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Abstract

In a recent paper van Leeuwen and Heyman constructed a supemilpotent radical class using the class
of almost nilpotent rings. Using a similar construction, for any class C satisfying the following four
properties we obtain a supemilpotent radical class containing C.

(Nl) C contains the class Z of all zero rings.
(N2) C is hereditary.
(N3) C is homomorphically closed.
(N4) If A and A/I are elements of C for some ideal / of a ring A, then A E C.

Every supemilpotent radical class P clearly satisfies these conditions. For any such radical class we
define the class of almost radical rings and use these to construct a new radical class P2 which contains
the given one. Also, we give a characterization for dual supemilpotent radicals.
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I

In a 1975 paper [7] van Leeuwen and Heyman introduced the class of almost
nilpotent rings. These are rings each proper homomorphic image of which is
nilpotent. Using this class they construct a supemilpotent radical L2 which is
independent of the Jacobson radical.

In this paper we give a general construction which yields the results of van
Leeuwen and Heyman as a special case. For every class C which satisfies the
properties:

(Nl) C contains the class of all zero rings,
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(N2) C is hereditary,
(N3) C is homomorphically closed,
(N4) C has the extension property (that is, if A/I G C and / E C then A G C),

we give a construction of a supernilpotent radical which contains C. It is clear
that the class of all nilpotent rings is an example of a class satisfying (Nl) through
(N4). As a matter of fact, any class C satisfying (Nl) through (N4) also satisfies:

(Nl)' C contains the class of all nilpotent rings.
Properties (Nl) through (N4) are clearly equivalent to (Nl)', (N2), (N3), and

(N4).
Any supernilpotent radical class is also an example of a class satisfying (Nl)

through (N4). Any such radical class P will generate the construction of a
supernilpotent radical class P2 D P.

Throughout this text all rings considered will be associative, and the terminol-
ogy and basic radical theoretic results used may be found in Divinsky [2].

II

DEFINITION 1. For any class C satisfying properties (Nl) through (N4) the class
C, is defined as follows:

1) If A is not subdirectly irreducible then A G C, and only if each proper
homomorphic image of A is in C.

2) If A is subdirectly irreducible then A G Cj if and only if A G C.
C, will be called the class of almost C-rings.
Since C is homomorphically closed, it is clear that C C C, and that C, is also

homomorphically closed. Note that for a subdirectly irreducible ring in C1( it is
also true that each of its proper homomorphic images is in C. It is not clear in
general whether C, contains any rings which are not in C; however, the class C of
all nilpotent rings does furnish us with an example where the containment is
proper ([7], page 259).

LEMMA 2. If A G C,, then either A G C or A has no nonzero C-ideals.

PROOF. Let A G C,, A £ C, and suppose A has a nonzero C-ideal /. Then A
cannot be subdirectly irreducible so A/I must be in C. Property (N4) then forces
A G C, and we have our contradiction.

LEMMA 3. C, is hereditary.
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PROOF. Let A be an element of Cx and / an ideal of A such that (0) =f= I =£ A. If
A is subdirectly irreducible, then A G C, which implies / G C by (N2), and thus
/ £ C C Q. So assume that A is not subdirectly irreducible and that / € C,.
Then note that A £ C, for if so, / £ C C C, since C is hereditary. There are two
possibilities for /.

1) / is not subdirectly irreducible. Then there exists an ideal J ¥= (0) of / such
that / / / £ C. Let J' be the ideal of A generated by J. Then (0) ^ J' C / and by
Andrunakievic's Lemma ([1], Lemma 4), we have (/')3 Q J- If (^')3 ^ (0). then
^ / ( / ' ) 3 G C and by property (N2), I/(J')3 G C. The natural map from I/(J')3

-> / / / then forces I/J E C by property (N3). This is impossible however. If
(J')3 = (0), then (J')2 is a zero ring and hence in C by (Nl). If (J')2 ¥= 0, then
A/(J')2 G C, so by property (N4) A G C, which yields / G C since C is heredi-
tary. But this cannot happen. Finally, if (J')2 = (0), then J' G C since it is a zero
ring. But then A/J' G C, forcing^ G C, which is again an impossibility.

2) I is subdirectly irreducible with heart H. If H2 = (0) then i / 6 C . If
H2 — H, then by Lemma 77 page 137 in [2], A/I* is subdirectly irreducible with
heart H = H, where I* is the annihilator of /. If /* = (0) then A is subdirectly
irreducible, which we have assumed is not the case. If /* ¥= (0) then A/I* G C,
since A G C,, and / / is in C by property (N2). But / / s //, so / / G C by (N3). In
any case, we see that the heart, H, of / is in C. If / = H we are done, so suppose
I ^ H. If I/H G C, then H EC implies / G C by (N4) and we are done.
Suppose I/H £ C. Then, if we construct //', the ideal of 4̂ generated by H, and
consider (//')3, then, since / / is simple, Andrunakievic's Lemma forces either
(H'f = H or (//')3 = (0). If (//')3 = H then / / is an ideal of A, which forces
A/H, and consequently / / / / , to be in C. If (//')3 — 0 (in which case H is a simple
nil ring), we may proceed as in part 1 of the proof. Then (H')2 is a zero ring in C,
and if {H')2 i- 0 then A/(H')2 G C, which forces A G C. If (//')2 = 0 then // ' is
a zero ring in C, and A/H' G C forces A again to be in C. These final
contradictions conclude the proof.

There is no reason to believe that C, is a radical class, since it may not be
closed under taking direct sums. However, with the following definition, we do
get a radical class.

DEFINITION 4. If C satisfies properties (N1)-(N4) and C, is as given in
Definition 1, we define C2 to be the class of all rings each nonzero homomorphic
image of which contains a nonzero C,-ideal.

From results of Sulinski, Anderson and Divinsky [6], we see that, since C,
contains all zero rings, the construction of the lower radical stops at the second
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step. Hence C2 is merely the lower radical generated by C,. Also Hoffman and
Leavitt [3\ have shown that, since Cv is hereditary, then so must be C2.

HI

C2 is then a hereditary radical class containing C. Property (Nl) ' assures that
C2 is supernilpotent. We arrive at this conclusion in an alternative fashion and
also realize C2 as an upper radical as follows. Let 911 be the class of all rings with
no nonzero C,-ideals. If C, is a radical class then 911 is the semisimple class of C,.

THEOREM 5. 9H is a weakly special class of rings [5].

PROOF, a) If A G 9lt and / is an ideal of A such that I2 = (0), then / G C C C,
and consequently / = (0). A can thus have no nonzero nilpotent ideals and hence
is semiprime.

b) Let A G 911 and / be a nonzero ideal of A. Suppose / € 9H. Then / has a
nonzero C, -ideal J. Let J' be the ideal of A generated by J. Recall that J' C / and
( / ' ) 3 C J. Also ( / ' ) 3 ^ (0) since A is semiprime. Thus, since J G C,, we must
have (J')3 G C, by Lemma 3. But this is a nonzero C,-ideal of A, which is
impossible. Thus / can have no nonzero C,-ideals and must be in 91L as desired.

c) Let B G 9H with B an ideal of a ring A such that B* = (0). Suppose A £ 9H.
Then A has a nonzero C,-ideal / . Now / n B is an ideal of / and, by Lemma 3,
/ n B G C,. However, / D B is also an ideal of 5 which has no nonzero C,-ideals.
Thus / n B — (0), I C B* — (0), which is a contradiction, and we see that
A G 9H as desired.

Rjabuhin [5] has shown that 911 must generate an upper radical %91L which is
supernilpotent. Recall that %9H consists of all rings which have no nonzero
homomorphic image in 911.

THEOREM 6. C2 = %9H.

PROOF. A G %9H if and only if each nonzero homomorphic image of A is not
in 911. This is equivalent to each nonzero homomorphic image of A having a
nonzero C,-ideal which requires, by definition, that A G C2.

A corollary to this is the previously mentioned:

COROLLARY 7. C2 is a supernilpotent radical class.
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Rjabuhin has also shown that such an upper radical must satisfy the intersec-
tion property of Leavitt [4]. We state the result as a corollary.

COROLLARY 8. For any ring A, C2(A) is the intersection of all ideals I of A such
that A/I has no nonzero Cx-ideals.

It is clear that if C is the class of nilpotent rings, then C, is the class of almost
nilpotent rings and C2 is the radical L2 of van Leeuwen and Heyman. Since our
construction is general, however, we may consider different classes to play the
part of C.

rv

In this section we shall assume that 9 will always refer to a supernilpotent
radical class and, as mentioned previously, 9 then satisfies properties (Nl)
through (N4). In this case the rings in 9i shall be called almost radical rings.
Lemma 2 and Corollary 8 can now be restated to read:

LEMMA 2'. If A G 9l then either A E9 or A is 9-semisimple.

COROLLARY 8'. For any ring A, 92{A) is the intersection of all ideals I of A such
that A/I has no almost radical ideals.

It is clear that for any 9, 9X will contain the almost nilpotent rings and then 92

will contain the radical L2 of van Leeuwen and Heyman. One can also see that if
9 ¥" 9V then 92 is a larger radical than 9. For an example of such a situation, let
9> be the Baer radical. Divinsky ([2], Example 10, page 103) gives an example of a
ring W which is almost nilpotent but S-semisimple. W would then be in %, but
not in <$>. Hence <® ¥= %.

At this point it is natural to ask under what conditions on 9 it is necessary that
9 — <•?, = 92. We find this to be true for dual radicals.

Recall that a radical 9 is called dual if 9 — <3̂ , where 9^ is the upper radical
generated by the class 911 of all subdirectly irreducible rings with 'S'-semisimple
hearts [2].

LEMMA 9. For any supernilpotent radical 9, we have 9 C 92 C 9r

PROOF. Clearly 9 C 92, so let A £ 9r Then A has a nonzero homomorphic
image A/K which is subdirectly irreducible with 'S'-semisimple heart H/K. But
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then if A/K has a nonzero "dP,-ideal B/K, we have that B/K is subdirectly
irreducible with heart H/K. By definition, then B/K G <3>. By (N2), then H/K e
9. But this is impossible, since H/K is 'J-semisimple, unless B/K — (0). Thus A
has a nonzero homomorphic image with no nonzero *?,-ideal and, as a result,
A $%. Consequently % C % as desired.

COROLLARY 10. If$ is a dual supernilpotent radical, then *? = <?, = ?P2.

PROOF. The definition of dual radical, together with Lemma 9, requires that

9 c 9, c «P2 c % = 9.

It is interesting to note that if 9 is the Jacobson radical J, then since J2 must
contain the van Leeuwen-Heyman radical, L2, and L2 is independent of the
Jacobson radical, we may assert anew that the Jacobson radical is not a dual
radical. This result may be seen to be true for any radical independent of L2.

We leave for further study the problem of deciding where the radicals C2 fit
into the hierarchy of radical classes, as well as whether the construction C2 C
(C2)2 C . . . must terminate.
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