002; Cao et al. 2015). This implies that
the effect of the roller on the wall flow and on the mean velocity profile is neglected. In
essence, this is the same assumption as the independence assumption above, since this
assumption allows us to treat bottom friction and roller turbulence separately. The validity
of this very common assumption is due to the fact that the two effects are spatially quite
well separated, one being due to the bottom wall of the flow, and the other occurring rather
on the free surface side of the front part of the waves.

2.2. Method of derivation
The flow is assumed to be turbulent with a Reynolds number large enough to be able to
neglect viscous effects, except close to the wall or for the turbulent dissipation. Similarly,
all surface tension effects are also neglected.

The method used in Richard et al. (2023) to handle the wall turbulence is based on
the Reynolds equations, where the Reynolds stresses are modelled with an eddy viscosity
hypothesis calculated with the mixing length model. In the resulting equations, which are
then averaged over the depth, the velocity is the mean velocity in the Reynolds sense.
Therefore, the variations of the velocity with depth represent not turbulent fluctuations,
but variations of the mean velocity, which we call shear. This effect is called dispersion
by Cao et al. (2015), but we do not use this term to avoid confusion with the dispersive
effects that appear in some hydraulic models, such as the Serre–Green–Naghdi model,
used in particular to model coastal waves or undular bores. In this method, asymptotic
expansions are used to derive consistent expressions of the shear stress at the bottom and
of the dissipation due to the eddy viscosity.

The approach used by Richard & Gavrilyuk (2012) to model roller turbulence is
wholly different since the basic equations are the Euler equations, which implies that the
turbulence is resolved, even if it is in a depth-averaged way. Consequently, the variations
of velocity in the depth include not only the variations of the mean velocity, but also
the turbulent fluctuations. The roller turbulence, quantified by the roller enstrophy, is
created by the shocks produced by this hyperbolic system. In the model of Kazakova &
Richard (2019), because of the dispersive effects, the system is not hyperbolic. The chosen
approach was different and used a filtering operation, as in the large-eddy simulation, to
decompose the velocity into a resolved component representing the large-scale turbulence
and a residual component for the small-scale turbulence. The residual-stress tensor was
modelled by an eddy viscosity assumption, and the filtered velocity was averaged over
the depth. Therefore, the variations of this velocity in the depth, taken into account in
the model by the enstrophy, includes the large-scale turbulence of breaking waves. The
turbulence and enstrophy are created by viscous terms due to the residual motions. In the
cases of both Richard & Gavrilyuk (2012) and Kazakova & Richard (2019), the turbulent
dissipation was modelled using depth-averaged model quantities, but not in the same way.
The model chosen by Kazakova & Richard (2019) is preferable, because it involves a
dimensionless coefficient whose value is constant and does not need to be calibrated with
experimental data. On the other hand, diffusion terms due to the molecular viscosity were
neglected in both approaches since this diffusion is not negligible only close to a wall
(Pope 2000), which is not the case for the turbulence of rollers or breaking waves. In the
present paper, since dispersive effects are not taken into account, the filtering operation
is not necessary since the final model is expected to be hyperbolic and able to create
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turbulence, i.e. roller enstrophy, by the shocks, exactly as in the model of Richard &
Gavrilyuk (2012).

The problem to be solved, in order to superimpose the two models of Richard et al.
(2023) and Kazakova & Richard (2019), is therefore to reconcile two different approaches,
the first based on Reynolds averaging, and the other not. The independence assumption
makes it easy to superimpose these two approaches. In particular, the asymptotic
expansions of Richard et al. (2023), used to express bottom friction, are not modified,
thanks to this assumption, by the possible existence of a turbulent roller.

2.3. Mass conservation
Reynolds decomposition for the velocity field is written as v = v̄ + v′

W + v′
R, denoting by

v̄ the mean velocity, and using the separation (2.1) between wall turbulence fluctuation and
roller turbulence fluctuation. The incompressibility assumption implies div v = 0, which
entails that, separately, div v̄ = 0 and div v′ = 0. The independence assumption leads to
div v′

W = 0 and div v′
R = 0.

2.4. Momentum balance equation
In the Reynolds equations, the decoupling between wall and roller contributions
can be applied to the Reynolds stress, since the independence assumption gives
v′

W ⊗ v′
R = v′

W ⊗ v′
R = 0 and v′

R ⊗ v′
W = v′

R ⊗ v′
W = 0. This yields v′ ⊗ v′ = v′

W ⊗ v′
W

+ v′
R ⊗ v′

R. The wall contribution is handled with a turbulent viscosity hypothesis, which
can be written as

− v′
W ⊗ v′

W = −2
3 kW I + 2νTD, (2.2)

where kW is the turbulent kinetic energy associated with the wall turbulence defined by
kW = v′

W · v′
W/2, I is the identity tensor, νT is the eddy viscosity of the wall turbulence,

and D is the mean rate-of-strain tensor. Denoting by g the gravity acceleration, by p the
pressure, and by ρ the fluid density (the fluid is water), and defining the modified pressure

p∗ = p + 2
3ρkW , p∗ = p + 2

3ρkW , (2.3a,b)

the Reynolds equation can be written as

∂v̄

∂t
+ div

(
vR ⊗ vR + p∗

ρ
I

)
= g + div(2νeff D), (2.4)

where the velocity vR is defined by

vR = v̄ + v′
R, (2.5)

and the effective kinematic viscosity is νeff = νT + ν, with ν denoting the molecular
kinematic viscosity. In practice, the term due to the molecular viscosity is negligible
except in the viscous wall layer. This term appears only in the asymptotic expansions in the
inner layer, and it influences the model only through the asymptotic matching procedure
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(Richard et al. 2023). Equation (2.4) can be rewritten as

∂v̄

∂t
+ div

(
vR ⊗ vR + p̄

ρ
I

)
= g − div(v′

W ⊗ v′
W)+ div(2νD). (2.6)

Denoting by D, the strain-rate tensor, (2.6) is subtracted from the Navier–Stokes equation

∂v

∂t
+ div

(
v ⊗ v + p

ρ
I

)
= g + div(2νD) (2.7)

to obtain the equation for the fluctuating velocity

∂v′

∂t
+ div

(
v ⊗ v − vR ⊗ vR + p′

ρ
I

)
= div(v′

W ⊗ v′
W)+ div(2νD′), (2.8)

where p′ = p − p̄ is the fluctuating pressure, and D′ = D − D. The decomposition (2.1) is
extended to the fluctuating pressure, writing p′ = p′

R if M ∈ DR, and p′ = p′
W if M ∈ DW .

In the same way, D′ = D′
W + D′

R. The roller turbulence can be completely decoupled from
the wall turbulence, since v′

W = 0, D′
W = 0 and p′

W = 0 in the roller domain DR, and
v′

R = 0, D′
R = 0 and p′

R = 0 in the wall domain DW . Therefore, v′
R ⊗ v′

W = v′
W ⊗ v′

R = 0
and the roller fluctuation velocity evolves by

∂v′
R
∂t

+ div
(

vR ⊗ vR − vR ⊗ vR + p′
R
ρ

I

)
= div(2νD′

R). (2.9)

Defining pR = p̄ + p′
R, p∗

R = pR + (2/3)ρkW and DR = D + D′
R, the addition of (2.9) to

(2.4) gives

∂vR

∂t
+ div

(
vR ⊗ vR + p∗

R
ρ

I

)
= g + div(2νTD)+ div(2νDR). (2.10)

In the wall domain DW , vR = v̄, DR = D, p∗
R = p∗, and this equation simply reduces to

(2.4). In the roller domain, kW = 0 and p∗
R = p̄ + p′

R. With the independence assumption
between roller and wall turbulences, the momentum balance equation is similar to the
Navier–Stokes equation except that the velocity field vR and the special pressure field p∗

R
are used instead of the usual velocity and pressure, and there is an extra diffusive term
due to the eddy viscosity νT modelling the wall turbulence. The diffusive term due to the
molecular viscosity is negligible except close to the wall.

