
3 
A closer look at the world-sheet 

The careful reader has patiently suspended disbelief for a while now, al­
lowing us to race through a somewhat rough presentation of some of the 
highlights of the construction of consistent relativistic strings. This en­
abled us, by essentially stringing lots of oscillators together, to go quite 
far in developing our intuition for how things work, and for key aspects 
of the language. 

Without promising to suddenly become rigourous, it seems a good idea 
to revisit some of the things we went over quickly, in order to unpack 
some more details of the operation of the theory. This will allow us to 
develop more tools and language for later use, and to see a bit further 
into the structure of the theory. 

3.1 Conformal invariance 

We saw in section 2.2.8 that the use of the symmetries of the action to fix a 
gauge left over an infinite dimensional group of transformations which we 
could still perform and remain in that gauge. These are conformal trans­
formations, and the world-sheet theory is in fact conform ally invariant. 
It is worth digressing a little and discussing conformal invariance in arbi­
trary dimensions first, before specialising to the case of two dimensions. 
We will find a surprising reason to come back to conformal invariance in 
higher dimensions much later, so there is a point to this. 

3.1.1 Diverse dimensions 

Imagine275 that we do a change of variables x ----+ x'. Such a change, if 
invertible, is a 'conformal transformation' if the metric is invariant up to 
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3.1 Conformal invariance 71 

an overall scale D(x), which can depend on position: 

g~,Axl) = D(x)g/Lv(x). (3.1 ) 

The name comes from the fact that angles between vectors are unchanged. 
If we consider the infinitessimal change 

(3.2) 

then from equation (1.1), we get: 

(3.3) 

and so we see that in order for this to be a conformal transformation, 

(3.4) 

where, by taking the trace of both sides, it is clear that: 

( ) _ 2 /LV::; 
F x - D g U/LEv . 

It is enough to consider our metric to be Minkowski space, in Cartesian 
coordinates, i.e. g/LV = TJ/Lv. We can take one more derivative OK of the 
expression (3.4), and then do the permutation of indices", ----+ fL, fL ----+ 

v, v ----+ '" twice, generating two more expressions. Adding together any 
two of those and subtracting the third gives: 

(3.5) 

which yields 
(3.6) 

We can take another derivative this expression to get 2o/LDEK = (2-
D)O/LOKF, which should be compared to the result of acting with D on 
equation (3.4) to eliminate E leaving: 

where we have obtained the last result by contraction. 
For general D we see that the last equations above ask that o/LOVF = 0, 

and so F is linear in x. This means that E is quadratic in the coordinates, 
and of the form: 

E/L = A/L + B/Lvxv + C/LVKXVXK, 

where C is symmetric in its last two indices. 

(3.8) 
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72 3 A closer look at the world-sheet 

Table 3.1. The finite form of the conformal transformations and their infinites­
simal generators 

Operation Action Generator 

translations x'J-L = xJ-L + AJ-L PJ-L = -iaJ-L 

rotations X'J-L = MJ-LvxV LJ-Lv = i(xJ-L8v - xv8J-L) 

dilations x'J-L = AXJ-L D = -ixJ-L8J-L 

special xJ-L - bJ-L x 2 
conformal X'J-L = 

1 - 2(x· b) - bJ-Lx2 
KJ-L = -i(2xJ-Lxv 8v - x 2 8J-L) 

transformations 

The parameter AJ-L is obviously a translation. Placing the E term in 
equation (3.8) back into equation (3.4) yields that EJ-Lv is the sum of an 
antisymmetric part wJ-LV = -WVJ-L and a trace part A: 

(3.9) 

This represents a scale transformation by 1 + A and an infinitessimal 
rotation. Finally, direct substitution shows that 

(3.10) 

and so the infinitesimal transformation which results is of the form 

(3.11) 

which is called a 'special conformal transformation'. Its finite form can be 
written as: 

x'J-L xJ-L 
-' = -' - bJ-L (3.12) 
X '2 x 2 ' 

and so it looks like an inversion, then a translation, and then an inver­
sion. We gather together all the transformations, in their finite form, in 
table 3.l. 

Poincare and dilatations together form a subgroup of the full confor­
mal group, and it is indeed a special theory that has the full conformal 
invariance given by enlargement by the special conformal transformations. 

It is interesting to examine the commutation relations of the generators, 
and to do so, we rewrite them as 

J- 1,J-L = ~(PJ-L - KJ-L)' 
J- 1,0 = D, JJ-LV = LJ-Lv, (3.13) 
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with Jab = -Jba , a, b = -1,0, ... , D, and the commutators are: 

(3.14) 

Note that we have defined an extra value for our indices, and TJ is now 
diag( -1, -1, + 1, ... ). This is the algebra of the group 50(D,2) with 
~(D + 2)(D + 1) parameters. 

