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CYCLIC SUBGROUP SEPARABILITY
OF GENERALIZED FREE PRODUCTS

GOANSU KIM

ABSTRACT. We derive a criterion for a generalized free product of groups to be
cyclic subgroup separable. We see that most of the known results for cyclic subgroup
separability are covered by this criterion, and we apply the criterion to polygonal
products of groups. We show that a polygonal product of finitely generated abelian
groups, amalgamating cyclic subgroups, is cyclic subgroup separable.

1. Introduction.

1.1. Notation. Let G be a group. Then we use N <; G to denote that N is a normal
subgroup of finite index in G. We denote by A xy B the generalized free product of A
and B with the subgroup H amalgamated. If G = A xy B and x € G, then ||x|| denotes the
amalgamated free product length of x in G. If G is a homomorphic image of G, then we
use X to denote the image of x € G in G.

Let H be a subgroup of a group G. Then G is said to be H-separable if, for each
x € G\ H, there exists N <y G such that x ¢ NH. A group G is subgroup separable if G
is H-separable for all finitely generated (f.g.) subgroups H of G. A group G is residually
finite (RF) if G is (1)-separable. In particular, a group G is said to be cyclic subgroup
separable () if G is (x)-separable for each x € G. Clearly, every subgroup separable
group is 7, and every . group is RF.

1.2. Residual finiteness of generalized free products. 1n [4, Proposition2], G. Baumslag
proved a residual finiteness criterion for the generalized free product of two residually
finite (RF) groups. For the generalized free product amalgamating a cyclic subgroup,
Allenby and Tang [3] introduced a simple criterion, using potency, to derive the residual
finiteness of the generalized free product with a cyclic subgroup amalgamated. Their idea
motivated Wehrfritz [14] to find a residual finiteness criterion for the generalized free
product with any subgroup amalgamated. Baumslag’s criterion has been used extensively
in the study of the residual finiteness of generalized free products.

1.3. Statement of results. The object of this paper is to study the cyclic subgroup
separability of generalized free products of groups. The following theorem plays an
important role in this study.
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THEOREM 1.1. LetG = ExyFandlet A = {(P,Q) : P< E, Q <s Fand PNH = QNH}.
(1) Np,gyer PH = H and \(p.gycp QH = H,

(2) Nep.gyen P(x) = (x) and Nee.oyen O(y)=(y) forallx €E, y € F.
Then G is 7.

We note that G. Baumslag [4, Proposition 2] proved that the group G is RF if we
replace (2) above by (p g)ea P = 1 = [\p,g)ca Q- From Theorem 1.1, it is not difficult
to derive the following:

PROPOSITION 1.2. Let G = E xy F. Suppose that
(a) E and F are 7. and H-separable,
(b) for each N < H there exist Ng <y E and Nr < F such that Ne VH = N, H C N.
Then G is 7.

In [14], Wehrfritz showed that the group G in Proposition 1.2 is RF if we substitute
“E and F are RF and H-separable” for (a) in the proposition.

Let G and A be as in Theorem 1.1. Then, for each (P, Q) € A, we have a homomor-
phism

D Ypo:ExyF— E[/Px5F/Q.

where H = HP/P = HQ/Q. Using this notation, Shirvani [13] proved that G = E xy F
is RF if, and only if, (p g)cp Kervpo = (1). As an easy generalization of this, we find

THEOREM 1.3. Let G = Exy F and let A be as in Theorem 1.1. For a given f.g.
subgroup L of G, G is L-separable if, and only if, (\p g)en(Ker ¥p o)L = L.

This result and Theorem 1.1 directly imply the following:

COROLLARY 14. Let G = ExyF and A be as in Theorem 1.1. Assume that

ﬂ(P,Q)eA PH=H = m(P.Q)GA QH Then G is Te lf: and Only lf; ﬂ(p.Q)EA(Ker wPQ)<x> = <x>,
forallx € AUB.

Finally, we apply our result to a special kind of generalized free products, known as
polygonal products of groups, and we generalize some results found in [2], [11].

