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Abstract

Shifts are a well-known feature of the literature on spacetime symmetries. Recently,
discussions have focused on so-called dynamic shifts, which by analogy with static and
kinematic shifts enact arbitrary linear accelerations of all matter (as well as a change in the
gravitational potential). But in mathematical formulations of these shifts, the analogy breaks
down: while static and kinematic shift act on the matter field, the dynamic shift acts on
spacetime structure instead. I formulate a different, “active,” version of the dynamic shift
which does act on matter, and analyse the consequences of this reformulation for Newton–
Cartan theory and Maxwell gravitation.

1. Introduction
The literature on spacetime symmetries is replete with so-called “shifts”:1

Static shift: A uniform translation of all material content of the universe.

Kinematic shift: A uniform boost of all material content of the universe.

Dynamic shift: An arbitrary linear time-dependent acceleration of all material
content of the universe, jointly with an appropriate transformation of the
gravitational potential.

All three shifts are symmetries of Newtonian gravitation (NG): transformations
that preserve the theory’s dynamics. Moreover, since these transformations leave the
theory’s observable quantities—distances, relative velocities, and relative acceler-
ations—the same, the possibilities they relate are empirically equivalent.

As I have phrased them, all shifts involve a transformation of the universe’s matter
content, leaving the spacetime within which that matter is located the same. In this,
the dynamic shift is analogous to the static and kinematic shifts. This correspondence
is emphasized in Saunders’ (2013, 37) paraphrase of Newton’s Corollary VI:

© The Author(s), 2023. Published by Cambridge University Press on behalf of the Philosophy of Science Association.

1 The static and kinematic shift were discussed by Leibniz and Clarke in their correspondence
(Alexander 1977). The terms “static shift” and “kinematic shift” were coined by Maudlin (1993), while
Huggett (1999) was the first to use “dynamic shift.”
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If bodies moved in any manner among themselves, are urged in the direction of
parallel lines by equal gravitational forces due to outside bodies, they will all
continue to move among themselves, after the same manner as if they had not
all been urged by that force.

However, in contemporary mathematical treatments a discontinuity appears. In
mathematical physics, shifts are expressed as transformations that act on certain
geometric objects defined over a manifold M. For the first two shifts, these are
pushforward maps of diffeomorphisms acting on objects that represent the universe’s
matter content: the matter field ρ, its associated gravitational potential ϕ, and the
trajectories ξa of test particles. But the dynamic shift breaks with this trend.
In standard expositions, dynamic shifts act not on the matter field ρ but on
spacetime’s standard of inertial motion: the covariant derivative operator r.2
The effect of such a transformation, literally understood, is not to accelerate the
trajectories of all material bodies. Rather, it is to leave those trajectories the same
while adopting a different convention for which trajectories to call “accelerating.”
In this sense, the contemporary version of the dynamic shift is a passive
transformation: it only changes how we describe the motion of matter, which is
itself left the same. (Of course, such transformations are not passive in the sense that
they merely affect a change in coordinates: a substantivalist will understand a
dynamic shift as changing the real structure of spacetime itself).

The lesson drawn from passive dynamic shifts is slightly different than that usually
drawn from the static and kinematic shifts, too. The standard response to the static
and kinematic shifts is that quantities that vary under them, namely absolute position
and absolute velocity, are not real. But the lesson drawn from the dynamic shift is not
that absolute acceleration is not real (indeed, the preferred “successor theory,”
Newton–Cartan theory, has its own absolute standard of acceleration).3 Rather, it is
that “the gravity/inertia split does not reflect physical structure,” but is “a mere
artefact of our representation” (Knox 2014, 871).

The aim of this paper is to formulate an “active” version of the dynamic shift: one
that acts on matter rather than spacetime. The rationale for this project is to
strengthen the parallels between successive shifts and to arrive at a formulation that
is more faithful to non-mathematical characterizations of the dynamic shift.
In addition, the possibility of passive dynamic shifts has led to several reformulations
of NG: on the one hand, Newton–Cartan theory, and Maxwell gravitation on the other.
I will consider whether these theories fare well with respect to an active version of
the dynamic shift. The answer is “Yes,” but in different ways: for the former, active
dynamic shifts are neither dynamical nor spacetime symmetries, while for the latter
they are both. I will use this difference to put pressure on recent claims that Newton–
Cartan theory and Maxwell gravitation are in some sense equivalent. For instance,
Weatherall (2016, 89) contends that “[i]n a sense, [Maxwell gravitation] simply is
Newton–Cartan theory,” while Dewar (2018, 261) claims that “the two theories might

2 See Friedman (1983) or Malament (2012). This is mainly a feature of coordinate-free treatments of
NG; coordinate-based accounts (Saunders 2013; Wallace 2020) usually treat all three shifts uniformly.