3.1.2 The special case of two dimensions 

As we have already seen in section 2.2.8, the conformal transformations 
are equivalent to conformal mappings of the plane to itself, which is an 
infinite dimensional group. This might seem puzzling, since from what 
we saw just above, one might have expected 50(2,2), or in the case 
where we have Euclideanised the world-sheet, 50(3,1), a group with six 
parameters. Actually, this group is a very special subgroup of the infinite 
family, which is distinguished by the fact that the mappings are invertible. 
These are the global conformal transformations. Imagine that w(z) takes 
the plane into itself. It can at worst have zeros and poles, (the map is 
not unique at a branch point, and is not invertible if there is an essential 
singularity) and so can be written as a ratio of polynomials in z. However, 
for the map to be invertible, it can only have a single zero, otherwise 
there would be an ambiguity determining the pre-image of zero in the 
inverse map. By working with the coordinate i = 1/ z, in order to study 
the neighbourhood of infinity, we can conclude that it can only have a 
single simple pole also. Therefore, up to a trivial overall scaling, we have 

az + b 
z ----+ w(z) = --d' 

cz + (3.15) 

where a, b, c, d are complex numbers, with for invert ability, the determi­
nant of the matrix 

should be non-zero, and after a scaling we can choose ad - bc = 1. This is 
the group 5L(2, q which is indeed isomorphic to 50(3,1). In fact, since 
a, b, c, d is indistinguishable from -a, -b, -c, -d, the correct statement is 
that we have invariance under 5L(2, Q/7/.,2. 

For the open string we have the upper half-plane, and so we are re­
stricted to considering maps which preserve (say) the real axis of the 
complex plane. The result is that a, b, c, d must be real numbers, and the 
resulting group of invertible transformations is 5L(2, lR)/7/.,2. Correspond­
ingly, the infinite part of the algebra is also reduced in size by half, as the 
holomorphic and antiholomorphic parts are no longer independent. 
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74 3 A closer look at the world-sheet 

N.B. Notice that the dimension of the group SL(2, CC) is six, equiva­
lent to three complex parameters. Often, in computations involving 
a number of operators located at points, Zi, a conventional gauge 
fixing of this invariance is to set three of the points to three values: 
Zl = 0, Z2 = 1, Z3 = 00. Similarly, the dimension of SL(2, lR) is three, 
and the convention used there is to set three (real) points on the 
boundary to Zl = 0, Z2 = 1, Z3 = 00. 

3.1.3 States and operators 

A very important class of fields in the theory are those which transform 
under the SO(2, D) conformal group as follows: 

, 1 ax 1% L'>. ¢(x'") ---+ ¢(x '") = ax' ¢(x'") = 02 ¢(x'"). (3.16) 

Here, I g:, I is the Jacobian of the change of variables. (,6, is the dimension 

of the field, as mentioned earlier.) Such fields are called 'quasi-primary', 
and the correlation functions of some number of the fields will inherit such 
transformation properties: 

(3.17) 

In two dimensions, the relation is 

( az)h (az)h ¢(z, z) ---+ ¢(z', 2') = az' az' ¢(z, z), (3.18) 

where ,6, = h + 11" and we see the familiar holomorphic factorisation. This 
mimics the transformation properties of the metric under Z ----+ z' (z): 

, (az) (aZ) gzz = az' az' gzz, 

the conformal mappings of the plane. This is an infinite dimensional fam­
ily, extending the expected six of SO(2, 2), which is the subset which is 
globally well-defined. The transformations (3.18) define what is called a 
'primary field', and the quasi-primaries defined earlier are those restricted 
to SO(2, 2). So a primary is automatically a quasi-primary, but not vice 
versa. 
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3.1 Conformal invariance 75 

In any dimension, we can use the definition (3.16) to construct a def­
inition of a conformal field theory (CFT). First, we have a notion of a 
vacuum 10; that is 50(2, D) invariant, in which all the fields act. In such 
a theory, all of the fields can be divided into two categories: a field is 
either quasi-primary, or it is a linear combination of quasi-primaries and 
their derivatives. Conformal invariance imposes remarkably strong con­
straints on how the two- and three-point functions of the quasi-primary 
fields must behave. Obviously, for fields placed at positions Xi, trans­
lation invariance means that they can only depend on the differences 
Xi - Xj. 

3.1.4 The operator product expansion 

In principle, we ought to be imagining the possibility of constructing 
a new field at the point xiL by colliding together two fields at the same 
point. Let us label the fields as ¢k, then we might expect something of the 
form: 

lim ¢i(X)¢j(Y) = L ci/(x - Y)¢k(Y), 
x---+y k 

(3.19) 

where the coefficients ci/(x-y) depend only on which operators (labelled 
by i, j) enter on the left. Given the scaling dimensions ~i for ¢i, we see 
that the coordinate behaviour of the coefficient should be: 

k 1 
ciJ" (x - y) ;v ( )6+6-6. X-Y , J k 

This 'operator product expansion' (OPE) in conformal field theory is 
actually a convergent series, as opposed to the case of the OPE in ordinary 
field theory where it is merely an asymptotic series. An asymptotic series 
has a family of exponential contributions of the form exp(-L/lx - yl), 
where L is a length scale appropriate to the problem. Here, conformal 
invariance means that there is no length scale in the theory to play the 
role of L in an asymptotic expansion, and so the convergence properties 
of the OPE are stronger. In fact, the radius of convergence of the OPE is 
essentially the distance to the next operator insertion. 

The OPE only really has sensible meaning if we define the operators 
as acting with a specific time ordering, and so we should specify that 
xO > yO in the above. In two dimensions, after we have continued to 
Euclidean time and work on the plane, the equivalent of time ordering is 
radial ordering (see figure 2.4). All OPE expressions written later will be 
taken to be appropriately time ordered. 
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76 3 A closer look at the world-sheet 

Actually, the OPE is a useful way of giving us a definition of a normal 
ordering prescription in this operator language*. It follows from Wick's 
theorem, which says that the time ordered expression of a product of 
operators is equal to the normal ordered expression plus the sum of all 
contractions of pairs of operators in the expressions. The contraction is a 
number, which is computed by the correlator of the contracted operators. 