2.5. Energy balance equation
Since the energy balance equation is one of the basic equations of the depth-averaged
model, the same method is applied to the energy equation. The equation for the kinetic
energy of the mean flow can be written as

∂

∂t

(
v̄ · v̄

2

)
+ div

(
v̄ · v̄

2
v̄ + p̄

ρ
v̄ + v̄ · v′ ⊗ v′ − 2νv̄ · D

)
= v′ ⊗ v′ : grad v̄ + g · v̄ − ε̄,

(2.11)

where ε̄ = 2νD : D is the dissipation due to the mean flow, which is negligible for high
Reynolds numbers, as is the diffusive term due to the molecular viscosity. From the
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evolution equation (2.8) of the fluctuating velocity, we can obtain the equation

∂

∂t

(
v′ · v′

2

)
+ div

(
v′ · v′

2
v̄ + p′

ρ
v′ + v′

2
· v′ ⊗ v′ − 2νv′ · D′

)

= −v′ ⊗ v′ : grad v̄ + v′ · div(v′ ⊗ v′)− 2νD′ : D′. (2.12)

Taking the mean of this equation gives the equation for the turbulent kinetic energy. The
mean of the first term on the right-hand side of (2.12) is usually called the production, and
2νD′ : D′ is the dissipation of turbulent kinetic energy, usually denoted by ε. The mean of
the second term on the right-hand side of (2.12) is zero. The same decoupling procedure
as for the mass and momentum balance equations is used for (2.12) and leads to

∂

∂t

(
v′

R · v′
R

2

)
+ div

(
v′

R · v′
R

2
v̄ + p′

R
ρ

v′
R + v′

R
2

· v′
R ⊗ v′

R − 2νv′
R · D′

R

)

= −v′
R ⊗ v′

R : grad v̄ + v′
R · div(v′

R ⊗ v′
R)− 2νD′

R : D′
R. (2.13)

Forming the sum (2.11) + (2.13) + v̄ · (2.9) + v′
R · (2.4) gives

∂

∂t

(vR · vR

2

)
+ div

[(
vR · vR

2
+ p∗

R
ρ

)
vR

]

= g · vR + div(2νTvR · D)− 2νTD : DR − 2νD′
R : D′

R, (2.14)

where the negligible terms involving the molecular viscosity have been removed. The last
term on the right-hand side of (2.14) is the only term with ν, which is not negligible
because it takes into account the dissipation due to roller turbulence. This equation is
similar to the energy balance equation associated with the Navier–Stokes equations with
the velocity field vR and the pressure p∗

R, as well as diffusive and dissipative terms due to
the eddy viscosity related to the wall turbulence.

3. Depth-averaged equations

3.1. Shear and roller enstrophies
The mass conservation equation for the velocity field vR can be written as div vR = 0.
This equation, the momentum balance equation (2.10) and the energy equation (2.14) are
averaged over the depth. For any quantity A, the depth-averaged quantity is defined as

〈A〉 = 1
h

∫ h

0
A dz, (3.1)

where h is the fluid depth. The free-surface location can be written as the sum of a
Reynolds-averaged term and a turbulent fluctuation. However, the contribution of the
fluctuation of the free surface for depth-averaged models is negligible, as explained by
Svendsen et al. (2000) for turbulent hydraulic jumps, and by Stansby & Feng (2005)
with measurements on surf zone waves. The fluid depth h can thus be seen as a
Reynolds-averaged quantity, and the usual boundary conditions can be used. Further
discussion of this issue can be found in Kazakova & Richard (2019).

The flow is assumed to be 2-D in order to derive a 1-D depth-averaged model. The
coordinates x and z, and the inclination angle θ , are defined in figure 1. The components
of vR are u and w in the Ox and Oz directions, respectively. To lighten the notations, the
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average of the velocity u over the depth is denoted by U, i.e. U = 〈u〉. The velocity is
decomposed as the sum of its depth-averaged value and a deviation u∗ as u = U + u∗
(Teshukov 2007; Richard & Gavrilyuk 2012; Kazakova & Richard 2019; Richard et al.
2023). This deviation is in turn decomposed into a shear contribution u∗

s , due to the
variation in DW of the mean velocity with the depth, and a roller contribution u∗

r , due
to the roller turbulence in DR, as u∗ = u∗

s + u∗
r . These two contributions are assumed

to be independent, i.e. 〈u∗
s 〉 = 〈u∗

r 〉 = 0 and 〈u∗
s u∗

r 〉 = 0. These two contributions to the
deviations correspond to two enstrophies defined as

ψ = 〈u∗2
s 〉

h2 , ϕ = 〈u∗2
r 〉

h2 . (3.2a,b)

The enstrophy ψ is called shear enstrophy, and ϕ is the roller enstrophy. Therefore, the
average of the square of the velocity can be written as 〈u2〉 = U2 + h2ψ + h2ϕ.

3.2. The shallow-water assumption and the Teshukov approximation
The equations of mass, momentum and energy are supplemented by the boundary
conditions. The no-penetration condition at the bottom can be written as w(0) = 0, while
the kinematic condition at the free surface is w(h) = ∂h/∂t + u(h) ∂h/∂x. The dynamic
boundary condition at the free surface can be written as (σ · n)(h) = 0, where σ is the
Cauchy stress tensor, and n is the unit normal vector at the free surface. This boundary
condition is detailed in Kazakova & Richard (2019).

Averaging over the depth, the mass conservation gives

∂h
∂t

+ ∂hU
∂x

= 0, (3.3)

without any approximation. On the contrary, several assumptions are needed for the
derivation of the depth-averaged momentum and energy balance equations. The first
assumption is the usual shallow-water approximation: the fluid depth, characterized by
h0, is assumed to be small compared to a characteristic length L of variation of the flow
variables in the Ox direction. The ratio h0/L defines a small parameter ε = h0/L � 1,
which is the basis for the implementation of an asymptotic method. Defining the stress
tensor τW = 2νTD related to the eddy viscosity and the wall turbulence, the shallow-water
scaling scaling used in Richard et al. (2023) implies that the normal stresses τW

xx and τW
zz

are small compared with the shear stress τW
xz , i.e. τW

xx /τ
W
xz = O(ε). Another assumption is

that the molecular viscosity is very small compared with a characteristic eddy viscosity.
This implies that the Reynolds number, defined with the molecular viscosity, is larger
than O(ε−2) (Richard et al. 2023). All terms with the molecular viscosity are therefore
negligible in the momentum and energy equations, except the dissipation due to roller
turbulence.

The momentum balance equation (2.10) in the Oz direction gives the pressure.
Neglecting terms of O(ε) due to the stress tensor τW , and terms of O(ε2) due to the
vertical fluid acceleration, the pressure is hydrostatic. Using the boundary conditions,
depth-averaging the momentum balance equation (2.10) in the Ox direction leads to

∂hU
∂t

+ ∂

∂x
(hU2 +Π) = gh sin θ − τW

xz (0)
ρ

, (3.4)
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Roll waves in a predictive model for open-channel flows

where

Π = h3ψ + h3ϕ + gh2

2
cos θ. (3.5)

The same averaging procedure for the energy equation (2.14) gives

∂he
∂t

+ ∂

∂x

(
hUe +ΠU + h

2
〈u∗3

s 〉 + h
2

〈u∗3
r 〉
)

= ghU sin θ − Ws − Wr, (3.6)

where the energy is

e = U2

2
+ h2ψ

2
+ h2ϕ

2
+ gh

2
cos θ, (3.7)

and the shear and roller dissipation are respectively

Ws =
∫ h

0
2νTD : D dz, Wr =

∫ h

0
2νD′

R : D′
R dz. (3.8a,b)

The concept of weakly sheared flows was introduced by Teshukov (2007). In the context
of this paper, this is more properly an assumption of a weakly turbulent flow; the ratio
of the roller turbulent deviation u∗

R to the depth-averaged velocity U is supposed to be of
O(εβ). The term h3ϕ in the expression (3.5) of Π in the momentum flux of (3.4) and
in the energy flux of (3.6) are of O(ε2β), and the term with 〈u∗3

r 〉 is of O(ε3β). This
assumption allows us to neglect the term with 〈u∗3

r 〉 in the energy equation (3.6) provided
that β > 0. In Teshukov (2007) and Richard & Gavrilyuk (2012), the enstrophy term in
(3.4) is kept, while the non-hydrostatic correction to the pressure, which is due to the
vertical acceleration and which is of O(ε2), is neglected. This implies that β must also
satisfy the condition β < 1. In this paper, terms of O(ε) are also neglected in the pressure,
which implies the condition β < 1/2. Finally, the condition on β for the derivation to be
consistent is 0 < β < 1/2.

A similar approximation was obtained by Richard et al. (2023) for the shear deviation
using the small parameter μ = 2 ln−1(κ2 Re), where κ is the von Kármán constant, and
Re = hU/ν is the Reynolds number. The shear deviation u∗

s is of O(μ), while the terms
with the shear enstrophy ψ in (3.4) and (3.6) are of O(μ2), and the term with 〈u∗3

s 〉 is of
O(μ3). While ε is the main small parameter, μ is treated as a second small parameter,
with ε < μ < 1, and terms of O(μ3) can be neglected. A similar approximation was used
by Luchini & Charru (2010), who used the small parameter ub/U introduced by Mellor
(1972), where ub is the shear or friction velocity. This small parameter plays the same role
as μ and allowed the authors to keep terms of the order of (ub/U)2 and to neglect terms
of the order of (ub/U)3. This approximation is equivalent to Teshukov’s assumption in the
sense that the mean of the cube of the deviation can be neglected consistently in the energy
balance equation.

In fact, since the average of the deviation is zero, the deviation is negative for some
values of z, and positive for others. The same applies to the cube of the deviation, which
means that the average of the cube of the deviation is smaller than its order of magnitude
would suggest. For example, if the velocity were a linear function of the depth, then
the average of the cube of the deviation would be zero. However, this is not the case
for the enstrophy, which depends on the square of the deviation, which is of course
always positive. Consequently, neglecting the average of the cube of the deviation in
front of the average of the square has a greater validity than predicted by the orders of
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magnitude of the asymptotic developments. The Teshukov approximation and equivalent
approximations therefore have a wider validity. In particular, it is possible to describe,
within the framework of this approximation, flows for which turbulence is not precisely
weak, such as highly turbulent hydraulic jumps (Richard & Gavrilyuk 2013).