3 Saunders (2013) is an exception here; see also section 6 below.
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be regarded as equivalent over the nonvanishing-mass sector.”4 In a similar vein,
Wallace (2020) concludes that “there is essentially no difference between Newton–
Cartan theory [ : : : ] and Saunders’s [Maxwell gravitation].”

2. Gravitation, shifts, and symmetries
I will assume the semantic view of theories, on which a theory is presented through a
class of models. The kinematically possible models (KPMs) of Newtonian gravitation
set on Galilean spacetime are tuples of the form hM; tab; hab;r; ϕ; ρ; ξaf gi, where M is a
four-dimensional smooth manifold diffeomorphic to R4; tab and hab are compatible
temporal and spatial metrics (tanhnb � 0); r is a derivative operator encoding a
standard of uniform motion compatible with both metrics (ratbc � rahbc � 0); ϕ and
ρ are scalar fields that represent the gravitational field and the matter distribution
respectively; and ξaf g is a set of timelike vector fields that represent the four-
velocities of test particles.5 The dynamically possible models (DPMs) or “solutions” of
NG in addition satisfy the following equations:

Rabcd � 0; (1)

habrarbϕ � 4πρ; (2)

� raϕ � ξbrbξ
a; (3)

where Rabcnξ
n � r�brc�ξa.

Following Earman (1989), we can distinguish between a theory’s spacetime
symmetries and dynamical symmetries. Suppose that we can partition the theory’s
geometric objects into absolute objects A and dynamical objects P. The former represent
“fixed spacetime structure,” while the latter represent “the physical contents of
spacetime” (Earman 1989, 45). Let � denote the map such that, for any
diffeomorphism d and any geometric object O, d�O d p

� �� �
has the “same” value as

O p
� �

. For scalar fields, this means that d�O d p
� �� � � O p

� �
; for tensor fields, � is the

pushforward map. Then a spacetime symmetry is a diffeomorphism d such that d�A � A
for all absolute objects, while a dynamical symmetry is a diffeomorphism d such that
hM; A1; . . . ; An; P1; . . . ; Pni is a solution if and only if hM; A1; . . . ; An; d�P1; . . . ; d�Pni is.

Earman also lays down a famous set of symmetry principles—SP1 and SP2—to the
effect that every spacetime symmetry is a dynamical symmetry and vice versa. In
particular, these principles entail that if a theory’s dynamical symmetries outstrip its
spacetime symmetries then that theory has “too much” spacetime structure. In this
way, one can use symmetries as a guide towards superfluous spacetime structure.

We can now define static and kinematic shifts as follows. The relevant
diffeomorphisms are defined indirectly in terms of a coordinate representation
(cf. Earman (1989, ch. 2)). Let ψ be an inertial coordinate system for M,6 and let
ψ p
� � � t;~x� � for some arbitrary point p. Then the action of a translation-

diffeomorphism is such that ~x !~x	~c for some constant vector ~c. Likewise, the

4 In this paper I only consider non-vanishing ρ.
5 I use lower-case a; b; c; . . . as “abstract” indices, lower-case µ; ν; σ; . . . as component indices ranging

over both time and space, and lower-case i; j; k; . . . as component indices ranging over space only.
6 An inertial coordinate system is one in which the connection Γa

bc � 0, tab � 1; 0; 0; 0� �, and
hab � 0; 1; 1; 1� �. Friedman (1983, ch. 2) shows that inertial coordinates always exist for flat spacetimes.
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action of a boost-diffeomorphism is such that~x !~x	~vt for some constant vector~v.
(Of course, one can also combine boosts and translations. If one incorporates rotations
and time-translations as well, the result is the Galilei group of transformations.)