(3.20) 

Actually, we can compute the OPE between objects made out of products 
of operators with this sort of way of thinking about it. We'll compute some 
examples later (for example in equations (3.37) and (3.39)) so that it will 
be clear that it is quite straightforward. 

3.1.5 The stress tensor and the Virasoro algebra 

The stress-energy-momentum tensor's properties can be seen directly from 
conformal invariance in many ways, because of its definition as a conjugate 
to the metric via equation (1.10) which we reproduce here: 

T /-w _ 2 DS 
------- A Dg/-w · 

(3.21) 

A change of variables of the form (3.2) gives, using equation (3.3): 

1 J 1 j. S -----+ S -"2 dDxAT/LV Dg/Lv = S + "2 dDxAT/LV (a/LEV + aVE/L) . 

In view of equation (3.4), this is: 

S -----+ S + ~ J dDxH T/L/LaVEv 

for a conformal transformation. So if the action is conformally invariant, 
then the stress tensor must be traceless, T/L/L = O. 

We can formulate this more carefully using Noether's theorem, and also 
extract some useful information. Since the change in the action is 

given that the stress tensor is conserved, we can integrate by parts to 
write this as 

* For free fields, this definition of normal ordering is equivalent to the definition in 
terms of modes, where the annihilators are placed to the right. 
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We see that the current jlL = TILV ElL' with Ev given by equation (3.4) is 
associated to the conformal transformations. The charge constructed by 
integrating over an equal time slice 

Q = J dD-1xJO, 

is conserved, and it is responsible for infinitessimal conformal transforma­
tions of the fields in the theory, defined in the standard way: 

(3.22) 

In two dimensions, infinitesimally, a coordinate transformation can be 
written as 

z ----+ z' = Z + E(Z), Z ----+ z' = Z + E(Z). 

As we saw in the previous chapter, or can be verified using the above 
discussion, the tracelessness condition yields Tzz = Tzz = 0 and the con­
servation of the stress tensor is 

3zTzz (z) = 0 = 3zTzz(z). 

For simplicity, we shall often use the shorthand: T(z) == Tzz(z) and T(z) == 
Tzz (z). On the plane, an equal time slice is over a circle of constant radius, 
and so we can define 

1 f -Q = -. (T(y)E(y)dy + T(y)E(y)dy). 
27TZ 

Infinitesimal transformations can then be constructed by an appropriate 
definition of the commutator [Q, ¢(z)] of Q with a field ¢. 

Notice that this commutator requires a definition of two operators at 
a point, and so our previous discussion of the OPE comes into play here. 
We also have the added complication that we are performing a y-contour 
integration around one of the operators, inserted at z or z. Under the 
integral sign, the OPE requires that Izl < Iyl, when we have Q¢(y), or 
that Izl > Iyl if we have ¢(y)Q. The commutator requires the difference 
between these two, and after consulting figure 3.1, can be seen in the limit 
y ----+ z to simply result in the y contour integral around the point z of the 
OPE T(z)¢(y) (with a similar discussion for the antiholomorphic case): 

1 f -OE,E¢(Z, z) = 27Ti ({T(y)¢(z, z)}E(y)dy + {T(y)¢(z, z)}E(Y)dy). (3.23) 

The result should simply be the infinitesimal version of the defining 
equation (3.18), which the reader should check is: 

(3.24) 
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78 3 A closer look at the world-sheet 

Fig. 3.1. Computing the commutator between the generator Q, defined 
as a contour in the y-plane, and the operator ¢, inserted at z. The result 
in the limit y -----t Z is on the right. 

This defines the operator product expansions T(z)¢(z, z) and T(z)¢(z, z) 
for us as: 

T(y)¢(z, z) = ( h)2 ¢(z, z) + ( 1 ) 8z ¢(z, z) + ... 
y-z y-z 

- h 1 
T(y)¢(z,z)=(_ -)2¢(z,z)+(- _)8z¢(z,z)+ ... , (3.25) y-z y-z 

where the ellipsis indicates that we have ignored parts which are regular 
(analytic). These OPEs constitute an alternative definition of a primary 
field with holomorphic and antiholomorphic weights h, 17, often referred 
to simply as an (h,17.) primary. 

We are at liberty to Laurent expand the infinitesimal transformation 
around (z, z) = 0: 

CXl CXl 

E(Z) = - L E(Z) = - L - -n+l anz , 
n=-CXl n=-CXl 

where the an, an are coefficients. The quantities which appear as genera­
tors, f.n = zn+18z , In = zn+18z, satisfy the commutation relations 

[f.n, f.m] = (n - m)f.n+m, 

[f.n,lml = 0, 

[In, lml = (n - m)ln+m, (3.26) 

which is the classical version of the Virasoro algebra we saw previously in 
equation (2.63), or the quantum case in equation (2.71) with the central 
extension, c = C = O. 
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3.1 Conformal invariance 79 

Now we can compare with what we learned here. It should be clear af­
ter some thought that f-1' fo, f1 and their antiholomorphic counterparts 
form the six generators of the global conformal transformations generating 
SL(2, CC) = SL(2, lR) x SL(2, lR). In fact, L1 = 3z and L1 = 3z generate 
translations, fo + lo generates dilations, i(fo - lo) generates rotations, 
while f1 = z23z and II = z23z generate the special conformal transfor­
mations. 