Let P be a polygon. Assign a group G, to each vertex v and a group G, to each
edge e of P. Let a, and 3, be monomorphisms which embed G, as a subgroup of
the two vertex groups at the ends of the edge e. Then the polygonal product G is
defined to be the group generated by the generators and relations of the vertex groups
G, together with the extra relations obtained by identifying g.c, and g.3, for each
ge € G,. By abuse of language, we say that G is the polygonal product of the (vertex)
groups Gy, Gy, . . ., G,, amalgamating the (edge) subgroups Hy, H, . . ., H, with trivial
intersections, if G; N\ Gi4) = H; and H; N Hy; = 1, where 0 < i < n and the subscripts i
are taken modulo n + 1.

THEOREM 1.5. Let P be the polygonal product of the polycyclic-by-finite groups
A, B, C, D amalgamating the subgroups (b), (c),(d), (a) with trivial intersections. If
a, b, c,d are in the centers of the vertex groups containing them, then P is 7.
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A similar result for the polygonal product of more than four f.g. abelian groups,
amalgamating any subgroups with trivial intersections, will be considered in a later
paper. But, if amalgamated cyclic subgroups in a polygonal product are finite, then we
have the following result which is an extension of [2, Theorem 4.4.].

THEOREM 1.6. Let Py be the polygonal product of f.g. nilpotent groups Ap, Ay, . . ., Ay
(n > 3), amalgamating finite cyclic subgroups (ho), (h1), . .., (h,) with trivial intersec-
tions. If there exist two vertex groups A;, A; (say i < j) such that h;_y, h; are of prime
orders, then Py is 7.

Residual finiteness of the polygonal product in the next theorem is known [11]. We
may prove the next result by following the proof of Theorem 1.1.

THEOREM 1.7 ([10]). Let Py be the polygonal product of the f.g. nilpotent groups Ay,
By, Co, Dy, amalgamating (b), {c), (d), (a), with trivial intersections. If a and ¢ are of
prime orders p and q, respectively, then Py is .

For the polygonal product of f.g. nilpotent groups, amalgamating arbitrary cyclic
subgroups, the situation is not as simple as it is in the above theorems. Considering
the simplest polygonal product of four torsion-free nilpotent groups, we may prove the
following result.

THEOREM 1.8. Let P be the polygonal product of the four f.g. torsion-free nilpotent
groups {a, b), (b,c), (c,d), {d, a), amalgamating the cyclic subgroups (b), {c), {d), (a),
with trivial intersections. Then P is ..

2. Proofs and applications. In this section, we prove our results and apply them to
the known results. We begin by proving Theorem 1.1.

PROOF OF THEOREM 1.1. Let g £ (x), where g, x € G. Since we want to find N < G
such that g ¢ N(x), we may assume that x is cyclically reduced. As we noted, G is RF
by Baumslag [4, Proposition 2]. Hence, we also may assume that x # 1. Clearly g # 1.

CASE 1. Suppose g ¢ (x) is implied by the syllable lengths of g and x; that is,
Subcase 1: ||x|| =0 and ||g|| > 1,
Subcase 2: ||x]| = 1, say, x € E\ H and
@ gl =2, 0r
(i) [lg]l = land g € F\ H,
Subcase 3: ||x|| > 2 and
(i) [lgll =0, or
(ii) ||g]| # 0 and ||x|| does not divide ||g||-
If ||g|| > 1,say, g = aib; - - - amb,, where a; € E\ H and b; € F\ H (the other cases being
similar), then by (1) we can find (P;, Q;), (P}, Q}) € A such that a; ¢ P;H and b; ¢ Q'H
forall i. Let Py = (Y, (P; P} and Qo = (", (Q; N Q). Then (Po, Qp) € A If 1 £g € H
then we choose, from (2), (Py, Qo) € A such that g ¢ Py. Note that ||gyp, o, || = ||| and
8¥py.0, # 1, Where Yp, o, is asin (1). In a similar way, we can find (P, Q}) € A such that
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I|x1[1p6_Q6|| = ||x|| and xYp or # 1. Let P = Py M Py and Q = Qo M Qpy. Then (P, Q) € A,
and g # 1 # %, ||g| = ||g]| and ||%|| = ||x||, where G = Gyp g = E/P %5 F/ Q. Note that
g & (x). Since G = E/ P x5 F/ Q is free-by-finite, hence it is subgroup separable [8], and
since g # (%), there exists N <; G such that § ¢ N(x). Let N be the preimage of N in G.
Then g ¢ N(x) and N < G as required.

