
TWO ISOMORPHS OF THE FOUR-COLOUR PROBLEM 

J. L. SYNGE 

To Professor H. S. M. Coxeter on his sixtieth birthday 

It is known that the four-colour problem for the faces of a map on a sphere 
is isomorphic with the four-colour problem for the vertices of its dual, and the 
problem is here discussed in the latter form. The isomorphs described below 
are concerned with codes for the four colours and for a change in colour as we 
pass along an edge from vertex to vertex. In the first (algebraic) isomorph, the 
coding involves the four fourth roots of unity, and leads to a graphical repre­
sentation in the complex plane. In the second (arithmetical) isomorph, the 
coding involves the integers mod 4, and also the face-edge incidence matrix 
of the dual. The two isomorphs may be said to be logarithmically related. In 
each of them the problem is to assign colouring instructions on the edges to 
satisfy consistency conditions so that, after completing a circuit of edges, we 
restore its original colour to the vertex from which we started. 

1. The map M and its dual D. Let M be a map on the surface of a sphere. 
The number of faces is finite, and three faces meet at each vertex. To form the 
dual Dy we choose a point in each face of M and join the points in adjacent 
faces by curves which meet only at those points. D is the graph so obtained. 
The four-colour problem for M in the usual sense (colour the faces) is iso­
morphic with the four-colour problem for D in the sense that the vertices of D 
are to be coloured with not more than four colours, two vertices joined by an 
edge receiving different colours. 

Let us then henceforth think only of D, and use the words face, edge, and 
vertex in reference to D, not M. Let F, E, and V denote the numbers of faces, 
edges, and vertices. The faces of D are triangular, and so 3F — 2E. Combining 
this with Euler's equation F — E + V = 2, we see that there exists an integer n 
(we may call it the order of D) such that 

(1.1) F = 2», E = Zn, V = n + 2. 

We orient the faces by assigning a positive sense of circulation to the boundary 
of each face, and we orient the edges by assigning a positive sense to each edge. 
Then any face and any edge together define an incidence index / defined as 
/ = 0 if the edge does not belong to the face, and I = dz 1 if the edge belongs 
to the face and the senses agree or disagree, respectively. 
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There is no simple canonical plan for orienting the edges, bu t we can and 
shall orient the faces by using the plane projection of the dual, and choosing 
the counterclockwise sense as positive for all faces except the one t ha t goes to 
infinity; we orient it by taking the clockwise sense on its (inner) boundary to 
be positive. By using this canonical orientation we ensure t ha t if two faces 
share a common edge, the product of the two incidence indices is — 1. 

2. T h e algebraic i s o m o r p h . Let Ku K2l Kz, KA be four colours. We code 
them by association with the four fourth roots of uni ty: 

(2.1) Kx <-> i, K2 <-> i\ Kz <^ i\ K4<->i* = 1, 

or any permutat ion of this association. 
We now assign colouring instructions to the oriented edges by assigning to 

each edge a number j belonging to the set (i, i2, iz). These instructions are to be 
used as follows. 

Let v, v' be two vertices joined by an edge with the instruction j . Let a 
colour c (in the code (2.1)) be assigned to v. Then we are to give to vf the 
colcur cf = jc if the sense v —> v' is the positive sense of the edge, and the 
colour c' = j~lc if v —* v' is the negative sense of the edge. 

This ensures t ha t the colours of v and v' are different. Moreover, the instruc­
tions are consistent in the sense tha t if we go from v to v' and then back to v 
with the same instruction, then the final colour of v is the same as its initial 
colour. 

Suppose now tha t we have assigned instructions j arbitrarily (in the range 
i, i2, i3) to all the edges. Choose any vertex v and assign a colour to it. T a k e any 
open pa th formed by edges, without loops. If we follow the instructions along 
this path , we give to all vertices on it colours which are uniquely determined, 
and the colours of consecutive vertices differ. 

But if we modify the above by taking a loop of edges, beginning and ending 
a t v, in general the final colour of v will differ from the initial colour. In brief, 
arbi t rary instructions are in general inconsistent. In order t ha t a set of instruc­
tions assigned to the edges may lead to an unambiguous colouring of all the 
vertices in four (or less) colours, it is necessary and sufficient t ha t certain 
consistency conditions be satisfied. 

T o examine these conditions, consider any face. Denote by i \ , I2, h its 
incidence indices with the edges which bound it. Let j \ , j 2 , j% be the colour-
instructions assigned to those edges. Then, if we s tar t from any vertex of the 
face with colour c, and go round the boundary in the positive sense, on com­
pletion of the circuit we arrive back at tha t vertex with colour 

(2.2) c' = wc, 

where 

(2.3) W = jVl/V !J37 3 . 
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Let us call w the weight of the face. I t can take only the four values d=l, ±i. 
Obviously the consistency condition for the face is w = 1. 