Let us note some useful pieces of terminology and physics here. Recall 
that we had defined physical states to be those annihilated by the fn, fn 
with n > O. Then fo and fo will measure properties of these physical 
states. Considering them as operators, we can find a basis of fo and fo 
eigenstates, with eigenvalues hand h (two independent numbers), which 
are the 'conformal weights' of the state: folh) = hlh), lolh) = hlh). Since 
the sum and difference of these operators are the dilations and the rota­
tions, we can characterise the scaling dimension and the spin of a state 
or field as ~ = h + h, s = h - h. 

It is worth noting here that the stress-tensor itself is not in general a 
primary field of weight (2,2), despite the suggestive fact that it has two 
indices. There can be an anomalous term, allowed by the symmetries of 
the theory: 

c 1 2 1 
T(z)T(y) = -2 ( )4 + ( )2 T(y) + -3yT(y), z-y z-y z-y 
- - C 1 2 - 1-
T(z)T(y) = - (_ -)4 + (- _)2T(y) + ~3yT(y). 2 z-y z-y z-y 

(3.27) 

The holomorphic conformal anomaly c and its antiholomorphic counter­
part C, can in general be non-zero. We shall see this occur below. 

It is worthwhile turning some of the above facts into statements about 
commutation relation between the modes of T(z), 7'(z), which we remind 
the reader are defined as: 

00 

T(z) = L Lnz-n- 2, 
n=-oo 

L = _1_ f dz zn+1T(z) 
n 27ri ' 

00 

7'(z) = L Lnz-n-2, (3.28) 
n=-oo 

In these terms, the resulting commutator between the modes is that dis­
played in equation (2.71), with D replaced by c and c on the right and left. 

The definition (3.24) of the primary fields ¢ translates into 

[Ln, ¢(y)] = ~ f dzzn+1T(z)¢(y) = h(n + l)yn¢(y) + yn+ 13y¢(y). 
27rz 

(3.29) 
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80 3 A closer look at the world-sheet 

It is useful to decompose the primary into its modes: 

00 

¢(z) = L ¢nz-n-h, (3.30) 
n=-oo 

In terms of these, the commutator between a mode of a primary and of 
the stress tensor is: 

(3.31) 

with a similar antiholomorphic expression. In particular this means that 
our correspondence between states and operators can be made precise 
with these expressions. Lolh) = hlh) matches with the fact that ¢-hIO) = 

Ih) would be used to make a state, or more generally Ih, h), if we include 
both holomorphic and antiholomorphic parts. The result [La, ¢-h] = h¢-h 
guarantees this. 

In terms of the finite transformation of the stress tensor under z ----+ z/, 
the result (3.27) is 

_ (3z/)2 / ~ (3Z/)-21 3z' 33 z/ _ ~ (32Z/)2l (3.32) 
T(z) - 3z T(z) + 12 3z l 3z 3z3 2 3z2 j' 

where the quantity multiplying c/12 is called the 'Schwarzian derivative', 
S(z, z/). It is interesting to note (and the reader should check) that for 
the SL(2, q subgroup, the proper global transformations, S(z, z/) = 0. 
This means that the stress tensor is in fact a quasi-primary field, but not 
a primary field. 

3.2 Revisiting the relativistic string 

Now we see the full role of the energy-momentum tensor which we first 
encountered in the previous chapter. Its Laurent coefficients there, Ln and 
In, realised there in terms of oscillators, satisfied the Virasoro algebra, 
and so its role is to generate the conformal transformations. We can use 
it to study the properties of various operators in the theory of interest 
to us. 

First, we translate our result of equation (2.44) into the appropriate 
coordinates here: 

(3.33) 
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3.2 Revisiting the relativistic string 81 

We can use here our definition (3.20) of the normal ordering at the op­
erator level here, which we construct with the OPE. To do this, we need 
to know the result for the OPE of ax I" with itself. This we can get by 
observing that the propagator of the field XI"(z, z) = X(z) + X(z) is 

(3.34) 

By taking a couple of derivatives, we can deduce the OPE of azXI"(z) or 
azXI"(z): 

v ex' 'rfI"V 
azxl"(z)a X (y) = -- + ... y 2 (z- y)2 

- v _ - _ ex' 'rfI"V 
a-x (z)8-XI"(y) = -- + .... 

z y 2 (z-y)2 (3.35) 

So in the above, we have, using our definition of the normal ordered 
expression using the OPE (see discussion below equation (3.20)): 

with a similar expression for the antiholomorphic part. It is now straight­
forward to evaluate the OPE ofT(z) and azXV(y). We simply extract the 
singular part of the following: 

T(z)ayXV(y) = ~ : azxl"(z)azXI"(z) : ayXV(y) 
ex 

1 
= 2· ,azxl"(z) (azXI"(z)azXV(y)) + ... 

ex 

= azXV(z) ( 1 )2 + .... 
z-y 

(3.37) 

In the above, we were instructed by Wick to perform the two possible 
contractions to make the correlator. The next step is to Taylor expand 
for small (z - y): XV(z) = XV(y) + (z - y)ayXV(y) + ... , substitute into 
our result, to give: 

T(z)a XV(y) = ayXV(y) + a;XV(y) + ... , 
y (z-y)2 z-y (3.38) 

and so we see from our definition in equation (3.25) that that the field 
azXV(z) is a primary field of weight h = 1, or a (1,0) primary 
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field, since from the OPEs (3.35), its OPE with T obviously vanishes. 
Similarly, the antiholomorphic part is a (0,1) primary. Notice that we 
should have suspected this to be true given the OPE we deduced 
in (3.35). 