CASE 2. Suppose that g and x are in the same factor, say, E. Since g and x are in E,
by assumption (2), there exists (P, Q) € A such that g ¢ P(x). It follows that g ¢ (x),
where G = E/ P 5 F/Q. Now, as in Case 1, we can find N <y G such that g & N(x).

CASE 3. Suppose ||x|]|> 2, ||g]| # O and ||x|| divides ||g||. Since x is cyclically
reduced, we may assume that x = e\f] - - - ,f,, Where ¢; € E\ H and f; € F \ H. Since
||x|| divides ||g||, we may write g = a b - - - amby Or g = biay - - - bya,, where a; € E\ H,
bje F \ H, and m = ns for some integer s. As in Case 1, we can find (P, Q1) € A
such that aj,e; ¢ PiH and b;,f; ¢ Q1H for all i,j. Now g7'x* # 1 # gx* and G is
RF by [4]. Hence there exists M <y G such that g~'x* ¢ M and gx* ¢ M. Note that
MNE,MNF) e A.LetP=P NMNE,and Q = O "MNF, then (P, Q) € A. Hence,
in G = Gypg = E/P x5 F/Q, we have ||g|| = ||g|| and ||%|| = ||x]|. By the choice of M,
g#X and g # 3, thus g € (%) in G. Now, as before, we can find N < G such that
g & N(x). This completes the proof. .

It is not difficult to see that (a) and (b) in Proposition 1.2 imply (1) and (2) in The-
orem 1.1. Hence, we omit the proof of Proposition 1.2. Now we list some known
results which follow from Proposition 1.2. For the proofs, we refer the reader to
[10, §2.2].

COROLLARY 2.1 ([1]). Let E and F be 7. and let H be finite. Then E xy F is 7.

COROLLARY 2.2 ([7]). Let A and B be . groups and AN B = (a). Assume that
there exists an integer k such that, for each integer n, we can find N < A satisfying
NN (a) = (a™). Then A ., B is 7.

In [6, p.42], Dyer mentioned that A xy A is not RF, if A is not H-separable. Hence, we
have the following from Theorem 1.1.

COROLLARY 2.3. LetAbe . (orRF)and H be a subgroup of A. Then A is H-separable
if, and only if, A xy A is 7. (or RF).

Next result is a generalization of Boler and Evans’ result [5] and Allenby and Gregorac
[1] mentioned the result for the generalized free product of two 7, groups amalgamating
a retract. A subgroup H of a group G is called a retract if there exists G| < G such that
G =G1H and G; N H = 1. In this case, we denote G = G - H.

COROLLARY 2.4 ([1]). Let G; be a 7. group with a retract H for each i € 1. Then the
generalized free product Q; of the G; (i € I) amalgamating H is ..

Now we prove Theorem 1.3. We recall the homomorphism p o from (1).
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PROOF OF THEOREM 1.3. (<=) Let g € G \ L. Then, by assumption, there exists
(P, Q) € A such that g & (Keryp )L, where ¥p g is as in (1). Hence gyp o & Lippg.
Since Gipg = E/ P x5 F/Q is subgroup separable by [8], we can find N <; G such that
g & NL.

(=>)Letg € G\ L. Since G is L-separable, there exists N <y G such that g ¢ NL. Let
P=NNEand Q = NNF. Then clearly P<, E, 0 < F,and PNVH = NN H = Q N H,
hence (P, Q) € A. Moreover, Kerpp = (P, Q)% C N, hence g ¢ (Kerpg)L. This
proves that (p g)er(Ker ¥p o)L C L; hence (p g)ep(Ker p o)L = L. L]

We note that A ., B has solvable power problem whenever A and B have solvable
power problems (Lipschutz, [12]). On the other hand, it is not known whether A *., B
is m. whenever A and B are w.. However, for residual finiteness, the Higman’s group
(a,c;a 'ca = c?) *(e) (b,c;b~'cb = ¢*) is not RF [9], but its factors are RF.

Finally, we prove our results on polygonal products.