We may then state the following theorem. 

THEOREM I. The four-colour problem is isomorphic to the problem of assigning 
colour-instructions j from the set i, i2, iz to the edges so as to make the weight of 
every face unity. 

It is easy to see that the condition w = 1 for every face is equivalent to the 
single condition 

(2.4) 2 > = 2», 

where J^ denotes summation over all the 2n faces. For suppose that there are 
x faces with w = 1, y faces with w = — l,z faces with w = i, and t faces with 
w = —i. Then 

(2.5) J^w = x — y + i(z — /), x-\-y-\-zJrt = 2n. 

Thus (2.4) is true if and only if x = 2n} y = z = t = 0. 
For any choice of colour-instructions, we have a complex number ^w. To 

explore its behaviour, write 

(2.6) I > = f + irç, £ = x — y, rj = z - t, 

x, y, z, t being non-negative integers satisfying the second of (2.5). Hence, 

(2.7) | ± « ± i ? | <%n. 

This tells us that, if we plot the point J^w in the complex plane, it cannot lie 
outside the square with vertices (±2w, ±2ni). 

If, for any given map, the four-colour conjecture is true, then there exists a 
set of colour-instructions, say {j}, which puts the point ^w in the complex 
plane at the point 2n, viz. the right-hand extremity of the square (2.7). If, 
for that same map, we started with a different set of instructions, say {/}, 
yielding a point elsewhere in the square, then we could carry this point to the 
desired position by changing the instructions one at a time. To treat the matter 
systematically, it seems desirable to make some canonical choice of {f}, and 
the choice we shall make is j ' — i2 = — 1 for all edges. This choice is invariant 
under changes in the orientations of the faces and edges, because ( —1)_1 = — 1. 
It gives Y^w — —2n, which means that we start from that point of the square 
(2.7) most distant from the goal ^w = 2n. We may call it the worst choice. 

We now have a systematic plan to test the four-colour conjecture for any 
given map. Start with the worst choice, j ' = i2 for every edge, and Y^w = —2n. 
Number the edges 1 , 2 , . . . , 3n. There are 33n possible choices of instructions 
in the range (i, i2, i3), and each such choice gives us a point in the complex 
plane corresponding to the value of J^w. If the conjecture is true for the map 
in question, this set of points includes ^w — 2n\\i false, the set does not con­
tain that point. 
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We may think of the matter in terms of a game played on the integer lattice 
points of the complex plane. We start in the worst position, J^w = — 2n with 
all instructions i2, and alter the instructions one by one, moving a counter from 
the worst position to the successive positions indicated by the complex value 
of J^w. The player seeks to attain the point ^w = 2n. If the four-colour 
conjecture is true for the map in question, then that goal is attainable in a 
finite number of moves, and the prize would go to the player who minimizes 
that number. 

If the four-colour conjecture should happen to be false for the map in 
question, the game becomes more interesting. The aim of the player is not 
to attain J^w = 2n (we suppose that to be impossible), but to carry his counter 
as far as possible to the right in the complex plane. For there exists a limit line L 

(2.8) Re X > = M < 2n, 

where M is an integer, such that at least one lattice point on L is attainable 
but no lattice point to the right of L is attainable. The player has to get his 
counter on to L, and we might require him to minimize the number of moves 
required. 

In fact, every map may be said to possess a non-negative index of uncolour-
ability 

(2.9) U = 2n - M, 

such that U = 0 is necessary and sufficient for colourability in four (or less) 
colours. 

3. Sidelights on the algebraic isomorph. The reduction of the four-
colour problem to the game described above might raise a wild hope that we 
have a solution near at hand. For, to prove the four-colour conjecture, all we 
have to do is this: Show that, when the counter is in any position (other than 
J^w = 2n)} it can be moved to the right by a change in the colour-instructions. 
Such hopes, however, are not fulfilled. It may be interesting, however, to 
examine this game a little further. 

THEOREM II. The product of all the weights is unity: 

(3.1) Ilw = 1. 

This is easy to prove. In the worst position we have w = — 1 for each face, 
and the number of faces is even; thus (3.1) is true for the worst position. 
The change from that position to a position corresponding to instructions {j} 
can be effected step by step, changing one instruction at each step. This change 
affects only two faces. If it multiplies the weight of one face by k, it multiplies 
the other by k~l. In fact, any change in instructions leaves Uw invariant 
Thus, since (3.1) holds for one set of instructions, it holds for all. 