Another operator we used last chapter was the normal ordered expo­
nentiation V(z) =: exp(ik· X(z)) :, which allowed us to represent the 
momentum of a string state. Here, the normal ordering means that we 
should not contract the various X s which appear in the expansion of 
the exponential with each other. We can extract the singular part to de­
fine the OPE with T(z) by following our noses and applying the Wick 
procedure as before: 

T(z)V(y) = ~ : ozXJ-L(z)ozXJ-L(z) :: eikX(y) : 
ex' 

~((OzXJ-L(z)ik. X(y)))2: eik.X(y) : 
ex' 

+2 . ~OzXJ-L(z)(OzXJ-L(z)ik. X(y)) : eikX(y) : 
a 

a/k2 1 . tk X(y). ik· ozX(z) : eikX(y) : 
4 (z - y)2 . e . + (z - y) 

a/k2 V(y) Oy V(y) 
-4-(z-y)2 + (z-y)" (3.39) 

We have Taylor expanded in the last line, and throughout we only dis­
played explicitly the singular parts. The expressions tidy up themselves 
quite nicely if one realises that the worst singularity comes from when 
there are two contractions with products of fields using up both pieces 
of T(z). Everything else is either non-singular, or sums to reassemble 
the exponential after combinatorial factors have been taken into account. 
This gives the first term of the second line. The second term of that line 
comes from single contractions. The factor of two comes from making 
two choices to contract with one or other of the two identical pieces of 
T(z), while there are other factors coming from the n ways of choosing 
a field from the term of order n from the expansion of the exponential. 
After dropping the non-singular term, the remaining terms (with the n) 
reassemble the exponential again. (The reader is advised to check this 
explicitly to see how it works.) The final result (when combined with the 
antiholomorphic counterpart) shows that V (y) is a primary field of weight 
(a'k 2 /4, a'k2 /4). 

Now we can pause to see what this all means. Recall from section 2.4.1 
that the insertion of states is equivalent to the insertion of operators into 
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the theory, so that: 

s ----+ S/ = S + A J d2z0(z, z). (3.40) 

In general, we may consider such an operator insertion for a general the­
ory. For the theory to remain conform ally invariant, the operator must 
be a marginal operator, which is to say that O(z, z) must at least have 
dimension (1,1) do that the integrated operator is dimensionless. In prin­
ciple, the dimension of the operator after the deformation (i.e. in the new 
theory defined by Sf) can change, and so the full condition for the operator 
is that it must remain (1,1) after the insertion (see insert 3.1). It in fact 
defines a direction in the space of couplings, and A can be thought of as an 
infinitessimal motion in that direction. The statement of the existence of 
a marginal operator is then referred to the existence of a 'fiat direction'. 

In the first instance, we recall that the use of the tachyon vertex op­
erator V(z, z) corresponds to the addition of J d2 z V(z, z) to the ac­
tion. We wish the theory to remain conformal (preserving the relativis­
tic string's symmetries, as stressed in chapter 1), and so V(z, z) must 
be (1,1). In fact, since our conformal field theory is actually free, we 
need do no more to check that the tachyon vertex is marginal. So we 
require that (0/ k 2 /4, ex' k 2 /4) = (1, 1). Therefore we get the result that 
M2 == -k2 = -4/0/, the result that we obtained previously for the 
tachyon. 

Another example is the level one closed string vertex operator: 

It turns out that there are no further singularities in contracting this with 
the stress tensor, and so the weight of this operator is (1 + 0'k2/4, 1 + 
0'k2/4). So, marginality requires that M2 == -k2 = 0, which is the mass­
less result that we encountered earlier. 

Another computation that the reader should consider doing is to work 
out explicitly the T(z)T(y) OPE, and show that it is of the form (3.27) 
with c = D, as each of the D bosons produces a conformal anomaly of 
unity. This same is true from the antiholomorphic sector, giving c = D. 
Also, for open strings, we get the same amount for the anomaly. This result 
was alluded to in chapter 2. This is problematic, since this conformal 
anomaly prevents the full operation of the string theory. In particular, 
the anomaly means that the stress tensor's trace does not in fact vanish 
quantum mechanically. 

This is all repaired in the next section, since there is another sector 
which we have not yet considered. 
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Insert 3.1. Deformations, RG flows, and eFTs 

A useful picture to have in mind for later use is of a conformal field 
theory as a 'fixed point' in the space of theories coordinatised by the 
coefficients of possible operators such as in equation (3.40). (There 
is an infinite set of such perturbations and so the space is infinite 
dimensional.) In the usual reasoning using the renomalisation group 
(RG), once the operator is added with some value of the coupling, the 
theory (i.e. the value of the coupling) flows along an RG trajectory 
as the energy scale f-L is changed. The 'f)-function', {)().,,) == f-L3)."j3f-L 
characterises the behaviour of the coupling. One can imagine the 
existence of 'fixed points' of such flows, where ()().,,) = 0 and the 
coupling tends to a specific value, as shown in the diagram. 