PROOF OF THEOREM 1.5. Let P = E x5 F where £E = A () B, F = D*<d> C and
H = (a)*{c). To apply Proposition 1.2, we first note that E and F are subgroup separable
[1, Theorem 5]. Hence (a) in the proposition holds. For (b) in the proposition, let N <y H.
Then there exists a natural homomorphism m: £ — (A/(b))*(B/(b)). LetE = Em = AxB,
where A = A/(b) and B = B/(b). We note that (@) * (¢) ¥ Hand N ¥ N < (a) = (¢).
Now, considering A * B = A x4 ((a@) * (¢)) x B, we have a homomorphism ¢: E —

(A/Nﬂ a a)  (¢) /N)*/ (B/NN(e)), where (a) = (a)/NN(a) = N(a)/N and
(¢)y= /N /Nﬁ Smce( ) and (¢ )are finite, therefore, E¢ is RF Note that
({(a) )/le finite. It follows thatthereex1stsM<y E¢ such that Mﬂ( )/N) =1.

Now, let N be the preimage of M in E under the homomorphism 7 o d). Then Ne < E
and Ng M H = N. Similarly, we can find Nr < F such that Ny N H = N. This proves (b)
in Proposition 1.2. Therefore, P is 7. by the proposition. ]

As a consequence of Theorem 1.5, we have the next result which is a generalization
of [2, Theorem 3.4.].

COROLLARY 2.5. Let P be the polygonal product of the f.g. abelian groups A, B, C,
D amalgamating the subgroups (b), (c), (d), {a) with trivial intersections. Then P is ..

It is easy to prove the next lemma.

LEMMA 2.6 ([10]). Let E = E) - H be a RF group with a retract H. Then E is H-
separable.

LEMMA 2.7. Let E = E; - H be a 7. group with a retract H, where H is f.g., and let F
be subgroup separable. Then E xy F is 7.

PROOE. By Lemma 2.6, E is H-separable. Clearly F is H-separable. Thus, to apply
Proposition 1.2, we need only consider (b) in Proposition 1.2. For this, let Ny <¢ H be
given. Choose T = {hg, Ay, ..., h,} to be a complete set of coset representatives of Ny
in H, where hy = 1. Note that Ny is f.g. Since F is Ny-separable, and since hy (}_f Ny,
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for 1 < k < r, there exists M < F such that A g_f MNy, for all k # 0. This implies that
MM H C Npg. Since H is a retract of E and M M H < H, there exists N < E such that
NN H = MnNH. This proves (b) in Proposition 1.2. Thus E *y F'is 7, by Proposition 1.2.
n

PROOF OF THEOREM 1.6. Without loss of generality, we let i = 0.

Casel. AllA;are finite. We put E = (hy, ho)* o)At %) % Ajm1%(n,_,y (15 )
and F = An *(hn_,> An—l *(h,,_2> cee *<hj+l> Aj+1. Then P() = ((E Xy F) *g Ao) X7 Aj, where
H = (hy) * (hj), S = (hy, ho), and T = (hj_y, h;). Since all A; are finite, E and F are
subgroup separable [1]. Now Ag, A; are nilpotent, and orders of h,, h; are primes. It
follows that (h,) N (ho)s = 1 = (h;) N (hj—1)T. Thus, there exists a homomorphism
7. E — (hy,) * (h;) defined by xm = 1 forall x € Ay UA,U---UA;_; (if j > 2) (or xm = 1
forall x € (hg) (if j = 1)) and yr = y for all y € (h,) U (h;). Briefly, H = (h,) x (h;) isa
retract of E. Hence, by Lemma 2.7, E xy F is .. Note that the S, T are finite. It follows
that Py = ((E xg F) *g Ao) *7 A; is . by Corollary 2.1.

CASE 2. The A; are not necessarily finite. Note that each B, = (h_y, k) is finite,
and note that the polygonal product P, of the subgroups By, of the A;, amalgamating the
(hy), is . by the above case, where the subscripts k are taken modulo n + 1. It follows
that Py is 7., since Py = P xp, Ag *p, A} *B, - - - *p, A,, and since each By is finite. u

PROOF OF THEOREM 1.8. Let A = {(a,b), B = (b.c), C = {(c,d) and D = (d, a).
Then P = E xy F, where E = AxyB, F = D%y C and H = (a) * {c). Note that
{a* N (b) = 1 = (c)® N (b). It follows that (b) is a retract of both A and B. Hence, E is
7. by Corollary 2.4. Similarly F is . Since (b)* N (a) = 1 = (b)2 N {(c), H is a retract
of E. Similarly H is a retract of F. Hence, the theorem follows from Corollary 2.4.
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