We can use these diffeomorphisms to mathematically formulate the shifts:

Static shift: Where α is a diffeomorphism that enacts a uniform translation,
a static shift is a transformation

hM; A1; . . . ; An; P1; . . . ; Pni ! hM; A1; . . . ; An;α�P1; . . . ;α�Pni:
Kinematic shift: Where β is a diffeomorphism that enacts a uniform velocity boost, a
kinematic shift is a transformation

hM; A1; . . . ; An; P1; . . . ; Pni ! hM; A1; . . . ; An;β�P1; . . . ;β�Pni:
In our formulation of NG, the absolute objects are tab, hab, and r, while the dynamical
objects are ϕ, ρ, and ξaf g. The claim that static and kinematic shifts are dynamical
symmetries of NG then means that, for these diffeomorphisms, hM; tab; hab;r; ϕ; ρ; ξaf gi
is a solution of the theory if and only if hM; tab; hab;r;α�ϕ;α�ρ; α�ξaf gi and
hM; tab; hab;r;β�ϕ;β�ρ; β�ξaf gi are solutions too. The static and kinematic shifts are
also spacetime symmetries, since α�tab � β�tab � tab and the same for hab and r. So,
Galilean spacetime has the right amount of structure with respect to these symmetries.

Meanwhile, passive dynamic shifts are defined as follows (cf. Malament (2012,
Proposition 4.2.5):7

Passive dynamic shift: For r0 � r; tbtcra ϕ0 � ϕ� �� � and ϕ0 such that rarb

ϕ0 � ϕ� � � 0, a dynamic shift is a transformation

hM; tab; hab;r; ϕ; ρ; ξaf gi ! hM; tab; hab;r0; ϕ0; ρ; ξaf gi:
The contrast with static and kinematic shifts is stark: a passive dynamic shift leaves
ρ and ξaf g alone, and instead acts on the covariant derivative r in addition to ϕ. This
disanalogy motivates the search for an alternative formulation of the dynamic shift.

In particular, it is unclear where passive dynamic shifts fall with respect to
Earman’s symmetry principles. Firstly, such shifts are not generated by diffeo-
morphisms, and secondly, they act neither solely on absolute nor solely on dynamical
objects. The latter point in particular means that it is difficult to apply Earman’s
principles. Does the fact that passive dynamic shifts are symmetries of NG entail that
the theory has surplus spacetime structure? The answer is “not necessarily,” since
such transformations also affect spacetime structure itself. We cannot easily separate
out the effect on spacetime from the effect on matter. Of course, the possibility of
dynamic shifts has still led philosophers to conclude that Galilean spacetime has too
much structure with respect to the dynamics of NG all the same—and rightly so! But I
contend that an active version of the dynamic shift, which acts solely on the
universe’s matter content, will prove the same point more explicitly.

7 The notation here derives fromMalament (2012, Proposition 1.7.3): r̃ � r; Cabc
� �

if and only if, for all
smooth tensor fields αa1...ar

b1...bs
,

r̃m � rm

� �
α
a1 ...ar
b1 ...bs

� α
a1 ...ar
nb2 ...bs

Cnmb1 	 
 
 
 	 α
a1 ...ar
b1 ...bs�1n

Cnmb1 � α
na2...ar
b1 ...bs

Ca1mn � 
 
 
 � α
a1...ar�1n
b1...bs

Ca
r
mn :

Philosophy of Science 1355

https://doi.org/10.1017/psa.2023.13 Published online by Cambridge University Press

https://doi.org/10.1017/psa.2023.13


3. Active dynamical shifts
In this section I define active dynamic shifts and show that they, too, are symmetries
of NG. First, we define an acceleration-diffeomorphism: In an inertial coordinate system
ψ, such a diffeomorphism enacts the map ~x !~x	~a t� �, where ~a t� � is an arbitrary
twice-differentiable vector-valued function of t. (We can again expand the class of
transformations to include rotations and time-translations; the result is what Earman
(1989, §2.3) calls the Maxwell group.)