/3(A) /3 (A) 

l:f 

On the left, 5. is an 'infra-red (IR) fixed point', s~1ce the coupling is 
driven to it for decreasing f-L, while on the right, )." is an 'ultra-violet 
(UV) fixed point', since the coupling is driven to it for increasing f-L. 
The origins of each diagram of course define a fixed point of the 
opposite type to that at 5.. A conformal field theory is then clearly 
such a fixed point theory, where the scale dependence of all couplings 
exactly vanishes. A 'marginal operator' is an operator which when 
added to the theory, does not take it away from the fixed point. A 
'relevant operator'deforms a theory increasingly as f-L goes to the IR, 
while an 'irrelevant operator' is increasingly less important in the IR. 
This behaviour is reversed on going to the UV. When applied to a 
fixed point, such non-marginal operators can be used to deform fixed 
point theories away from the conformal point, often allowing us to 
find other interesting theories, as we will do in later chapters. D = 4 
Yang-Mills theories, for sufficiently few flavours of quark (like QeD), 
have negative f)-function, and so behave roughly as the neighbour­
hood of the origin in the left diagram. 'Asymptotic freedom' is the 
process of being driven to the origin (zero coupling) in the UV. Later, 
we will see examples of both type of fixed point theory. 
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3.3 Fixing the conformal gauge 

It must not be forgotten where all of the riches of the previous section -
the conformal field theory - came from. We made a gauge choice in equa­
tion (2.41) from which many excellent results followed. However, despite 
everything, we saw that there is in fact a conformal anomaly equal to D 
(or a copy each on both the left and the right hand side, for the closed 
string). The problem is that we have not made sure that the gauge fixing 
was performed properly. This is because we are fixing a local symme­
try, and it needs to be done dynamically in the path integral, just as in 
gauge theory. This is done with Faddeev-Popov ghosts in a very similar 
way to the methods used in field theory. Let us not go into the details 
of it here, but assume that the interested reader can look into the many 
presentations of the procedure in the literature. The key difference with 
field theory approach is that it introduces two ghosts, ca and bab which 
are rank one and rank two tensors on the world sheet. The action for 
them is: 

(3.41 ) 

and so bab and ca , which are anticommuting, are conjugates of each other. 

3.3.1 Conformal ghosts 

Once the conformal gauge has been chosen, (see equation (2.41)) picking 
the diagonal metric, we have 

(3.42) 

From equation (3.41), the stress tensor for the ghost sector is: 

(3.43) 

with a similar expression for Tghost (,z). Just as before, as the ghosts are free 
fields, with equations of motion ozc = 0 = ozb, we can Laurent expand 
them as follows: 

00 

b(z) = L 
n=-oo 

b -n-2 
n Z , 

00 

c(z) = (3.44) 
n=-oo 

which follows from the property that b is of weight 2 and c is of weight -1, 
a fact which might be guessed from the structure of the action (3.41). The 
quantisation yields 

(3.45) 
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and the stress tensor is 
00 

L~h = L (2n - m) : bmcn- m : -on,O, (3.46) 
m=-oo 

where we have a normal ordering constant -1, as in the previous sector, 

The OPE for the ghosts is given by 

1 
b(z)c(y) = ( ) + ... , 

z-y 

(3.47) 

1 
c(z)b(y) = ( ) + ... , 

z-y 
b(z)b(y) = O(z - y), c(z)c(y) = O(z - y), (3.48) 

where the second expression is obtained from the first by the anticom­
muting property of the ghosts. The second line also follows from the an­
ticommuting property. There can be no non-zero result for the singular 
parts there. 

As with everything for the closed string, we must supplement the above 
expressions with very similar ones referring to 2, c(2) and b(2). For the 
open string, we carry out the same procedures as before, defining every­
thing on the upper half-plane, reflecting the holomorphic into the anti­
holomorpic parts, defining a single set of ghosts (see also insert 3.2). 

3.3.2 The critical dimension 

Now comes the fun part. We can evaluate the conformal anomaly of the 
ghost system, by using the techniques for computation of the OPE that 
we refined in the previous section. We can do it for the ghosts in as simple 
a way as for the ordinary fields, using the expression (3.43) above. In the 
following, we will focus on the most singular part, to isolate the conformal 
anomaly term. This will come from when there are two contractions in 
each term. The next level of singularity comes from one contraction, and 
so on: 

Tgh(z)Tgh(y) 

= (: ozb(z)c(z) : + : 2b(z)ozc(z) :)(: oyb(y)c(y) : + : 2b(y)oyc(y) :) 
= : ozb(z)c(z) :: oyb(y)c(y) : +2 : b(z)ozc(z) :: oyb(y)c(y) : 
+ 2 : ozb(z)c(z) :: b(y)oyc(y) : +4 : b(z)ozc(z) :: b(y)oyc(y) : 
= (ozb(z)c(y))(c(z)oyb(y)) + 2(b(z)c(y))(ozc(z)oyb(y)) 
+ 2(ozb(z)oyc(y)) (c(z)b(y)) + 4(b(z)oyc(y))(ozc(z)b(y)) 

13 
(z - y)4' (3.49) 
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Insert 3.2. Further aspects of conformal ghosts 

Notice that the fiat space expression (3.42) is also consistent with the 
stress tensor 