3.3. Expressions for wall friction and dissipation
The flow is assumed to be in the smooth turbulent case. This assumption is valid if
Re∗ = v∗ks/ν < 4, where Re∗ is the shear Reynolds number, v∗ is the shear velocity, and
ks is the average surface roughness (Henderson 1966; Chanson 2004). The assumption
of independence between roller and wall turbulence enables us to use the asymptotic
expansions of Richard et al. (2023) obtained in the smooth turbulent case. Each variable
is expanded with respect to the small parameter ε. By inserting these expansions into the
equations of the system, the terms of order 0 (O(1)) and then of order 1 (O(ε)) are obtained
for each variable. It is then possible to express the shear stress at the bottom τW

xz (0) and
the shear dissipation Ws as relaxation source terms for U and ψ . These expressions are
(Richard et al. 2023)

τW
xz (0)
ρ

= Cf U |U| − α1

κ

√
Cf (Cf U |U| − ĝh)− (α2κ − αα1

√
Cf )

√
Cf h

(
hψ − ĝ

κ2

)
,

(3.9)

Ws = Cf U2 |U| − α

κ

√
Cf (Cf U |U| − ĝh)U + α2hCf

(
hψ − ĝ

κ2

)
U, (3.10)

where ĝ = g sin θ , α = R1 − R + 1, α2 = [2(ζ(3)− 1)]−1 	 2.47, α1 = α − α2, and the
friction coefficient is obtained consistently with the explicit relation

Cf = κ2

(
R − 2 + 2 ln 2 + ln κ + ln

√
ĝh3

ν

)−2

. (3.11)

In the above expressions, ζ is the Riemann zeta function, ζ(3) 	 1.20, and the functions
R and R1 are given by

R =
∫ ∞

0

dξ

1 +
√

1 + ξ2(1 − e−ξ/A)2
−
∫ ∞

0

dξ

1 +
√

1 + ξ2
, (3.12)

R1 =
∫ ∞

0

dξ√
1 + ξ2(1 − e−ξ/A)2

−
∫ ∞

0

dξ√
1 + ξ2

, (3.13)

where A = 2κA+. Full details of how these functions are obtained are given in Richard
et al. (2023). Once the von Kármán constant κ and the constant A+ of the van Driest
damping function are fixed, all parameters of the model are known.

The roller dissipation is modelled as in Kazakova & Richard (2019) as

Wr = Cr

2
h3ϕ3/2. (3.14)

The coefficient Cr has the universal value Cr = 0.48, which was validated by comparison
with a large number of experiments on breaking waves in a wide range of conditions
in Kazakova & Richard (2019), Richard et al. (2019) and Duran & Richard (2020). This
expression is similar to the expression for the turbulent dissipation in the turbulent kinetic
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Roll waves in a predictive model for open-channel flows

energy model, where the turbulent dissipation ε is based on the turbulent kinetic energy k
and on the mixing length lm, and written as ε = CDk3/2/lm, with a dimensionless constant
CD (Pope 2000). In the present model, the mixing length is replaced by the depth h, the
turbulent kinetic energy has the dimensions of h2ϕ, and Wr is a depth-integrated quantity.
As in the study of turbulent flows, the expression of the roller dissipation does not depend
on the viscosity. This is usually explained by the energy cascade and the hypotheses
of Kolmogorov. The rate of dissipation is determined by the transfer of energy from
the largest eddies, independently of the viscosity, even if the energy is dissipated at the
smallest scales by viscous action (Pope 2000).

3.4. Conservation of energy and shear enstrophy
From the mass, momentum and energy equations, an evolution equation for the total
enstrophy ψ + ϕ can be obtained. This equation can be written as

∂h(ψ + ϕ)

∂t
+ ∂hU(ψ + ϕ)

∂x

= 2
α2

κ

√
Cf

h2 U(Cf U |U| − ĝh)− 2α2(κ + α
√

Cf )

√
Cf

h
U
(

hψ − ĝ
κ2

)
− Crhϕ3/2.

(3.15)

The equations for ψ and ϕ can be decoupled thanks to the independency assumption. The
balance equation for the shear enstrophy derived in Richard et al. (2023) is thus recovered.
This equation is

∂hψ
∂t

+ ∂hUψ
∂x

= 2
α2

κ

√
Cf

h2 U(Cf U |U| − ĝh)− 2α2(κ + α
√

Cf )

√
Cf

h
U
(

hψ − ĝ
κ2

)
.

(3.16)

Consequently, the equation for the roller enstrophy can be written as

∂hϕ
∂t

+ ∂hUϕ
∂x

= −Crhϕ3/2. (3.17)

The resulting model is hyperbolic and therefore creates shocks in finite time. From a
physical point of view, the appearance of a shock models the breaking of the wave and
the creation of roller turbulence.

In the case of the Saint-Venant system of equations (or nonlinear shallow-water
equations), the two equations are the mass and momentum balance equations. In addition,
the system admits an energy balance equation and an infinity of conservation equations
with no obvious physical signification (Whitham 1974). The energy is a mathematical
entropy of the Saint-Venant system and is dissipated at shocks. This energy dissipation is
due to the dissipation in the turbulent roller. The turbulent energy is first produced and then
dissipated into internal energy, but since there is no turbulent energy in the Saint-Venant
system, the whole process amounts to a dissipation.

In the present system, due to the existence of a roller turbulent energy h2ϕ/2, the energy
is conserved in a shock. The shock, or breaking of the wave, creates roller turbulent energy,
which is then dissipated in the continuous part of the solution by the dissipative term
−Wr. It follows that the roller enstrophy is not conserved but created by a shock. The
shock relations of this system (or Rankine–Hugoniot relations) were studied by Richard
& Gavrilyuk (2012). The equations of mass, momentum, energy and shear enstrophy are
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solved, and consequently these quantities are conserved at a shock, and this implies a
creation of roller enstrophy. The roller enstrophy plays the role of an entropy for the system.
It is created in a shock and guarantees the uniqueness of the solution. The shear enstrophy
is only a transported quantity, like a passive scalar with source terms, and is conserved in
a shock.

In contrast to the Saint-Venant system, the existence of a roller turbulent energy enables
us to describe the front part of a breaking wave or of a roll wave, where the turbulent
energy that is suddenly created at the toe of the wave is progressively dissipated. This
is why the present model is able to calculate the front length (called ‘shock’ length in
Brock 1967), i.e. the length between the beginning of the rising portion of the wave and
the maximum depth, whereas the Saint-Venant system can obtain only a zero front length
since all this part of the wave is really treated as a shock. In the Saint-Venant system, the
shock includes both the generation and dissipation of turbulent energy, i.e. the entire wave
front. In the present model, the shock includes only the production of turbulent energy,
which is really created over a very short distance, while its dissipation is described in the
continuous part of the wave front.

The final model, which is solved numerically, is therefore composed of four equations:
(1) the mass conservation equation (3.3); (2) the momentum balance equation (3.4) with
the expression (3.9) of the bottom friction; (3) the energy balance equation

∂he
∂t

+ ∂

∂x
(hUe +ΠU) = ghU sin θ − Ws − Wr, (3.18)

with the expression (3.10) of the shear dissipation and the expression (3.14) of the roller
dissipation; and (4) the shear enstrophy balance equation (3.16). The evolution equation for
the roller enstrophy (3.17) is not solved since its resolution would predict a conservation
of roller enstrophy at shocks. It is replaced with the energy equation (3.18).

3.5. Hyperbolicity and numerical scheme
The system (3.3), (3.4), (3.18) and (3.16) can be written in the primitive form

∂V
∂t

+ A ∂V
∂x

= S
h
, (3.19)

where V = (h,U, ϕ, ψ)T, S is a source term with relaxation terms, and the matrix A is

A =

⎛
⎜⎝

U h 0 0
g cos θ + 3h(ψ + ϕ) U h2 h2

0 0 U 0
0 0 0 U

⎞
⎟⎠ . (3.20)

The characteristics of the system are given by the eigenvalues of this matrix, which are

λ1,2 = U, λ3,4 = U ±
√

gh cos θ + 3h2(ψ + ϕ). (3.21)

All eigenvalues are real. There is a double eigenvalue, but there are four linearly
independent eigenvectors. Therefore, the system is hyperbolic. The celerity of the surface
waves is c =

√
gh cos θ + 3h2(ψ + ϕ). The flow is supercritical if U > c, and subcritical

if U < c.
The system is solved numerically using an explicit finite-volume method (Godunov

type) in one step. The source terms are cumbersome, but do not pose any numerical
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Roll waves in a predictive model for open-channel flows

resolution problems. In fact, the mathematical structure of the model is simple and can
be written in conservative form

∂U
∂t

+ ∂F
∂x

= S, (3.22)

where the conservative variables are U = (h, hU, he, hψ)T, the flux is F = (hU, hU2 +
Π, hUe +ΠU, hUψ)T, and the source term is S = (0, S2, S3, S4)

T, with

S2 =
(

1 − α1

κ

√
Cf

)
(ĝh − Cf U |U|)+ (κα2 − αα1

√
Cf )h

√
Cf

(
hψ − ĝ

κ2

)
, (3.23)

S3 =
(

1 − α

κ

√
Cf

)
(ĝh − Cf U |U|)U − α2hCf

(
hψ − ĝ

κ2

)
U − Cr

2
h3ϕ3/2, (3.24)

S4 = 2
α2

κ

√
Cf

h2 U(Cf U |U| − ĝh)− 2α2(κ + α
√

Cf )

√
Cf

h
U
(

hψ − ĝ
κ2

)
. (3.25)

The numerical calculation of Un+1
i in the cell i at the time step n + 1 from the variables,

flux and source term at the time step n is given by

Un+1
i = Un

i − �t
�x

(Fn
i+1/2 − Fn

i−1/2)+ Sn
i �t, (3.26)

where�t is the time step, and�x is the cell size. The inter-cell numerical fluxes are given
by an HLLC Riemann solver. However, in the case of roll waves, since the flow is always
supercritical, the inter-cell fluxes are simply given by Fn

i+1/2 = Fn
i and Fn

i−1/2 = Fn
i−1.