We can then formulate an active dynamic shift as follows:

Active dynamic shift: Let δ be a diffeomorphism that enacts an arbitrary linear
acceleration. If Pi � ϕ for some i, a dynamic shift is a transformation

hM; A1; . . . ; An; P1; . . . ; ϕ; . . . ; Pni ! hM; A1; . . . ; An; δ�P1; . . . ; δ�ϕ0; . . . ; δ�Pni;
where ϕ0 is such that rarb ϕ0 � ϕ� � � 0. Otherwise, a dynamic shift is a
transformation

hM; A1; . . . ; An; P1; . . . ; Pni ! hM; A1; . . . ; An; δ�P1; . . . ; δ�Pni:

This definition is perhaps a little clumsy, but the benefit is that it applies to theories
which posit a gravitational potential, such as NG, as well as to theories from which ϕ

has disappeared, such as Newton–Cartan theory and Maxwell gravitation.
The static, kinematic, and passive dynamic shifts are symmetries of NG. So is the

active dynamic shift:8

Proposition 1. If δ is a diffeomorphism that enacts an arbitrary linear acceleration
~x !~x	~a, then hM; tab; hab;r; ϕ; ρ; ξaf gi is a solution of NG if and only if
hM; tab; hab;r; δ�ϕ0; δ�ρ; δ�ξaf gi is a solution for some ϕ0.

Proof. We use two facts. Firstly, from the possibility of passive dynamics shifts it
follows that (Malament 2012, Proposition 4.2.5)

hM; tab; hab;r; ϕ; ρ; ξaf gi is a solution
m

hM; tab; hab;r0; ϕ0; ρ; ξaf gi is a solution
(4)

whenever (i) rarb ϕ0 � ϕ� � � 0 and (ii) r0 � r; tbchanrn ϕ0 � ϕ� �� �.
Secondly, from the diffeomorphism invariance of the above formulation of NG it

follows that

hM; tab; hab;r0; ϕ0; ρ; ξaf gi is a solution
m

hM; tab; hab; δ�r0; δ�ϕ0; δ�ρ; δ�ξaf gi is a solution;
(5)

where we have used the fact that δ�tab � tab and δ�hab � hab.

8 Both Pooley (2013, 551) and Read and Moller-Nielsen (2018, 271) assert versions of this proposition,
but without proof.
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From (4) and (5), it then follows that, whenever (i) and (ii) are satisfied,

hM; tab; hab;r; ϕ; ρ; ξaf gi is a solution
m

hM; tab; hab; δ�r0; δ�ϕ0; δ�ρ; δ�ξaf gi is a solution:
(6)

This is almost identical to the proposition, except that the bottom model
in (6) contains δ�r0 instead of r.

But note that r0 is the pushforward d0�r of r for some acceleration-
diffeomorphism δ0, since, from (ii), r0

bξ
a � rbξ

a 	 tbchanrn ϕ0 � ϕ� �ξc .9 When we let
r0
bξ

a � 0, this is just the geodesic equation for r0. In a coordinate representation the
connection is Γi

00 � @i ϕ
0 � ϕ� � and zero otherwise, so

d2xi

dt2
	 @i ϕ

0 � ϕ� � � 0: (7)

It is easy to see that when we set ϕ0 � ϕ � b̈ixi, the diffeomorphism δ0 enacts
the coordinate transformation ~x !~x	~b. If we let ~b � �~a, then δ0 � δ�1 and
hence δ�r0 � δ�δ�1� r � r.

We then finish the proof of the proposition by substituting r for δ�r0 in (6). QED
Unlike the passive dynamic shift, but like the static and kinematic shifts, an active

dynamic shift acts solely on the matter content of the universe. I claim that this is an
improvement. Firstly, the active definition is more faithful to intuitive character-
izations of the dynamic shift (cf. Saunders’ paraphrase of Corollary VI). Secondly, it is
now straightforward to apply Earman’s symmetry principles: since δ is a dynamical
symmetry but not a spacetime symmetry, Galilean spacetime has too much structure
with respect to the dynamics of NG. (The fit is not quite perfect, since ϕ is transformed
to ϕ0 in addition to being accelerated; Wallace (2020) shows that ϕ should transform in
this way because it is the potential for an irrotational Maxwell connection.) In
particular, r provides a standard of absolute acceleration, even though the dynamics
are invariant under arbitrary linear accelerations.

The response to similar arguments in the case of kinematic shifts has led to the
move from Newtonian to Galilean spacetime. And the possibility of passive dynamic
shifts has likewise led to novel spacetimes with less structure: Newton–Cartan
spacetime and Maxwell spacetime. In the following sections I will consider how these
reformulations of NG fare with respect to the active dynamic shift. Both Newton–
Cartan theory and Maxwell gravitation provide a satisfactory home for the dynamics
of NG, but the approaches differ over their treatment of Earman’s symmetry
principles.