T(z) =: ozb(z)c(z) : -~ : oz[b(z)c(z)] :, (3.50) 

for arbitrary ~, with a similar expression for the antiholomorphic 
sector. It is a useful exercise to use the OPEs of the ghosts given in 
equation (3.48) to verify that this gives band c conformal weights 
h = ~ and h = 1 - ~, respectively. The case we studied above was 
~ = 2. Further computation (recommended) reveals that the con­
formal anomaly of this system is c = 1 - 3(2K. - 1)2, with a similar 
expression for the antiholomorphic version of the above. 
The case of fermionic ghosts will be of interest to us later. In that 
case, the action and stress tensor are just like before, but with b ----+ {-J 
and c ----+ I, where {-J and I, are fermionic. Since they are fermionic, 
they have singular OPEs 

1 
(-J(z)/(y) = - + "', (z - y) 

1 
I(z){-J(y) = ( ) + .... (3.51) z-y 

A computation gives conformal anomaly 3(2~ - 1)2 - 1, which in 
the case ~ = 3/2, gives an anomaly of 11. In this case, they are 
the 'superghosts', required by supersymmetry in the construction of 
superstrings later on. 

and so comparing with equation (3.27), we see that the ghost sector has 
conformal anomaly c = -26. A similar computation gives c = -26. 

So recalling that the 'matter' sector, consisting of the D bosons, has 
c = c = D, we have achieved the result that the conformal anomaly 
vanishes in the case D = 26. This also applies to the open string in the 
obvious way. 

3.4 The closed string partition function 

We have all of the ingredients we need to compute our first one-loop 
diagram t. It will be useful to do this as a warm up for more complicated 

t Actually, we've had them for some time now, essentially since chapter 2. 
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examples later, and in fact we will see structures in this simple case which 
will persist throughout. 

Consider the closed string diagram of figure 3.2( a). This is a vacuum 
diagram, since there are no external strings. This torus is clearly a one loop 
diagram and in fact it is easily computed. It is distinguished topologically 
by having two completely independent one-cycles. To compute the path 
integral for this we are instructed, as we have seen, to sum over all possible 
metrics representing all possible surfaces, and hence all possible tori. 

Well, the torus is completely specified by giving it a fiat metric, and 
a complex structure, T, with ImT 2: o. It can be described by the lattice 
given by quotienting the complex w-plane by the equivalence relations 

w ;v W + 27Tn; W;v W + 27TmT, (3.52) 

for any integers m and n, as shown in figure 3.2(b). The two one-cycles can 
be chosen to be horizontal and vertical. The complex number T specifies 
the shape of a torus, which cannot be changed by infinitesimal diffeomor­
phisms of the metric, and so we must sum over all all of them. Actually, 
this naive reasoning will make us overcount by a lot, since in fact there 
are a lot of TS which define the same torus. For example, clearly for a 
torus with given value of T, the torus with T + 1 is the same torus, by 
the equivalence relation (3.52). The full family of equivalent tori can be 
reached from any T by the 'modular transformations': 

T: 

s: 
T----+T+l 

1 
T ----+ --, 

T 
(3.53) 

which generate the group SL(2, Z), which is represented here as the group 

····---···0··· ........ .... _--_.. -.------.-

(a) 

lm(w) 
211: 

(b) 

Re(w) 
2n 

Fig. 3.2. (a) A closed string vacuum diagram. ( b) The fiat torus and its 
complex structure. 
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of 2 x 2 unit determinant matrices with integer elements: 

SL(2,Z) : T -----+ aT + b; with (ae db), ad - be = 1. 
CT + d 

(3.54) 

(It is worth noting that the map between tori defined by S exchanges 
the two one-cycles, therefore exchanging space and (Euclidean) time.) 
The full family of inequivalent tori is given not by the upper half-plane 
H~ (i.e. T such that ImT 2: 0) but the quotient of it by the equiva­
lence relation generated by the group of modular transformations. This is 
:F = H~/ PSL(2, Z), where the P reminds us that we divide by the extra 
Z2 which swaps the sign on the defining SL(2, Z) matrix, which clearly 
does not give a new torus. The commonly used fundamental domain in 
the upper half-plane corresponding to the inequivalent tori is drawn in 
figure 3.3. Any point outside that can be mapped into it by a modular 
transformation. 

The fundamental region :F is properly defined as follows: Start with the 
region of the upper half-plane which is in the interval (-~, +~) and above 
the circle of unit radius. we must then identify the two vertical edges, and 
also the two halves of the remaining segment of the circle. This produces 
a space which is smooth everywhere except for two points about which 
there are conical singularities, described in insert 3.3. 

The string propagation on our torus can be described as follows. Imag­
ine that the string is of length 1, and lies horizontally. Mark a point on the 
string. Running time upwards, we see that the string propagates for a time 
t = 21TImT == 21TT2. Once it has got to the top of the diagram, we see that 

Im(r) 

F 

"'~~" 

1 
2: Re(r) 

Fig. 3.3. The space of inequivalent tori. 
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Insert 3.3. Special points in the moduli space of tori 

Actually, there are two very special points of interest on F, depicted 
in figure 3.3. They can be clearly seen in the figure. The point T = 

2'ITi 
i and the point T = e-3-, which is one sharp corner (its mirror 
image is also visible). The significance of these points is that they 
are fixed points of certain elements of SL(2, :2:,). The point T = i 
is fixed by the element S, while the other point is fixed by the ele­
ment ST. 