For a 1-D hyperbolic model with a production of shocks, a first-order model is sufficient.
The time step is obtained with a Courant–Friedrichs–Lewy (CFL) condition, using the
characteristic velocities (3.21) of the system, with a Courant number equal to 0.8.

At each time step, the roller enstrophy is calculated from the energy, shear enstrophy,
depth and average velocity using the expression (3.7) of the energy. Note that the friction
coefficient Cf is calculated explicitly in each cell from the local value of the depth with
(3.11). This means that the friction coefficient is not a constant for the flow but varies in
the channel if the depth is not constant.

The present model has the well-known mathematical structure of the Euler equations of
compressible fluids with an additional transport equation and source terms. The numerical
scheme is thus also well-known, stable, fully explicit, fast and reliable. In comparison, the
model of Cao et al. (2015) is parabolic, and the numerical scheme comprises two steps,
one of which is implicit, with a high computational cost. The numerical resolution of the
present model is therefore much faster and robust.

4. Finite-width channels

The derived model is 1-D and therefore theoretically valid for a channel with an infinite
width. In practice, the channel width is of course finite. In particular, the channel used
by Brock (1967) was a rectangular channel with width � = 11.75 cm. With a fluid depth
typically of the order of 5–10 mm, the width of the channel has to be taken into account
to avoid discrepancies. As noted by Brock (1967), the effect of the side walls can be
considered as adding more frictional resistance. In classical models for open-channel
hydraulics, this increased friction is taken into account abstractly by the concept of
hydraulic radius. In the present model, as in many 1-D models, the depth is used instead of
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the hydraulic radius. This means that the increased friction caused by the side walls has to
be taken into account in a different way. The simplest solution is to increase the coefficient
of friction artificially.

The normal flow is an equilibrium flow defined in the model by the relation
ghn sin θ = Cf Un |Un|, where hn, Cf and Un are respectively the depth, friction coefficient
and velocity of this normal flow. Consequently, the slope angle θ , the friction coefficient
Cf and the Froude number Fr = Un/

√
ghn for the normal conditions must satisfy

sin θ = Cf Fr2. (4.1)

Using the hydraulic radius as in Brock (1967), the relation satisfied by the normal flow
is gr sin θ = Cf Un |Un|, where r = hn/(1 + 2hn/�) is the hydraulic radius. Therefore, the
relation satisfied by the slope, the friction coefficient and the Froude number is

sin θ = Cf Fr2
(

1 + 2hn

�

)
. (4.2)

Consequently, it is not possible to use the values defined with the hydraulic radius in a
model using the fluid depth because they do not satisfy (4.1) and thus do not preserve
the normal flow, which is an essential condition to study the instability leading to the
development of roll waves. If (4.1) is not satisfied, then the depth and the velocity vary
along the channel, even in the absence of roll waves. Brock (1967) produced a normal flow
and studied the development of the instability. One of the objectives of his work was to
obtain information on roll wave trains that develop naturally from a uniform flow (Brock
1967). In this regard, there is an inconsistency in the data presented by Cao et al. (2015)
since the normal flow is defined in their model by the same relation ghn sin θ = Cf Un |Un|
as in the present model, but they use the same values as Brock (1967) for θ , Cf , Fr, Q,
hn and � (according to their table 2), which do not satisfy this relation or the equivalent
relation (4.1).

The method for adapting the model to a finite-width channel is to use an artificially
reduced value of A+ to describe the equilibrium flow (or normal flow). This method gives
a slightly larger friction coefficient, to take into account the additional friction on the
side walls. In Richard & Gavrilyuk (2012), the friction coefficient being constant and a
free parameter, it was possible to fix it at the desired value to satisfy (4.1). In the present
approach, the friction coefficient is local and calculated with (3.11). To increase its value
artificially, if we do not allow ourselves to modify the value of the von Kármán constant,
then we can modify only the value of R, and thus of the van Driest damping constant.

The value of the von Kármán constant is kept in all cases at the value κ = 0.412 found
by Nezu & Rodi (1986). The value of A+ can be deduced from the value of the integration
constant B of the log law u+ = (1/κ) ln z+ + B, where u+ = u/v∗, z+ = zv∗/ν, and v∗ is
the shear velocity. The integration constant can be written as (Richard et al. 2023)

B = 1
κ
(R − 1 + 2 ln 2 + ln κ). (4.3)

Since R depends on A+, this equation yields a relation between B and A+. For subcritical
flows (Fr < 1), the value A+ = 26 agrees with the measures (Nezu & Rodi 1986; Cardoso
et al. 1989), but for supercritical flows (Fr > 1), the value of the integration constant,
and thus of A+, can be smaller (Tominaga & Nezu 1992; Prinos & Zeris 1995). In this
paper, the chosen value of A+ is even smaller to take into account the friction on the side
walls.
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Roll waves in a predictive model for open-channel flows

For a rectangular channel of width �, the method is as follows.

(i) For an equilibrium flow with normal depth hn and normal velocity Un, a Reynolds
number can be defined with hydraulic radius Re� = 4rUn/ν. The Darcy friction
coefficient calculated with the hydraulic radius is f� = 8gr sin θ/U2

n . Note that the
Darcy coefficient is related to the friction coefficient Cf defined above by f = 8Cf .
In Richard et al. (2023), it was shown that the explicit relation (3.11) for the
friction coefficient reduces, in the case of a normal flow, to a relation between
the Darcy friction coefficient and the Reynolds number, which is similar to the
von Kármán–Prandtl law for pipe flows with smooth surfaces. This relation can be
written as

1√
f

= 1

2κ
√

2
ln(Re

√
f )+ 1

2κ
√

2

(
R − 2 − 3

2
ln 2 + ln κ

)
. (4.4)

This relation can be inverted to find R. A value of the constant R defined by (3.12)
with the finite-width quantities is given by

R� = 2 + 3
2

ln 2 − ln κ + 2κ
√

2√
f�

− ln(Re�
√

f�). (4.5)

(ii) The corresponding quantities for a 1-D model are defined with the normal depth
hn instead of the hydraulic radius. These quantities are denoted by a subscript ∞.
We thus define a Reynolds number Re∞ = 4hnUn/ν and a Darcy coefficient f∞ =
8ghn sin θ/U2

n . Therefore, we obtain Re∞ = Re� hn/r, f∞ = f�hn/r and a constant
R∞ by the relation, obtained from (4.4),

R∞ = 2 + 3
2

ln 2 − ln κ + 2κ
√

2√
f∞

− ln(Re∞
√

f∞). (4.6)

This expression can also be written as

R∞ = R� + 2κ
√

2√
f�

(
1√
hn/r

− 1
)

− 3
2

ln
hn

r
. (4.7)

(iii) The effective constant A+∞ is then obtained from the value of R∞. Note that a
constant A+

� could be calculated from the value of R� but is not used in the following.
It is not possible to find the inverse function of (3.12) to obtain A+ for a given value of
R and κ . However, the following approximate expression gives A+ as a function of R
with excellent accuracy for 0.04 < R < 2.8 if the von Kármán constant is κ = 0.412,
and can be used to calculate A+∞:

A+ 	 0.717 + 7.113 R + 0.7316 R2 + 0.05075 R3. (4.8)

(iv) The constants R1∞, α = R1∞ − R∞ + 1 and α1 = α − α2 of the model are then
calculated with the value A+∞ (R∞ is already known). For convenience, the following
approximate expressions can be used to calculate R and R1 as functions of A+ if
κ = 0.412 for 1 < A+ < 28:

R 	 −0.09781 + 0.14122 A+−1.7357 × 10−3 (A+)2 + 1.5847 × 10−5 (A+)3,
(4.9)

R1 	 −0.1121 + 0.28611 A+−5.468 × 10−3 (A+)2 + 6.887 × 10−5 (A+)3. (4.10)
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This method guarantees that the normal flow is well described in the 1-D-model in spite
of the finite width of the channel. Indeed, the relation between the normal velocity and
the normal depth is obtained with f∞. This relation is f∞ = 8ghn sin θ/U2

n , which can
be written as ĝhn − CfnU2

n = 0, where Cfn = f∞/8, in accordance with the relaxation
terms (3.23)–(3.25) of the model. In the numerical resolution of the model, the explicit
expression (3.11) can be used with R∞, and the value ν of the kinematic viscosity deduced
from Re∞, hn and Un by ν = 4hnUn/Re∞. This value of the viscosity is thus the same
as in the experiments, which can be obtained from the temperature, which is given in the
case of the experiments of Brock (1967).