4. Newton–Cartan theory
In response to the gauge freedom of NG, one common move is to “geometrize” the
gravitational interaction. This leads to Newton–Cartan theory (NCT). Define a new,
invariant quantity, r̃ � r; tbcraϕ� �. The KPMs of NCT are then of the form
hM; tab; hab; r̃; ρ; ξaf gi. The DPMs in addition satisfy the following set of equations:

Rabcd � 0; (8)

9 Cf. Malament (2012, Problem 1.7.3).
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Rab � 4πρtab; (9)

ξbr̃bξ
a � 0; (10)

Ra c
b d � Rc a

d b: (11)

The main motivation behind NCT is that it removes the redundancy exemplified in
passive dynamic shifts. In particular, one can prove that, for any pair of models
of NG related by a dynamic shift, there exists a unique “geometrization” in NCT
(Malament 2012, Proposition 4.2.1). Vice versa, one can prove that, for every
model of NCT, there exists an equivalence class of “recovered” models in NG
closed under passive dynamic shifts (Malament 2012, Proposition 4.2.5). In more
detail, if hM; tab; hab;r; ϕ; ρ; ξaf gi is a model of NG, then its geometrization
hM; tab; hab; r̃; ρ; ξaf gi is a model of NCT, where r̃ � r;�tbcraϕ� �. Conversely,
if hM; tab; hab; r̃; ρ; ξaf gi is a model of NCT, then hM; tab; hab;r; ϕ; ρ; ξaf gi is a model of
NG. Finally, any other model hM; tab; hab;r0; ϕ0; ρ; ξaf gi of NG for which (i) and (ii) are
satisfied has the same geometrization as hM; tab; hab;r; ϕ; ρ; ξaf gi.

The aim of this section is to show that these results do not hold in quite the same
form for dynamic shifts conceived of actively. It is not the case that there exists a
unique geometrization for a pair of active dynamic shift-related models of NG.
Nevertheless, this does not stymie NCT’s capacity to satisfy Earman’s principles.
Indeed, active dynamic shifts clarify in what way NCT achieves this.

First, we prove a pair of theorems.

Proposition 2. WhereM andMdyn are pairs of models related by an active dynamic shift,
their geometrizations M̃ and M̃dyn are distinct yet isomorphic.

Proof. We have M̃ � hM; tab; hab; r̃; ρ; ξaf gi and M̃dyn � hM; tab; hab; r̃0; δ� ρ; δ�ξaf gi.
Distinctness follows from the fact that generally δ�ρ≠ ρ. But more importantly, the
Newton–Cartan spacetimes underlying these models are also distinct: r̃0 ≠ r̃,
because r̃0 � r; tbcra δ�ϕ0� �� �≠ r; tbcraϕ� �.

For isomorphism, note that r̃ � r;�tbcraϕ� � � r0;�tbcr0aϕ0� �, so

δ�r̃ � δ�r0;�tbcδ� r0aϕ0� �� � � r;�tbcra δ�ϕ0� �� � � r̃0: (12)

We also know that δ�tab � tab and δ�hab � hab. Therefore, δ� M̃ �M̃dyn and so these
models are isomorphic. QED

Proposition 3. Active dynamic shifts are neither dynamical symmetries nor spacetime
symmetries of NCT.

Proof. To show that δ is not a dynamical symmetry, note that (9) is not invariant under
active dynamic shifts since generally δ�ρ≠ ρ. Therefore, δ does not map solutions to
solutions, so it is not a dynamical symmetry.
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To show that d is not a spacetime symmetry, recall from Proposition 2 that
δ�r̃ � r̃0 ≠ r̃. Therefore, δ does not preserve the theory’s spacetime structure, so it is
not a spacetime symmetry. QED

Proposition 2 shows that NCT eliminates the surplus structure of NG. While
dynamic shift-related models of the latter theory are not isomorphic, their
geometrizations are. Although isomorphic models prima facie seem to represent
distinct yet observably equivalent states of affairs, it is widely agreed that one can
interpret isomorphic models as physically equivalent. NCT therefore offers a
satisfactory response to active dynamic shifts.

Proposition 3 confirms this: it shows that NCT satisfies Earman’s principles, and
hence has neither too much nor too little spacetime structure. But the way in which
NCT achieves this is unusual. