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ABSTRACT

Archaeological data often come in the form of counts. Understanding why counts of artifacts, subsistence remains, or features vary across
time and space is central to archaeological inquiry. A central statistical method to model such variation is through regression, yet despite
sophisticated advances in computational approaches to archaeology, practitioners do not have a standard approach for building, validating,
or interpreting the results of count regression. Drawing on advances in ecology, we outline a framework for evaluating regressions with
archaeological count data that includes suggestions for model fitting, diagnostics, and interpreting results. We hope these suggestions
provide a foundation for advancing regression with archaeological count data to further our understanding of the past.

Keywords: archaeological statistics, computational archaeology, digital archaeology

Los datos arqueológicos a menudo vienen en forma de conteos. Comprender por qué los recuentos de artefactos, restos de subsistencia o
características varían a lo largo del tiempo y el espacio es fundamental para la investigación arqueológica. Un método estadístico central
para modelar dicha variación es a través de la regresión, pero a pesar de los avances sofisticados en los enfoques computacionales de la
arqueología, los profesionales no tienen un enfoque estándar para construir, validar o interpretar los resultados de la regresión de conteo.
Basándonos en los avances en ecología, aquí describimos un marco para evaluar regresiones con datos de conteo arqueológico que
incluye sugerencias para el ajuste de modelos, diagnósticos e interpretación de resultados. Esperamos que estas sugerencias proporcionen
una base para avanzar en la regresión con datos de conteos arqueológicos para mejorar nuestra comprensión del pasado.

Palabras clave: estadísticas arqueológicas, arqueología computacional, arqueología digital

Archaeological data often comes in the form of counts: the
number of ceramic sherds, rabbit bones, projectile points, tin
cans, or residential structures. Understanding why these counts
vary across time or space is central to interpreting past human
behavior from archaeological data. One common method is to
examine this variation formally through regression analysis.

For example, an investigator may want to know how the number
of obsidian artifacts at archaeological sites varies with distance
from the volcanic source. To evaluate this relationship using
regression, counts of obsidian artifacts are referred to as the
“response” or “dependent variable” (also known as “y”). When
plotted, the response is shown on the vertical axis (see Figure 1).
The distance from the volcanic source is referred to as the pre-
dictor or independent (“x”) variable. When plotted, it is shown
on the horizontal axis (see Figure 1). Arranged in this way, we are
proposing that y (the number of obsidian artifacts) varies as a
function of x (the distance from the volcanic source). In other
words, we suspect we can learn something about the number of
obsidian artifacts if we know something about how far that site is
from the source. Yet another way to phrase this is that we expect
the number of obsidian artifacts is dependent on the distance
from the source.

This is an example of statistical inference: we can understand a
population through a sample of observations. Such inference is

critical in archaeology given that we only have a sample of past
human behavior represented by material remains, but we want to
leverage that material to broadly understand patterning in our
history. Of course, regression alone does not provide a causal
inference. As Pearl and McKenzie (2018) note, “Data do not
understand causes and effects; humans do.” Inferring causality
must come from carefully thinking through both theoretical links
between variables and the factors that may complicate causal
relationships (for more, see Pearl and McKenzie 2018). In our
hypothetical example, our inference is that variation in counts of
obsidian artifacts observed in our sample of archaeological sites
represents a general relationship of how past individuals acquired,
transported, used, and discarded obsidian depending on how far
they were from the source, which we have solid theoretical foun-
dations to expect (e.g., Beck et al. 2002; James et al. 2022; Shott
et al. 2015). Regression analysis makes this inference possible by
estimating the underlying “unknown parameters” that structure
the observed relationships between x and y.

The most common way to estimate these unknown parameters is
through ordinary least squares (OLS) regression, which does so by
determining the slope and y-intercept that minimizes the sum of
squared error (see Table 1 for definitions). However, count data
are intrinsically unsuited to OLS given that counts are discrete and
cannot go below zero, and their distributions generally have fewer
cases as counts increase (i.e., are right skewed), leading to
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violations in OLS regression assumptions and poor model fits.
These issues are illustrated in Figure 1a, where we estimate the
relationship between our hypothetical obsidian artifact counts and
distance from the source using OLS: the model underpredicts
both high values (see i in Figure 1a) and low values (see ii in
Figure 1a)—including predicting counts below zero, which is
impossible.

To accommodate the disconnect between OLS and count data,
investigators often log-transform their counts before running
regression (e.g., log obsidian artifact counts) so that the response
more closely approximates a normal distribution, leading to a
better model fit. As shown in Figure 1b, fitting OLS to the logged
counts of obsidian artifacts in our hypothetical example does
avoid predicting values below zero (see iv in Figure 1b), but the
model fit still underestimates high values at sites close to the
volcanic source (see iii in Figure 1b). More generally, logging
counts can generate additional problems that complicate mod-
eling decisions (e.g., what to do with counts of zero that cannot be
logged) and moves analysis farther away from the empirical
observation (i.e., counts of things), which can complicate the
interpretation of results.

An alternative method for estimating the unknown parameters
that structure the underlying relationships between x and y is
through generalized linear models (GLM). These are extensions of
linear models that can accommodate a variety of data types and
that use an iterative process to estimate the unknown parameters
through a maximum likelihood function (see definitions in
Table 1), which gives the probability of observing the empirical
data. As noted by the name, these models can be thought of as a
generalization of OLS to accommodate more diverse data types
and relationships by specifying an error distribution and link
function, respectively. GLMs with count data typically specify a
Poisson error distribution to account for the characteristics
described above and a log link function to linearize the relation-
ship between the counts and covariates (more below). As seen in
Figure 1c, modeling our hypothetical obsidian artifact counts as a

function of distance from the source using this technique pro-
duces the best model fit and does not violate any model
assumptions; the model does a good job of predicting high
counts at sites close to the source (see v in Figure 1c) and does not
predict counts below zero (see vi in Figure 1c). In other words,
count regression does a better job of inferring the underlying
relationship between x and y, which is the goal of applying
regression to answer archaeological questions in the first place.

There is also a second issue that arises when applying standard
OLS to archaeological count data: such counts are often observed
over varying periods of time or areas in space. Because larger
sampling windows should have more counts—all else equal—this
needs to be accounted for in any modeling exercise or else the
investigator risks coming to spurious conclusions (e.g., the smal-
lest site may have the lowest count but the highest density). To
accommodate this issue, investigators may divide their counts by
the sample window to transform them to rates or densities (e.g.,
ceramic sherd density by excavation volume), or they may divide
them by the sum of that object class to create a sample-size
normalized ratio (e.g., proportion of pottery type; e.g., Fulford and
Hodder 1974; Hodder 1974). In doing so, the response variable is
no longer a count; it is either a rate, density, or proportion. This
generates further problems for using OLS regression because
rates and densities are equally likely to have skewed distributions
that lead to poor model fits (e.g., Figure 1a), and proportions
cannot go above one or below zero, yet OLS will predict both.
Moreover, such abstraction can obfuscate interpretation (i.e., What
does a change in density actually mean about human behavior?
Do changes in proportions reflect variation in the numerator or
denominator?).

These problems are not unique to archaeology. Ecology also
often deals with counts that may be sampled across varying win-
dows of time or space. For example, these could be counts of
endangered animals or invasive plants, the number of times bees
visit a flower, or the duration of toxic algae blooms. Over the past
several decades, ecological informaticians have debated

FIGURE 1. Results of (a) linear (ordinary least squares [OLS]), (b) log-linear (OLS with a logged response variable), and (c) Poisson
regression predicting counts of obsidian artifacts across hypothetical archaeological sites as a function of the distance from the
volcanic source. Black dots show the observed values at each site. Gray solid lines show the predicted model fit. Black vertical lines
show the distance between the predicted and observed value for each site (the residuals), which the model is trying to minimize.
Gray horizontal dashed lines indicate zero. See Supplemental Text 1 for a more formal comparison of model fits.
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strategies and methods to deal with these issues common to
count data.

Here, we draw on this literature to recommend analytical guide-
lines for archaeologists following two related principles: (1) keep
the data as close to the unit of observation as possible, and (2) let
the model do the work to accommodate peculiar data structures
(i.e., model reformation, not data transformation; St-Pierre et al.
2018). This is because models designed for count data tend to do
a better job of describing observations than standard OLS
regression operating on log-transformed counts, and they are less

likely to violate model assumptions (O’Hara and Kotze 2010),
especially when counts are small (Warton et al. 2016).

For the remainder of this article, we offer a step-by-step
approach to model fitting, diagnostics, and interpretation with
archaeological count data, drawing on examples from the
literature. Reproducible examples of all cases are available in
Supplemental Text 1. The overall workflow is summarized in
Figure 2. An extended version of this flowchart for models
with multiple predictor variables is in Supplemental Text 1
(Section 5).

Table 1. Definitions.

Term Definition

Deviance How well the proposed model accounts for variation in the response relative to a saturated model that fits the
data perfectly. Measured as twice the log-likelihood (2LL) of the saturated model minus the 2LL of the
proposed model. Analogous to residual variance in OLS.

Deviance residuals The contribution that each individual observation has to the overall residual deviance. Calculated as the
square root of the 2LL of an observation in a saturated model minus the 2LL in the proposed model. This is
analogous to residuals in OLS regression.

Generalized
linear model (GLM)

A family of models that estimate the unknown parameters that best fit to a set of observations using maximum
likelihood based on a specified distribution and link function established determined by the nature and
underlying distribution of the response variable.

Imputation of missing data To replace missing cases with values estimated by other information. This could simply be the median or
mean value of the variable, or it could leverage information from other variables.

Likelihood How likely an observation or set of observations is, given parameters specified in the model.

Likelihood
ratio test

An analysis of goodness of fit by examining how well the proposed model performs relative to a simpler,
baseline model (usually a null model).

Likelihood
r-squared (r2l )

A measure of goodness of fit. Also referred to as McFadden’s R-squared, r2l is calculated as one minus the
proportion of the residual deviance (not accounted for by the model) over the null deviance. This is
equivalent to the proportion of the proposed model deviance over the null model deviance.

Maximum
likelihood

The value of the likelihood corresponding to the best, unbiased estimate of model parameters.

Negative
binomial
distribution

A probability distribution describing nonnegative integers or counts, with each observation being
independent from one another. Unlike the Poisson distribution, this includes a separate parameter that
describes the scale of the variance.

Null model A model that only accounts for variation in the response variable with the y-intercept, estimated as the sample
mean.

Ordinary least squares (OLS)
regression

A common regression model that estimates unknown parameters by minimizing the sum of squared error or
residuals.

Overdispersion When variance in the data (i.e., counts) is greater than the mean.

Poisson
distribution

A probability distribution describing nonnegative integers or counts, with each observation being
independent from one another. This is defined by a single parameter (λ) that represents both the mean and
variance of the distribution.

Predictor variables The independent variable(s) or x variable(s) that are hypothesized to lead to variation in the response or
dependent (y) variable.

Residuals Deviations from observed values and those predicted by a model. Two common forms are Pearson’s residuals
and deviance residuals.

Residual degrees of freedom The number of observations less the number of model parameters. Higher values indicate that the model is
less dependent on this exact dataset and has greater generalizability.

Response variable The dependent or y variable being approximated by the predictor or independent or x variables.

Saturated model A theoretical model with a parameter for each data point (i.e., perfect fit). Used to estimate the total deviance
in a set of observations.

Sum of squared residuals The sum of the squares of residuals. Also referred to as the error or residual sum of squares.

Variance inflation The degree to which model coefficients are higher than they should be due to correlation between multiple
predictor variables.

Zero inflation Occurs when the model systematically under- or overfits zeros relative to the observed number of zeros.
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STAGE 1. EXPLORATORY DATA
ANALYSIS
The research process should begin with asking a clear question,
identifying the response and predictor variables needed to
answer the question, and collecting or compiling data on those
variables (see, for example, Zuur and Leno 2016). Researchers
should have a clear rationale as to why they expect the response
to vary as a function of the predictor, and they should identify any
potentially confounding variables. This stage should also include
a consideration of the size of the sampling windows for each
count. If these vary, then data to represent that variation should
also be collected (e.g., length of time window, area of spatial unit,
size of population). Once the data are organized (e.g., in simple
form, a table with cases in rows and variables in columns, or a
more complex relational database), begin with some exploratory
data analysis (see Chambers et al. 1983; Drennan 2009; Tukey

1977; Zuur et al. 2010; Figure 3). Figure 3 provides an example
where we plot a simple histogram of the response variable to
visualize its distribution, and we plot the bivariate relationships
between the response and predictor. These exercises may reveal
valuable information, such as outliers that are worth checking for
data entry error or patterning that suggests nonlinear responses
(e.g., Shennan 1997:161). Once the investigator has a good sense
of what the data look like, move on to regression analysis.

STAGE 2. REGRESSION WITH COUNT
DATA
The most common form of regression with count data is through
GLMs (McCullagh and Nelder 1989). As noted above, these
extensions of linear regression estimate the unknown parameters
through maximum likelihood (see Table 1). GLMs are

FIGURE 2. Flowchart outlining recommended procedures for fitting and evaluating count regression models. At each box or
node, practitioners are directed to complete a specific step. Where a decision is needed based on the results of that step,
practitioners are directed to proceed whether the answer is a “yes” or “no” to the question in the box. If practitioners follow a
loop and return to that node, they may be presented with an “or” option for further model revision. This is not exhaustive, but it
provides guidance on model fitting and diagnostics that archaeologists are likely to encounter. An example flowchart for models
with multiple predictors is available in Supplemental Text 1.
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generalizations in that they allow the specification of an error
distribution that best fits the nature of the response variable,
whereas OLS requires the error to be normal. For count data, the
most commonly specified distribution is a Poisson or negative
binomial. GLMs also require specification of a link function, which
indicates the expected relationship between the response and
predictors. Count regression typically begins with a log link func-
tion to linearize the relationship between the counts and covari-
ates. Other types of distributions and link functions for other data
structures are described in standard introductory texts (e.g.,
Venables and Ripley 2002:184). Supplemental Text 1 provides
several examples in the R environment for statistical computing
(R Core Team 2024), which is a common platform for archaeo-
logical data analysis (e.g., Carlson 2017; Marwick 2018). Given their
wide use, these models should be available in all standard
statistical software packages. As a first example, we illustrate how
the number of houses (and by proxy, people) in Yurok villages
increases with total village area (Cook and Treganza 1950;
Figure 3; see Section 1 in Supplemental Text 1). For a published
example, Codding and colleagues’ (2024a) model site counts as a
function of effective precipitation to assess how foraging popula-
tions responded to drought in the Basin-Plateau region of North
America.

Modeling Count Data with Varying Sampling
Windows
As noted above, archaeological research often needs to account
for varying sampling windows. Counts may be summed by survey
blocks that vary in size or by stratigraphic units of varying volumes
that were deposited over varying periods of time. In order to
account for this, models can offset the count for each case based
on the size of the sampling window. Because the link function that
relates x to y is logged, the offset too must be logged.

It is also possible to normalize archaeological counts with offsets
that use the total counts of material in that class (i.e., all ceramic
sherds or all bones from animals in the same patch), which can
potentially account for variation in spatial and temporal sampling
windows simultaneously, assuming similar processes of deposition
and fragmentation. This is akin to modeling proportions of a
specific artifact over the total artifact class, but it focuses analysis
on the outcome variable of interest as opposed to a ratio that can

vary as a result of the numerator and denominator. An examin-
ation of how counts of aurochs and cattle (Bos spp.) bones vary
across late Mesolithic to early Bronze Age sites in Europe (data
from Manning et al. 2015) provides an example and can be found
in Supplemental Text 1 (Section 4). For a published example,
Vernon and colleagues (2024) examine counts of farming sites
across watersheds of varying sizes to evaluate the environmental
factors that limit maize agriculture across the greater US Southwest
(also see Codding et al. 2024b).

Models That Include More Than One Predictor
Oftentimes, an investigator may want to examine how counts vary
based on multiple predictor variables. Multiple regression
requires additional checks on data before model fitting (see page
45 in Supplemental Text 1), especially checking for multi-
collinearity or covariance between predictors that may bias model
results (see, for example, Dormann et al. 2013; Zuur et al. 2010).
Informally, multicollinearity can be thought of as trying to use the
same information to explain the outcome twice. Specifically,
multicollinearity can inflate the variance of model parameters
resulting in the misidentification of significant predictors
(Dormann et al. 2013). If multicollinearity is present, consider
dropping correlated variables in favor of the most explanatory
predictor (e.g., precipitation over elevation to predict settlement
decisions; Vernon et al. 2024) or conducting a dimensional
reduction technique (e.g., principal component analysis) to gen-
erate uncorrelated composite predictors (although this may
reduce interpretability because the predictors become abstrac-
tions of empirical values).

STAGE 3. MODEL DIAGNOSTICS
After fitting the model, there are several diagnostic checks that
should be performed prior to assessing model results. We discuss
three common diagnostics for all models, and one additional
diagnostic for models with multiple predictors.

Overdispersion
First, consider checking the model for overdispersion. One
assumption of Poisson regression is that the mean and variance of

FIGURE 3. Examples of exploratory graphical data analysis examining the number of houses in Yurok villages and how they vary
by village size (data from Cook and Treganza 1950; Waterman 1920).
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the counts are equal, or at least roughly of the same order of
magnitude. To check if the variance is greater than the mean,
divide the sum of squared residuals over the residual degrees of
freedom (see Table 1 and Section 3 in Supplemental Text 1). If this
dispersion parameter is greater than one, then the model may be
overdispersed. This can be formally tested using a χ2 test (see
Supplemental Text 1). If present, consider refitting the model with
a negative binomial distribution instead of a Poisson (or a Poisson
model with quasi-likelihood estimation), which adds a dispersion
parameter to account for overdispersion and removes potential
bias in the model results.

Zero Inflation
Second, consider checking if the model is over- or underfitting
zeros, referred to as “zero inflation.” This can result when there are
a large number of zeros relative to values above one (e.g., when
modeling the distribution of a very rare artifact or species that only
occurs at a few sites). If the ratio of observed and predicted zeros
is near one, then this should not be a problem for prediction. If the
value is much higher or lower than one, consider refitting the
model with a negative binomial distribution, which can better
handle zero inflation, or consider other zero-inflated models (e.g.,
hurdle models; Zuur et al. 2009).

Residual Patterning
Third, check if there is unexpected patterning in the model resi-
duals. Plotting the residuals by the fitted (predicted) values can
give a sense of this. The points will likely show some patterning
given the nature of count data (e.g., points in a diagonal line
across the bivariate space), but should overall be roughly centered
on zero (on the y-axis) across the full range of predicted values (the
x-axis). Figure 4a shows what “acceptable” patterning may look
like with Poisson regression on small sample sizes typical of
archaeological data. When there is clear patterning in the resi-
duals, it may indicate a misspecified link function or unaccounted
for relationships (e.g., interactions) between predictor variables.
This can be checked by specifying alternative links (i.e., identity
instead of log) or by adding interaction terms between predictors

(if there are multiple predictors). Patterning may also be driven by
underlying structure in the observations not accounted for in the
model, such as may occur with temporal or spatial autocorrelation
(i.e., when neighboring points in time or space are more like one
another than expected by chance). This may also result from
group-level patterning, as shown in Figure 4b; for example, when
modeling projectile point counts as a function of time across
hunting and residential sites, where the former always have higher
counts than the latter, regardless of time period. When present,
consider including a group identifier as a factor (categorical) inter-
action term, or turn to mixed effects models that can account for
underlying structure by treating groups as random effects (see
Bolker 2015:Box 13.1; for step-by-step procedures, see Bolker et al.
2009:Box 4). Additionally, patterning in residuals may indicate that
the underlying trend is nonlinear (Figure 4c). This could occur, for
example, when modeling site counts as a function of precipitation in
a region where farming was most productive at some intermediate
level of rainfall. If this is the case, consider nonlinear extensions of
GLMs, such as generalized additive models (Wood 2017). Mixed
effects and nonlinear models can also account for temporal and
spatial structure in the data (Simpson 2018; Wood 2017).

Variance Inflation
Finally, models with multiple predictors require additional diag-
nostics to assess variance inflation, or the degree to which model
coefficients are higher than they should be due to correlated
predictor variables (see Section 5 in Supplemental Text 1). This
can be accomplished by calculating a variance inflation factor
(VIF), which estimates how well each independent term can be
predicted from the remaining set of independent variables. High
VIF values indicate multicollinearity, often the result of having
several variables that relate to the same underlying driver (e.g.,
precipitation and soil moisture).

STAGE 4. MODEL RESULTS
After running diagnostics, consider evaluating how well the model
performs by comparing it to a null model, by assessing the goodness

FIGURE 4. Examples of residual by fitted plots to examine (a) acceptable pattering in Poisson residuals, (b) patterning structured
by between-group variation (dashed lines show group-level mean residuals), and (c) patterning structured by a nonlinear rela-
tionship between y and x not accounted for in the model.
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of fit, and by evaluating the model coefficients. We also discuss how
to examine variable importance with multiple regression.

Null Model Comparison
A first step is to compare the fitted model to a null model that
includes only a parameter representing the y-intercept (compare
Figure 5a and Figure 5b). This can be done by fitting a null model
without any predictors and comparing it to the proposed model
using a likelihood ratio test, which determines whether the pro-
posed model is a significant improvement on the null. If not, then
there is limited information gained about y from x in the proposed
model; or the inclusion of the covariates does not improve our
understanding of variation in the outcome.

Goodness of Fit
A second way to evaluate the model is to assess goodness of fit by
estimating the proportion of variation in y that is accounted for in
the model. In OLS, this is calculated as an r-squared (r2) value.
With generalized linear models this, is estimated as a likelihood r2

or r2l (see Faraway 2016). This is done by calculating the proportion
of deviance accounted for in the proposed model over the devi-
ance of the null model. This is equivalent to one minus the devi-
ance of a saturated model that “perfectly” fits the data by
theoretically including a term for each data point (Figure 5c) over
the null deviance (Figure 5a). Michael Shott’s (2018, 2022) ethno-
archaeological work provides an excellent case study to illustrate
the difference between a null model (Figure 5a), a proposed or
fitted model (Figure 5b), and a saturated model (Figure 5c). See
Section 3 in Supplemental Text 1.

Model Coefficients
Next, evaluate the model coefficients. These include the esti-
mated y-intercept—or the log value of y when x is zero—and how
the response is predicted to change with each unit change in the
corresponding predictor variable (e.g., the fitted line and where it

crosses the y-intercept in Figure 5b). With default Poisson and
negative binomial regression that use a log link, the coefficients
are logged values. Taking the exponent of the coefficient returns
it to the units of the response variable (i.e., a count). The inter-
pretation of count regression coefficients differs from standard
OLS regression, where a coefficient indicates a constant change in
the response variable for a one unit increase in the independent
variable. Here, the exponentiated coefficient is a multiplier, and it
indicates the rate of change in the response with each unit increase
in the predictor. A value of one indicates no change in the response;
values above or below one indicate positive or negative relation-
ships, respectively. To aid in interpretation, the exponentiated
coefficient can be interpreted as a percentage change. For
example, a value of 1.10 represents a 10% increase in the response
variable for a one-unit increase in the independent variable.
Returning to Shott’s (2022) data, the fitted model response shown in
Figure 5b illustrates the coefficient with predicted fit, which we will
return to below (Section 3 in Supplemental Text 1).

Variable Importance
For models with multiple predictors, the relative importance of
each variable can be assessed by examining standardized model
coefficients. Because predictor variables may be on very different
scales, it is often best to refit the model with scaled and centered
predictor variables so that they vary on the same order of mag-
nitude. Then, the investigator can compare the absolute values of
scaled coefficients and their standard errors to assess which vari-
ables have the greatest influence on the response (see Section 5 in
Supplemental Text 1). This can also aid in interpretation of the
intercept parameter: with mean-centered covariates, the intercept
represents the expected count under average conditions.

STAGE 5. MAKING PREDICTIONS
One of the main benefits of modeling data with regression is the
ability to make informed predictions. This can be done by

FIGURE 5. Data from Shott (2022) showing the relationship between pottery inventory size and the number of household adults in
Michoacán overlaid with graphical representations of (a) null model, where only the mean of y is known; (b) the proposed fitted
model; and (c) a saturated model with a parameter for every data point (i.e., a perfect fit). Generalized linear models compare how
well the proposed model accounts for variation in y compared to the null (i.e., the log-likelihood of each value of y given x and the
unknown parameters compared to the log-likelihood of each y value given only the y-intercept).
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leveraging the model fit to estimate response variables across
any of the predictor variables (e.g., Figure 5b). The investigator
can also use the standard error of the prediction to provide
confidence intervals around the model fit (see Figure 6 and
Supplemental Text 1). However, when making predictions, it is
important to recognize the limitations of the model, especially if
considering making predictions outside the range of predictor
variables included in the model fit.

With models that have multiple predictors, the investigator can
estimate the partial response of the outcome variable to one of
the predictors while holding the other predictor(s) constant. Such
partial plots can also be used to evaluate different scenarios (e.g.,
how a response varies to population change under a constant
environment, or vice versa). For example, Figure 6 shows how the
number of projectile point types per time period in Texas
(see Buchannan et al. 2016) varies across the range of regional
precipitation during cold conditions, and across the range of
global temperatures during wet conditions (Section 5 in
Supplemental Text 1).

Other advanced methods that build on the basic principles dis-
cussed in this article use prediction for more complex problems.
These include missing data imputation (Dakki et al. 2021) and
generating probabilities of site occurrence across space or time in
predictive models (see Bevan and Conolly 2009; Davis et al. 2020;
Vernon et al. 2022; Yaworksy et al. 2020).

CAVEATS
The scenarios we discuss above are not exhaustive. Other issues
may arise in the analysis of archaeological counts, such as differ-
ential breakage patterns. Additionally, there may be a priori reasons
to decide to model ratios instead of counts, such as if evaluating
theoretical predictions about resource trade-offs (e.g., Bayham 1979).
Moreover, our message is not that OLS should never be used, but
that it is more problematic than using models designed for count

data (Warton et al. 2016). We encourage researchers to make
informed decisions about which modeling approach is best,
depending on their question and the nature of their data.

CONCLUSION
Archaeological data often occur as counts. Modeling these counts
is therefore central to archaeological inference. Here, we draw on
advances in ecology to make recommendations about potential
best practices for analytical investigations. Our underlying mes-
sage is that instead of contorting counts to meet model require-
ments, count data can be modeled using count regression, which
is designed to handle such data and to deal with other issues that
arise with using counts, such as varying sampling windows. We
hope this tutorial provides a useful framework for advancing
regression analysis of archaeological count data.
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FIGURE 6. Partial response plots showing the predicted number of projectile point types per time period in Texas as a function of
(a) regional precipitation inferred from sedimentary stable carbon isotope ratios and (b) global temperature inferred from
atmospheric stable oxygen isotope ratios (data from Buchannan et al. 2016). Each panel shows the predicted response of pro-
jectile point type counts to the focal climate variable while holding the other climate variable constant at the minimum observed
value. This is done to illustrate how regional precipitation (a) does not influence technological investment even under the coolest
conditions, whereas (b) global temperatures promote increasing technological investment even under wetter conditions.
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