5. Periodic roll waves

The model is used first to simulate the periodic roll waves obtained by Brock (1967).
A sinusoidal perturbation is applied at the channel’s inlet in conditions where the normal
flow is unstable. As a result, roll waves appear and grow in the channel until a periodic
regime is reached, with the same period as the imposed perturbation at the inlet. The
parameters used for the simulations in the nine cases studied by Brock with a smooth
bottom are gathered in table 1. The values of the slope angle sin θ , the channel’s length L,
the channel’s width �, the discharge Q, the normal depth hn, the normal velocity Un, the
Froude number Fr, the Reynolds number Re� defined with the hydraulic radius, the Darcy
friction coefficient f� calculated with the hydraulic radius, and the kinematic viscosity ν
(estimated from the temperature), are taken from Brock (1967). Given the values of the
Reynolds number, the flow is turbulent and viscous effects are negligible except close to
the wall and for the turbulent dissipation as explained above. The Weber number defined
by We = ρhnU2

n/γ , where γ is the surface tension, is of the order of 102 and thus large
enough to neglect surface tension effects. The values of the Reynolds number Re∞ defined
with the normal depth (Re∞ = 4hnUn/ν), the van Driest constant A+

� , the effective van
Driest constant A+∞ and the parameter α = R1∞ − R∞ + 1 are calculated with the method
explained in § 4. The van Driest constant A+

� is given for information only as only the
effective van Driest constant A+∞ is used in the simulations. We can note that the values
of A+

� are close to 26 or slightly smaller, which is consistent with experimental results
obtained in the case of supercritical flows (Tominaga & Nezu 1992; Prinos & Zeris 1995).
The effective value A+∞ is much smaller, to take into account the effect of the lateral walls
(see § 4). The value of the Earth’s gravity is taken as 9.796 m s−2 due to the location of
Brock’s experiments. The friction coefficient is calculated in each cell from the local depth
with the explicit expression (3.11).

Since the flow is always supercritical, the four characteristics of the system enter the
computational domain at the inlet, and no characteristic enters the domain at the channel’s
end. Consequently, four boundary conditions are imposed at the channel’s entrance, and
none at the end. A sinusoidal perturbation to the depth is applied at the inlet of the channel:
h(x = 0, t) = hn[1 + A sin(2πt/T)], where T is the period of the perturbation, and A is the
amplitude of the perturbation. As we are interested only in the periodic waves, the value
of A is arbitrary and is taken as A = 0.05. If a smaller value of A is used, then the periodic
waves need a larger length to develop fully, and vice versa if a larger value is chosen. The
values of the period T applied at the inlet are given in table 2 for each case. These values
are taken from Brock (1967). The entrance discharge is kept constant and equal to Q (see
table 1) so that the inlet’s velocity is U(x = 0, t) = Q/[� h(x = 0, t)]. The shear enstrophy
at the inlet is arbitrarily taken equal to its equilibrium value for the depth h(x = 0, t) so
that ψ(x = 0, t) = ĝ/[κ2 h(x = 0, t)]. Finally, the roller enstrophy is taken equal to zero at
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Roll waves in a predictive model for open-channel flows

Cases 1 & 2 3, 4, 5 & 6 7, 8 & 9

sin θ 0.05011 0.08429 0.1192
L (m) 36.6 36.6 24.4
� (cm) 11.75 11.75 11.75
Q (m3 s−1) 9.72 × 10−4 6.52 × 10−4 8.02 × 10−4

hn (mm) 7.98 5.28 5.33
Un (m s−1) 1.04 1.05 1.28
Fr 3.71 4.63 5.60
Re� 3.11 × 104 2.24 × 104 2.60 × 104

f� 0.0257 0.0289 0.0279
Re∞ 3.53 × 104 2.44 × 104 2.84 × 104

ν (m2 s−1) 9.36 × 10−7 9.10 × 10−7 9.63 × 10−7

A+
� 26.03 24.29 24.18

A+∞ 18.74 19.53 19.39
α 2.74 2.79 2.78

Table 1. Parameters used for the simulations of periodic roll waves.

Cases 1 2 3 4 5 6 7 8 9

T (s) 0.934 1.218 0.449 0.796 1.121 1.248 0.440 0.695 1.016

Table 2. Values of the perturbation period used for the simulations of periodic roll waves.

the channel’s entrance. At the end of the channel, for a number of cells equal to N, there is
an extra cell N + 1 where the values of the variables are taken equal to the corresponding
values at cell N.

From the inlet, the perturbation grows and evolves into roll waves. After some length,
which depends on the perturbation, a periodic regime of roll waves is reached. During
a transient regime, the first wave that develops in the channel becomes larger than the
following waves. This front runner was studied by Yu & Chu (2022) and is not considered
here. The roll waves are studied well after the front runner has left the channel. The
development of roll waves in case 9 (see tables 1 and 2) is presented in figure 2(a) for
the evolution of the depth, and in figure 2(b) for the evolution of the shear enstrophy ψ
(black curve) and of the roller enstrophy ϕ (red curve). The periodic system of waves is
reached here after 15 m approximately from the depth profile, although the stabilization of
the peak value of the roller enstrophy takes a longer distance.

The periodic waves have a characteristic asymmetrical sawtooth shape with a steep front,
a sharp crest and a flatter trough. The curve of the shear enstrophy has rather opposite
features, with sharp troughs and flatter crests, because the shear enstrophy tends to vary as
1/h (the equilibrium value of ψ is ĝ/(κ2h)).

The appearance in the channel of a non-zero roller enstrophy indicates the formation
of a shock since, as there is no creative term for the roller enstrophy in the equations,
the roller enstrophy can be created only in a shock. From a physical point of view, the
appearance of a non-zero value of ϕ marks the formation of a roller and the beginning
of a breaking phenomenon. The roller enstrophy can thus be used as a detector of wave
breaking. The roller enstrophy, which is created by a shock, is dissipated quickly and has
significant values only in the front part of the waves.
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Figure 2. Development of roll waves in case 9 (see tables 1 and 2). (a) Fluid depth along the channel.
(b) Shear enstrophy ψ (black curve) and roller enstrophy ϕ (red curve) along the channel.
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Figure 3. (a) Variations of the shear energy (black curve) and of the roller energy (red curve) over one period
for case 9. (b) Variations of the friction coefficient over one period for case 9.

Figure 3(a) shows the variation of the shear energy h2ψ/2 (black curve) and of the
roller energy h2ϕ/2 (red curve) (see the expression (3.7) for the energy) over one period
for case 9 (see tables 1 and 2). As noted above, the roller enstrophy is almost equal to
zero everywhere except in the front part of the waves, and it is the same for the roller
energy. The roller enstrophy governs what is sometimes called the shock length or the
shock thickness, i.e. the distance between the point where the depth begins to increase
at the wave front and the wave crest.The front length is approximately the length needed
to dissipate the roller enstrophy created by the shock at the wave front. The maximum
value of the depth and the minimum value of the shear enstrophy are reached where the
roller enstrophy is almost completely dissipated. The peak value of the roller enstrophy
or of the roller turbulent energy is an indication of the intensity of the turbulent roller.
This value increases if the wave period increases or if the Froude number is larger. The
shock relations (Rankine–Hugoniot relations) associated with this model are the same as
in Richard & Gavrilyuk (2012). If the strength of the shock increases, then the depth after
the shock is limited to twice the minimum depth before the shock, but the increase in
roller enstrophy is not limited. This property explains why the roller enstrophy is a good
indicator of the shock strength and thus of wave breaking.

The shear enstrophy is smaller at the wave crest and larger at the wave trough, but the
opposite is true for the shear energy. However, the variations of the shear energy are much
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Roll waves in a predictive model for open-channel flows

slower than the variations of the roller energy because the flow is sheared everywhere
whereas the turbulent roller is present only at the wave front.