THEOREM III. In the complex plane, J^w can occupy only lattice points for 
which the coordinates are even integers. 
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To prove this, we use the notation of (2.5). We have 

(3.2) 11^ = lx(-l)Hz(-iy = i*v+z+*\ 

and so, by (3.1), 

(3.3) 2y + z + 3/ = 4£, 

where p is zero (but only if ^w = 2n) or a positive integer. Solving for 
(x, y, z, t) the four equations 

x + y + z + t = 2n, 

(3.4) x — y = Ç, z - t = rj, 

2y + z + 3/ = 4p, 

we get 
x = 2n — 2p — §77, 

y = 2n - 2p - £ - h, 
(3.5) z = -n + 2p + Jf + 77, 

/ = _w + 2p + if. 

Hence, since (#, y, z, t) are integers, £ and 77 are even integers; since 

2 > = f + 7̂7, 

Theorem III follows. 

THEOREM IV. Assume that for a certain map the four-colour conjecture is false 
so that a limit line L exists. Let J^w = P be an attainable point on L. Then the 
instructions leading to P cannot give to any pair of adjacent faces any one of the 
following pairs of weights: 

(3.6) ( - 1 , - 1 ) , ( - U ) , ( - 1 , -* ' ) . 

Proof. Let W\ and w2 be the two weights in question. There is no essential 
loss of generality in assuming an incidence index 1 for the common edge and 
the first face. Let j ( = i, i2, or iz) be the instruction on this edge. Let us change 
this instruction t o / , in the same range. This change affects only the two weights 
in question, changing them into 

(3.7) w\ = wij'/j, w'2 = w2j/f. 

If j = i, we may t a k e / = i2 or i3, so that j'/j = i or i2, and so 

(3.8) w\ = iwi, w'2 = — iw2 or w\ = —Wi, wf
2 = — w2. 

If j = i2, we may t a k e / = i or i3, so that j ' /j = — i or i, and so 

(3.9) w'i = —iwiy w' 2 = iw2 or w\ = iwi, w' 2 = —iw2. 

Finally, if j = is, we may t a k e / = i or i2, so t h a t / / / = — 1 or — i, and so 

(3.10) W'I = —Wi, w'2 = — w2 or W'I = —iwi, w'2 = w 2 . 

https://doi.org/10.4153/CJM-1967-099-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1967-099-6


THE FOUR-COLOUR PROBLEM 1089 

Suppose now that Wi = — l,w2 = — 1, as in the first of (3.6), j having any one 
of the values (i, i2, i3). According to the value of j , we use one of the trans­
formations (3.8), (3.9), (3.10). It is clear that we can make Re (w\ + w'2) 
greater than Re (wi + w2), the increase being either 2 or 4. Thus the pair 
( — 1, — 1) cannot occur. The proof for the other pairs in (3.6) is similar. 

THEOREM V. If a map is coloured in four colours, each face (of the dual) has 
the instruction i2 on precisely one of its (three) edges, and in all there are precisely n 
edges carrying the instruction i2. 

Proof. Allowing for orientations, it is obvious that, to obtain a weight w = 1 
for a face, one edge must carry the instruction i2 and the other two must carry 
instructions taken from the pair (i, i3). If all three edges have the incidence 
index 1, the instructions must be (i, i, i2) or (i2, i3, i3). There are 2n faces. 
Each edge with instruction i2 is common to two faces, and so the number of 
such edges is n. The theorem is proved. 

When a map can be done in four colours, we may start with the instructions 

(3.11) i2, i2, ... ,i2 

and change these into 

(3.12) juj2, ...J*. 

By Theorem V, we know that n of the instructions (3.11) are to remain un­
changed. Hence we have 

THEOREM VI. If a map can be done in four colours, the transition from the worst 
point Y,w = —2n to a solution J^w = 2n can be effected in 2n steps, each step 
involving a change in one instruction and carrying the representative point 2 units 
to the right, with possibly simultaneous displacement in the imaginary direction. 

4. The arithmetical isomorph. This isomorph of the four-colour problem 
may be regarded as logarithmically related to the algebraic isomorph discussed 
above, but it is clearer to develop it independently with occasional back 
references. 

We code the four colours by means of the integers 1, 2, 3, 4 (mod 4). The 
colour instructions on the oriented edges are the integers 1, 2, 3. These instruc­
tions are used as follows. 

Let v, v' be two vertices. Let the edge joining them carry the instruction e. 
Let the colour c be assigned to v. Then we are to give to v' the colour c' = c + e 
or c' — c — e according as the sense v —» vf agrees or disagrees with the positive 
sense of the edge. 

As for the algebraic isomorph, random instructions will, in general, be 
inconsistent. To find the consistency conditions, we use the incidence matrix 
familiar in electrical circuit theory. 
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It may be remarked here that, in the interests of simplicity, in §1 we treated 
orientation rather summarily. It is possible to assign orientations arbitrarily to 
all three elements—faces, edges, and vertices. Then we have three incidence 
matrices, conveniently denoted as follows: 

[FE] = face-edge incidence matrix, 

[EV] = edge-vertex incidence matrix, 

[VF] = vertex-face matrix. 

The elements of these matrices are 0, ± 1 , the sign depending on relative 
orientations. 

Here we use only the matrix [FE], I t has 2n rows (one for each face) and 
3n columns (one for each edge). The elements are the incidence indices (0, dbl) 
of faces and edges, as discussed earlier. Since each edge belongs to two faces, 
and each face has three edges, the matrix [FE] has precisely two non-zero 
entries in each column and precisely three non-zero entries in each row. Adopt­
ing the previous plan for orientation of the faces by the counterclockwise rule, 
we see that of the two column entries, one is + 1 and the other — 1. 

There is another property arising from the fact that two faces have at most 
one edge in common: when [FE] is written out in the usual matrix form, no 
rectangle is formed by four non-zero elements. 

In the algebraic isomorph we defined the weight of a face as the product 
of the instructions on its three edges, with due allowance for orientations by 
use of incidence indices. We proceed similarly now, replacing multiplication 
by addition. However, we can save a lot of verbiage by making use of the 
formula 

(4.1) F = [FE]E, 

properly interpreted. 
To interpret (4.1), we recall that in (1.1) F and E stood for the numbers of 

faces and edges. But we do not really need that symbolism since the numbers 
in question are expressible in terms of the order n. Let us henceforth take E to 
represent a column matrix with Zn elements, these elements being the instruc­
tions (1, 2, or 3) assigned to the edges, which we suppose numbered off 1, 2, . . . , 
3n. Now (4.1) instructs us to multiply this column matrix E by the matrix [FE]. 
The result is a shorter column matrix F with 2n elements. Thus, if the faces are 
numbered off 1, 2, . . . , 2n, F gives us a number for each face. These numbers 
generated by E, we call the weights of the faces in the arithmetical isomorph. 

But when we follow colouring instructions round the three edges which bound 
a face, and wonder whether we return to the same colour as that we started 
with, we find the answer directly in F. We have in fact the consistency condition 

(4.2) F = (0, mod 4), 

this notation meaning that each element is zero (mod 4). If (4.2) is satisfied, 
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the original colour is restored on passing round any loop, and the condition 
is necessary for this restoration. Hence we have 

THEOREM VII. The four-colour problem is isomorphic to the problem of finding 
a column matrix E with 3n elements in the range (1, 2, 3) such that the elements 
of the column matrix F = [FE] E are all zero (mod 4). 

In the algebraic isomorph, we considered the worst position (J^w = —2n) 
in the complex plane, and the problem of proceeding from that point to the 
desired point (^jiv = 2n). The analogue in the arithmetical isomorph is the 
worst matrix 

(4.3) E' = (2), 

that is, a column with each element 2. From the stated properties of the 
matrix [FE] it follows that 

(4.4) Ff = [FE]Ef = (2, mod 4), 

which is about as far as possible from the desired result (4.2). 
Let us now set E = E' + E" with E' as above and E" arbitrary, and apply 

(4.1) to obtain the corresponding weights. We get 

(4.5) F= F'+ F", 

where F' is as in (4.4) and 

(4.6) F" = [FE]E". 

In view of (4.4), the consistency condition (4.2) demands 

(4.7) F" = (2, mod 4). 

We had the elements of E' equal to 2, and we require the elements of E to be 
in the range (1, 2, 3). Hence the elements of E" are to be in the range (0, ± 1 ) , 
and we have 

THEOREM VIII. The four-colour problem is isomorphic to the problem of finding 
a column matrix E" with Zn elements in the range (0, ± 1 ) such that when we calcu­
late 

(4.8) F" = [FE]E", 

each element of F" is 2 (mod 4). 

5. Conclusion. It is a pleasure to dedicate this note to Professor H. S. M. 
Coxeter, F.R.S., in recognition of his achievements in geometry and as a tribute 
to a long friendship in which he has shown sympathy and consideration to a 
rather old-fashioned geometer. 

Dublin Institute for Advanced Studies, 
Ireland 
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