These points are 'orbifold' singularities, a term that will become 
more widely used here after chapter 4. For our purposes here, this 
means that they have a conical deficit angle. For example, the point 
T = i, because it is at the tip of a region formed by folding the plane 
in half (remember we identified the two halves of the circle segment), 
has a deficit angle of 'IT. In other words, because of the folding, one 
only needs to go half way around a circle in order to return to where 
one started. Similalry, the other orbifold point has a deficit angle of 
4 'IT /3: one only needs to go a third of the way around a circle in order 
to return to where one started. 

One may visualise the significance of these points, recalling that 
we make the tori from lattices in the plane. The lattices for these 
two points have special, and familiar, symmetry. The T = i point is 
simply a square lattice, and S is in fact just a 'IT /2 rotation. Notice 

2'ITi 
that S4 = 1, which fits with this fact nicely. The T = e-3- point is 
an hexagonal lattice, and ST is a rotation by 'IT /3, which dovetails 
nicely with the relation (ST)6 = 1. We draw the lattice below, with 
appropriate basis vectors. It might be worth studying the action of 
Sand ST, and considering the tori to which they correspond. 

+ 

L 
+ 

+ + + 

+ + + + + + 
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our marked point has shifted rightwards by an amount x = 27TReT == 27TTI. 
We actually already have studied the operators that perform these two 
operations. The operator for time translations is the Hamiltonian (2.64), 
H = La + La - (c + c) /24 while the operator for translations along the 
string is the momentum P = La - La discussed above equation (2.73). 
Recall that c = c = D-2 = 24. So our vacuum path integral is 

(3.55) 

Here, q == e27TiT , and the trace means a sum over everything which is 
discrete and an integral over everything which is continuous, which in 
this case, is simply T. This is easily evaluated, as the expressions for La 
and La give a family of simple geometric sums (see insert 3.4 (p. 92)), 
and the result can be written as: 

where 

Z(q) ~ IT21-12(qq)-' III (I - qn)- 24 I' ~ (v'T,rliil-24, 

is the 'partition function', with Dedekind's function 

00 

17(q) == qf4 II (1 - qn) ; 
n=l 

(3.56) 

(3.57) 

(3.58) 

This is a pleasingly simple result. One very interesting property it 
has is that it is actually 'modular invariant'. It is invariant under the 
T transformation in equation (3.52), since under T ----+ T + 1, we get that 
Z(q) picks up a factor exp(27Ti(Lo - La)). This factor is precisely unity, 
as follows from the level matching formula (2.73). Invariance of Z(q) 
under the S transformation T ----+ -1/ T follows from the property men­
tioned in equation(3.58), after a few steps of algebra, and using the result 
S: T2 ----+ T2/ITI2. 

Modular invariance of the partition function is a crucial property. It 
means that we are correctly integrating over all inequivalent tori, which is 
required of us by diffeomorphism invariance of the original construction. 
Furthermore, we are counting each torus only once, which is of course 
important. 

Note that Z (q) really deserves the name 'partition function' since if 
it is expanded in powers of q and q, the powers in the expansion - after 
multiplication by 4/0:' - refer to the (mass)2 level of excitations on the left 
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Insert 3.4. Partition functions 

It is not hard to do the sums. Let us look at one dimension, and so 
one family of oscillators D:n . We need to consider 

We can see what the operator q~':~o cx-nan means if we write it explic­
itly in a basis of all possible multi particle states of the form D:-n 10), 
(D:_n)210), etc.: 

1 

and so clearly Trqa-nan = ~~l (qn)i = (1 - qn)-l, which is remark­
ably simple! The final sum over all modes is trivial, since 

00 00 

Trq~':~oa_nan = II Trqa-nan = II (1 _ qn)-l. 
n=O n=O 

We get a factor like this for all 24 dimensions, and we also get con­
tributions from both the left and right to give the result. 
Notice that if our modes were fermions, 1/;n, things would be even 
simpler. We would not be able to make multiparticle states (1/;_n)210), 
(Pauli), and so we only have a 2x2 matrix of states to trace in this 
case, and so we simply get 

Therefore the partition function is 

00 00 

Tr q~':~o 1f!-n1f!n = II T rq1f!-n1f!n = II (1 + qn). 
n=O n=O 

We will encounter such fermionic cases later. 

https://doi.org/10.1017/9781009401371.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401371.004


3.4 The closed string partition function 93 

and right, while the coefficient in the expansion gives the degeneracy at 
that level. The degeneracy is the number of partitions of the level number 
into positive integers. For example, at level three this is three, since we 
have 0:-3,0:-10:-2, and 0:-10:-10:-1· 

The overall factor of (qij) -1 sets the bottom of the tower of masses. Note 
for example that at level zero we have the tachyon, which appears only 
once, as it should, with M2 = -4/0:'. At level one, we have the mass­
less states, with multiplicity 242 , which is appropriate, since there are 
242 physical states in the graviton multiplet (G/LU, E/Lu, 1». Introducing 
a common piece of terminology, a term qWl qw2, represents the appear­
ance of a 'weight' (WI, W2) field in the 1 + 1 dimensional conformal field 
theory, denoting its left-moving and right-moving weights or 'conformal 
dimensions' . 
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