The variations of the friction coefficient Cf , which is calculated locally with (3.11), are
shown over one period in figure 3(b) for case 9. The friction coefficient is smaller when
the depth is larger, i.e. at the crests, and larger at the troughs, when the depth is smaller.
Having an explicit local friction coefficient is a particular feature of this model. Most
existing models assume that the friction coefficient is constant and equal to its value for
the equilibrium flow. Brock (1967) studied the effect of a variable friction factor assuming
the validity for a non-equilibrium flow of the relation valid in the case of a normal flow
between the friction factor and the Reynolds number. The local Reynolds number was
used in this case. Given the large variations of the local Reynolds number hU/ν in a roll
wave, the variations of the friction factor are of the same order of magnitude as what
is found here. In the present model, however, the local explicit expression (3.11) of the
friction factor is valid for both equilibrium and non-equilibrium flows, and reduces to
the usual implicit relation (4.4) of von Kármán–Prandtl type in the case of normal flows.
For a non-equilibrium flow, which is the case of roll waves, the local friction coefficient
calculated by (3.11) (minimum value 0.0025, maximum value 0.0060, for case 9) is slightly
different from the coefficient that would be obtained for a normal flow of the same depth
and velocity (minimum value 0.0028, maximum value 0.0058, for case 9). The large
variations in the local friction coefficient are due to the large variations in depth and
velocity along the roll waves.

The comparisons between the calculated depth and the measures of Brock (1967) are
presented in figure 4 for the cases 2, 3, 4, 6, 8 and 9, and in figure 5 for the cases 1,
5 and 7 (black curves). All cases are in good agreement with the experimental results,
especially given that there is no calibrated parameter in the model. Moreover, all cases
show the same trend. In particular, the calculated wavelengths are systematically shorter
than the experimental values by 3.7–5.4 %. The values of the calculated wavelength λ
and of the wavelength λB measured by Brock are given for each case in table 3 together
with the relative deviation �λ/λB = (λ− λB)/λB. As the wavelength is proportional to
the wave velocity, the simulated waves are slightly slower than in the experiments. The
calculated maximum depths hmax and minimum depths hmin are also smaller than their
respective measured values hB

max and hB
min, but the calculated wave amplitudes H = hmax −

hmin are remarkably accurate, differing from the measured values HB by less than 1 % for
six out of nine cases, with the other three differing by only 1.6 %, 2.9 % and 3.7 % (see
table 3). The wave profiles are well reproduced. In all cases, the depth is systematically
slightly overestimated just after the crest (just at the left of the crest in the figures) and
systematically slightly underestimated before the troughs (to the right of the troughs in the
figures). The shock length, defined as the distance between the minimum depth and the
maximum depth at the wave front, is in good agreement with the experiments (it is slightly
underestimated in case 7). Note that since, in the experimental data of Brock (1967), the
steep parts of the wave fronts were measured as shocks, with several values of the depth
measured at the same abscissa (between 3 and 10 values of h for the same value of x),
it is not possible to define univocally a norm (L1 or otherwise) to quantify the difference
between numerical solutions and measured data.

The good agreement of the simulations with the experiments, the absence of calibrated
parameters and the systematic nature of the deviations, which remain reasonably small,
give confidence in the model’s predictive capabilities. At least two effects could explain
the discrepancies. First, the finite width of the channel used by Brock can explain some
of these differences with the results of a 1-D-model, which assumes an infinite width.
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Figure 4. Variations of the normalized depth over one period for the experimental results of Brock (1967)
(dots) and for the numerical simulation (curve). The abscissa is normalized by the wavelength measured by
Brock. Plots are for (a) case 9, (b) case 8, (c) case 6, (d) case 4, (e) case 3, ( f ): case 2.

The procedure detailed in § 4 compensates the finite width for the equilibrium flow, and
this procedure is needed for the simulations to be as close as possible to the experimental
conditions, but it is not sure that this procedure gives a good compensation in the case of a
variable flow. Moreover, the effect of the lateral walls can be more complex than a simple
additional friction, and can produce a slight perturbation of the flow, even in the centre of
the channel.

Second, the model of Richard et al. (2023) used for the shear effects on the bottom wall
is valid for a very high Reynolds number, typically of an order of magnitude of 105–106,
which is common in rivers or hydraulic channels but difficult to reach in the laboratory.
In Brock’s experiments, the values of the Reynolds number are much smaller (between
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Figure 5. Variations of the normalized depth over one period for the experimental results of Brock (1967)
(dots) and for the numerical simulation (black curve). The abscissa is normalized by the wavelength measured
by Brock. Plots are for (a) case 1, (b) case 5, (c) case 7, (d) case 9. Red curve indicates alternative approach
(see text).

Cases 1 2 3 4 5 6 7 8 9

λ (m) 1.323 1.758 0.625 1.163 1.726 1.960 0.749 1.241 1.945
λB (m) 1.376 1.825 0.660 1.229 1.823 2.055 0.778 1.309 2.033
�λ/λB −3.8 % −3.7 % −5.3 % −5.4 % −5.3 % −4.6 % −3.75 % −5.2 % −4.4 %
hmax/hn 1.426 1.591 1.451 1.912 2.278 2.403 1.735 2.226 2.721
hB

max/hn 1.46 1.63 1.54 2.0 2.35 2.493 1.78 2.31 2.82
hmin/hn 0.643 0.588 0.603 0.482 0.452 0.449 0.483 0.415 0.401
hB

min/hn 0.68 0.63 0.66 0.56 0.54 0.53 0.52 0.47 0.43
H/hn 0.783 1.003 0.847 1.429 1.826 1.954 1.253 1.811 2.320
HB/hn 0.78 1.0 0.88 1.44 1.81 1.96 1.26 1.84 2.39
�H/HB +0.38 % +0.30 % −3.7 % −0.75 % +0.87 % −0.31 % −0.58 % −1.6 % −2.9 %

Table 3. Values of the wavelength λ, normalized maximum depth hmax/hn, normalized minimum depth
hmin/hn, and normalized wave amplitude H/hn, calculated in the numerical simulations for each case, and
comparisons with the corresponding measured values by Brock (1967), namely λB (m), hB

max/hn, hB
min/hn and

HB/hn, plus relative deviations of the calculated wavelength �λ/λB and wave amplitude �H/HB.

2.44 × 104 and 3.53 × 104 for the normal flow), which could entail some discrepancies on
the calculated values of the shear enstrophy.

In addition to these effects, the assumption of independence between roller and wall
turbulence could explain some of the discrepancies since there are some interactions in
the real flow. However, the good agreement between the numerical simulations and the
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Cases 1 2 3 4 5 6 7 8 9

�λ/λB +0.74 % +0.94 % −2.1 % −2.1 % −2.1 % −1.5 % −2.3 % −2.0 % −1.2 %
�H/HB +5.8 % +5.6 % −0.7 % +2.2 % +4.0 % +2.8 % +2.3 % +1.1 % −0.3 %

Table 4. Relative deviation of the wavelength and wave amplitude for the alternative approach (see text) with
respect to the experimental results of Brock (1967) for each case.

experimental measurements in all cases shows that this assumption is well justified in
practice.

The difficulty of simulating experiments in a finite-width channel with a 1-D-model,
and the need for a proper procedure to determine the parameters of the simulations, can be
illustrated with the following alternative approach. The procedure of § 4 enables us to keep
the same Froude number, Reynolds number, normal depth, normal velocity and viscosity
as in Brock’s experiments, using a smaller van Driest constant and thus a larger friction
coefficient for the normal flow ( f∞ > f�), which increases the local friction coefficients
in variable flows. Another possibility is to use the same friction coefficient for the normal
flow, which implies taking Re∞ = Re� in spite of the difference between the depth and the
hydraulic radius. Further, if the same normal depth hn is used, then the normal velocity Un
is larger than in the experiments, and the Froude number in the normal conditions is also
larger (3.95 instead of 3.71 for cases 1 and 2, 4.83 instead of 4.63 for cases 3, 4, 5 and 6, and
5.85 instead of 5.60 for cases 7, 8 and 9). The van Driest constant is taken as A+

� , but the
viscosity does not correspond to the temperature of Brock’s experiments. The first version
is preferable because it retains the same Froude number, Reynolds number and viscosity,
and changes only the friction coefficient (to take into account the increased friction due
to the side walls), whereas the latter version modifies the dimensionless numbers and the
viscosity. The results of the numerical simulations with these conditions are presented in
figure 5 for the cases 1, 5, 7 and 9 (red curves). The wavelengths and the maximum depths
are larger, and the minimum depths are smaller. The deviations of the wavelength and
the wave amplitude with respect to the values measured by Brock are given in table 4. In
most cases, the agreement is better for the wavelength but worst for the wave amplitude
compared to the simulations presented above with the procedure of § 4.

This model can be compared with previous models for roll waves. The model of Richard
& Gavrilyuk (2012) has two parameters, which must be calibrated in each case. As these
calibrations are difficult to predict, the model of Richard & Gavrilyuk (2012) cannot be
considered truly predictive. On the contrary, the implementation of the present model
requires no calibration, which makes it predictive. The model of Richard, Rambaud & Vila
(2017) includes a shear enstrophy but no roller enstrophy. As a result, the wave amplitude
is overestimated (although less than with a Saint-Venant model) and the shock length is
underestimated (again less than with a Saint-Venant model, which predicts a zero shock
length).

The model of Cao et al. (2015) has at least one empirical coefficient to calibrate. In some
cases (cases 1 and 2), an additional coefficient could be calibrated for better agreement. As
noted by the authors, the calibration is based on the existing experimental data of Brock
(1967) and is applicable within the range of the maximum bed slope in the experiments
of Brock. We can add that there is no guarantee that the calibration would give the same
values of the empirical coefficients if the Reynolds number is widely different from the
rather small values in Brock’s experiments. This is a common problem for all models that
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depend on calibrated coefficients: the model has to be tested in a wide range of conditions
to be validated, and it is not currently possible for roll waves because only the data from
Brock (1967) are available. We emphasize that, by contrast, the present model is based on
a wide range of validations, on coastal waves for the breaking phenomenon and the roller
enstrophy modelling (Kazakova & Richard 2019; Richard et al. 2019; Duran & Richard
2020), on flood waves and on the development of a boundary layer in a channel for the
shear modelling (Richard et al. 2023), that it will be applied to hydraulic jumps in the very
near future, and that there are no calibrated parameters specific to roll waves.

Because no information is given in Cao et al. (2015) on the values of the wavelength λ
calculated by the simulations, nor on the calculated wave velocities, it is difficult to make
a precise comparison of the performance of the two models. However, from the figures
provided by the authors, the agreement of the depth profiles calculated by Cao et al. (2015)
with the measured data from Brock (1967) seems equivalent to the results obtained with
the present model.

In conclusion, the present model represents an improvement on previous models in that
it requires no calibrated parameters, while giving results in good agreement with Brock’s
experiments in all cases of periodic waves.

6. Natural roll waves

The model is now used to simulate natural roll waves. With no imposed perturbation at
the channel’s inlet, in conditions where the normal flow is unstable, roll waves appear
spontaneously and grow with various amplitudes and durations between two waves,
resulting in the development of irregular roll waves. For numerical simulations, a very
small random perturbation has to be applied at the channel’s entrance for the instability to
develop.

Numerical simulations were carried out for six cases studied experimentally by Brock.
The data for these cases are gathered in table 5. As above, the values of Re∞, A+

� , A+∞ and
α are calculated with the method explained in § 4. The other values are taken from Brock
(1967). The viscosity is estimated from the temperature of the experiments. The channel’s
width is � = 11.75 cm. The effect of this finite width is not negligible, especially for the
cases A2 and B3 where the normal depth hn is equal to 8.7 % of the channel’s width.
The value of A+

� is close to 26 for the cases A1 and A2, where the Froude number is the
smallest, and approximately 24–25 for the other cases, which agrees with observations
made on supercritical flows. The effective van Driest parameter A+∞ is much smaller to
take into account the friction on the lateral walls.

The numerical resolution is the same as in § 5 except for the entrance boundary
condition, which is a random noise, chosen as in Chang, Demekhin & Kalaidin (1996)
and Richard, Ruyer-Quil & Vila (2016) instead of a sinusoidal perturbation. The depth at
the inlet x = 0 is written as

h(x = 0, t) = hn

[
1 +

N∑
n=1

a cos
( n

N
ωct + φn

)]
, (6.1)

where the phase φn is a random number taken in the interval [0, 2π[, ωc is a cutoff angular
frequency, N is the number of terms, and a is an amplitude (the forcing has a constant
spectrum). Because it is impossible to know the real perturbation of the experiments, the
value ωc/(2π) = 20 Hz was chosen. This value is much larger than the characteristic
frequencies of natural roll waves arising in the channel, and it guarantees that all important
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Cases A1 A2 B1 B2 B3 C

sin θ 0.05011 0.05011 0.08429 0.08429 0.08429 0.1192
Q (m3 s−1) 9.72 × 10−4 1.46 × 10−3 6.52 × 10−4 1.30 × 10−3 1.94 × 10−3 8.02 × 10−4

hn (mm) 7.98 10.26 5.28 7.98 10.26 5.33
Un (m s−1) 1.04 1.21 1.05 1.39 1.61 1.28
Fr 3.71 3.81 4.63 4.96 5.07 5.60
Re� 3.11 × 104 4.47 × 104 2.24 × 104 4.33 × 104 6.29 × 104 2.60 × 104

f� 0.0257 0.0235 0.0289 0.0241 0.0224 0.0279
Re∞ 3.53 × 104 5.26 × 104 2.44 × 104 4.95 × 104 7.39 × 104 2.84 × 104

ν (m2 s−1) 9.36 × 10−7 9.41 × 10−7 9.10 × 10−7 8.96 × 10−7 8.93 × 10−7 9.63 × 10−7

A+
� 26.03 26.16 24.29 25.28 24.61 24.18

A+∞ 18.74 16.84 19.53 18.01 15.37 19.39
α 2.74 2.62 2.79 2.69 2.52 2.78
a 10−4 5 × 10−5 5 × 10−5 5 × 10−5 5 × 10−5 5 × 10−5

Table 5. Parameters used for the numerical simulations of natural roll waves.

frequencies are excited. The number of terms is also taken at a high value, N = 2000. Thus
the noise contains 2000 sinusoidal terms with a random phase and every frequency from
0.01 to 20 Hz with a 0.01 Hz increment.

The value of the amplitude a depends on the importance of the spontaneous
perturbations during the experiments, which is of course impossible to know. Moreover,
two types of inlet conditions were used during the experiments of Brock (1967). The
channel bottom near the inlet was either left smooth (smooth inlet) or made rough by
placing a fine mesh screen on the bottom (rough inlet). The roll waves properties depend
on the inlet condition. Brock (1967) observed that in the case of a smooth inlet, a
laminar boundary layer was developed initially, which eventually became turbulent in
an intermittent fashion. This unsteadiness provided a sufficient amount of disturbance to
hasten roll wave development. In the case of a rough inlet, a turbulent boundary layer was
initiated by the screen, and there was no unsteadiness. As a result, the roll waves developed
further downstream with a rough inlet than with a smooth one. However, it was found that
the effect of the smooth inlet was to translate the development of roll waves upstream
without any other change with respect to case of a rough inlet (Brock 1967). In a similar
way, in the numerical simulations, a smaller value of a only delays the development of the
roll waves. Therefore the value of a was chosen in order to find approximately the same
distance from the channel’s entrance for a given value of roll waves properties as in the
experiments of Brock with a rough inlet. We can note that Brock applied a correction
length to the results with a smooth inlet to adjust the smooth-inlet results to a rough
inlet. With this method, the same value a = 5 × 10−5 was used for all cases, except for
case A1, where the value a = 10−4 was used (with a = 5 × 10−5, the roll waves develop
slightly further downstream in this case). This value of a gives a random perturbation with
a standard deviation equal to 0.16 % of the normal depth (0.32 % for case A1), which is
small enough to represent a natural noise. Since the model was derived in the case of a
turbulent boundary layer (in particular in Richard et al. 2023), the flow with an initial
laminar boundary layer cannot be simulated, and the intermittent transition to a turbulent
boundary layer even less so. However, a higher value of a could simulate a smooth inlet,
as in case C, where the value a = 5 × 10−5 gives an evolution very close to the results of

983 A31-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

15
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.158


Roll waves in a predictive model for open-channel flows

Brock with a rough inlet, and value a = 10−3 agrees well with the results obtained with a
smooth inlet (without the correction used to adjust to the results with a rough inlet).

The flow is always supercritical. Except for the entrance depth, the boundary conditions
are taken as in § 5. The entrance discharge is kept constant and equal to Q. The shear
enstrophy at x = 0 is ψ(x = 0, t) = ĝ/[κ2 h(x = 0, t)], while the roller enstrophy at the
channel’s inlet is taken equal to zero.

The maximum depths of the waves, i.e. the depths at crest level, were recorded. The
average maximum depth h̄max and the average time T̄ between two crests were then
calculated. All average values are calculated over a large number – at least 300 – of
waves, and for most cases, more than 1000 waves. At the beginning of the channel, the
amplitude of many waves is very small. Such very small waves are very difficult to detect
experimentally. Brock (1969) wrote that disturbances of very small magnitude may be
present yet cannot be detected, and that consistent values of less than h̄max/hn = 1.05
were difficult to obtain because of the disturbances on the water surface that exist even
for uniform flow. Numerically, it is possible to detect even waves of very small amplitude
that would otherwise go unnoticed in an experiment. Taking into account these very small
waves does not change h̄max significantly, since this value is close to 1 anyway, but gives
much lower of values of T̄ than those measured by Brock. A threshold of hmax > 1.03hn
was then applied to eliminate the smallest waves (except for case A2, where hmax > 1.02hn

was chosen). A smaller threshold decreases the first calculated values of T̄ , in the part
where the measured values of T̄ are almost constant, but changes nothing on the values
of T̄ in the part of the channel where they increase. The calculated values of T̄ at the
beginning of the channel are thus not really significant because the experimental threshold
is not known precisely, and because the small waves depend on the spectrum of the
random noise. A flat spectrum was chosen with an arbitrary cutoff frequency, but the
real spectrum could be different. After the first phase of wave development, the waves
become large enough to all be detectable, and the calculated values of T̄ no longer depend
on the detection threshold or on the random noise spectrum, and become significant and
comparable with the experimental measurements. This first phase of wave evolution was
called by Brock (1969) the initial development phase, and the corresponding wave growth
was referred as the natural growth.

After this first phase, the average period increases due to the phenomenon of coarsening.
Some waves overtake and combine with waves downstream, resulting in an increase of the
average period. The average maximum depth increases because of the development of
the instability, and also because the coarsening increases the wave amplitude. The waves
eventually break, which can be seen by the appearance of a non-zero value of the roller
enstrophy.

An example of evolution of natural roll waves along the channel is shown in figure 6 for
case C. The evolution of the water depth is presented in figure 6(a). The development of
the instability produces irregular waves of increasing amplitude and increasing spacing.
The evolution of the enstrophy along the channel is given in figure 6(b). The variations
of the shear enstrophy (black curve) increases as the wave amplitude increases, but its
maximum value, which is related to the minimum value of the depth, does not increase
significantly beyond some point in the channel (here, after 15–20 m approximately). The
apparition of the roller enstrophy indicates the beginning of breaking. The maximum value
of ϕ increases as the roll waves become larger and larger on average.

The evolutions of h̄max/hn and T̄ ′ = T̄ sin θ
√

g/hn along the channel are presented in
figure 7. The results of the numerical simulations for cases A1 (red squares) and A2 (red
down triangles) are compared with the corresponding measures of Brock (black circles
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Figure 6. Evolution of (a) the water depth and (b) the shear enstrophy (black curve) and the roller enstrophy
(red curve) for natural roll waves in case C.

for case A1, and black triangles for case A2) are in figure 7(a) for the average maximum
amplitude and in figure 7(b) for the dimensionless average period. Figures 7(c,d) show the
comparisons for the average maximum depth and for the dimensionless average period,
respectively, for cases B1 (simulation, red down triangles; Brock’s results, black triangles),
B2 (simulation, red squares; Brock’s results, black circles) and B3 (simulations, red
diamonds; Brock’s results, black diamonds). The results for case C are presented in figures
7(e) (average maximum depth) and 7( f ) (dimensionless average period), with the results
of the numerical simulations (red squares) and the experimental results of Brock (black
circles).

The agreement between the numerical simulations and the experimental results is
very good. We can note that the increase of the average period and, to a lesser extent,
of the average maximum depth, is in some cases slightly faster than the experimental
results, in the second half of the channel. The results of the numerical simulations of
Zanuttigh & Lamberti (2002) (grey triangles) and of Cao et al. (2015) (blue diamonds) are
presented for case C in figures 7(e,f ). Zanuttigh & Lamberti (2002) used the shallow-water
(or Saint-Venant) equations, and as was to be expected, their results show important
discrepancies with the experimental results of Brock (1967) since it is well-known that the
roll waves calculated with the Saint-Venant equations do not properly describe the front
part of the waves, with an overestimation of the wave amplitude and a zero shock length.
The average maximum depth increases suddenly much faster than in the experiments,
without a corresponding increase of the average period. There is a delay of the start of
the increase of h̄max with a final value larger than the experimental results. The delay of
the increase of T̄ ′ is even larger. The model of Cao et al. (2015) is in better agreement with
the experiments, but there is an important delay in the start of the increase of both h̄max

and T̄ ′, and the increases of h̄max in the second part of the channel and of T̄ ′ are slower
than in the experiments of Brock (1967). The comparisons with the results of Zanuttigh
& Lamberti (2002) and Cao et al. (2015) for the other cases are not presented, but they
all show the same trend. In all cases, the performance of the present model for natural roll
waves is better.

7. Conclusion

A model for turbulent open-channel flows with a smooth bottom is derived by combining
the approaches of Richard et al. (2023) for sheared flows and Kazakova & Richard (2019)
for breaking waves, and applied to roll waves in a sloping channel. The superposition
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Figure 7. Evolution of (a,c,e) the average maximum depth, and (b,d, f ) the dimensionless average period for
natural roll waves. (a,b) Cases A1 (simulation, red squares; results of Brock (1967), black circles) and A2
(simulation, red down triangles; results of Brock (1967), black triangles). (c,d) Cases B1 (simulation, red down
triangles; results of Brock (1967), black triangles), B2 (simulation, red squares; results of Brock (1967), black
circles) and B3 (simulations, red diamonds; results of Brock (1967), black diamonds). (e, f ) Case C (simulation,
red squares; results of Brock (1967), black circles; simulation of Cao et al. (2015), blue diamonds; simulations
of Zanuttigh & Lamberti (2002), grey triangles).

of the two approaches is made possible by an assumption of independence between wall
turbulence and roller turbulence, which leads to a system similar to the Navier–Stokes
equations of incompressible fluids where the velocity field includes the roller turbulent
fluctuation only, and where there is an extra diffusive term due to the eddy viscosity that
takes into account the wall turbulence. Moreover, the pressure includes also the roller
fluctuating pressure, and incorporates a term with the turbulent kinetic energy due to the
wall turbulence. The energy equation for this system is also similar to the energy balance
equation associated with the Navier–Stokes equations with the same velocity and pressure
fields as for the momentum balance equations, with diffusive and dissipative terms due
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to the eddy viscosity related to the wall turbulence, and with a term for the turbulent
dissipation in the roller.

The mass, momentum and energy equations of this system are averaged over the depth.
As in Teshukov (2007), the above velocity is decomposed as the sum of its depth-averaged
value and a deviation. This deviation thus includes the roller turbulent fluctuation and
can be in turn decomposed into a shear contribution due to the variation of the mean
velocity (in Reynolds sense) with depth, and a roller contribution due to the roller
turbulence. Assuming that these two contributions are independent enables us to define
two enstrophy variables, a shear enstrophy and a roller enstrophy. With this procedure and
this assumption, the asymptotic expansions of Richard et al. (2023) can be used to write
the bottom shear stress and the shear dissipation as relaxation terms for the depth-averaged
velocity and the shear enstrophy. The closure of the model is obtained with Teshukov’s
assumption of weakly sheared flows and with the same model for roller dissipation as in
Kazakova & Richard (2019). In particular, the value Cr = 0.48 of the roller coefficient
in this dissipative term, which was validated extensively for breaking coastal waves by
Kazakova & Richard (2019), Richard et al. (2019) and Duran & Richard (2020), is assumed
to be universal for all types of breaking waves in shallow-water flows, and therefore valid
for roll waves. The coefficients in the relaxation terms depend only on the constants of
the mixing length model, i.e. the von Kármán constant and the constant of the van Driest
damping function. There is therefore no calibrated coefficient in this model.

The resulting four-equation depth-averaged model has the same mathematical structure
as the Euler equations of compressible fluids with mass, momentum and energy equations,
with an additional transport equation for the shear enstrophy, and with source terms. This
system is hyperbolic and creates shocks in finite time. The shock relations of the system
imply that a shock creates roller enstrophy. Apart from the shocks, there is no creation
of roller enstrophy, which is otherwise only dissipated. From a physical point of view, a
non-zero roller enstrophy indicates a breaking wave with a turbulent roller.

Because of the simple mathematical structure of the system, the numerical resolution
is fast and based on the well-known numerical schemes used for the Euler equations
of compressible fluids. The system is solved with an explicit finite-volume scheme
(Godunov-type) in one step, solving the balance equations for mass, momentum, energy
and shear enstrophy.

The model is used to simulate Brock’s experiments on roll waves (Brock 1967, 1969,
1970) in a finite-width channel. The model is a 1-D-model and valid for a channel with an
infinite width. To be able to define the normal flow with the same normal depth, normal
velocity, Froude number, Reynolds number, viscosity and slope as in Brock’s experiments,
an artificially reduced value of the constant of the van Driest damping function is used to
take into account the additional friction on the lateral walls, while the von Kármán constant
is kept at the same value found by Nezu & Rodi (1986).

The numerical simulations of both periodic and natural roll waves are in all cases in
good agreement with the experimental results of Brock (1967). The model can be used
to calculate the development and evolution of roll waves in all conditions, as well as all
shallow open-channel flows on a slope, since the model of Richard et al. (2023), used for
flood waves and for the development of a boundary layer in a channel, is a particular case
of this model when no shock arises in the flow. The present model is thus a generalization
of the model of Richard et al. (2023) to the case of rapidly varied flows on a sloping
channel. Because there is no calibrated parameter, the model can be considered predictive
in the sense that it is able to calculate a flow with good accuracy without the need for
prior experimental results. This is a clear improvement over existing models for roll waves
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(Richard & Gavrilyuk 2012; Cao et al. 2015), which rely on calibrated coefficients and
whose accuracy is not guaranteed outside of the conditions used for the calibration.

In summary, the numerical resolution of this 1-D model of turbulent flows on a smooth
bottom is particularly easy due to its simple and well-known mathematical structure. The
model is able to calculate rapidly varied flows without calibrated parameters. Due to its
1-D nature, however, a preliminary procedure to account for increased friction on the side
walls must be done to increase the friction coefficient artificially. The latter is calculated
locally, using an explicit formula.

This model could be used for rapidly varied flows other than roll waves. It is limited to
the smooth turbulent case. The numerical simulations of hydraulic jumps and the extension
to rough bottoms will be the subject of future works.
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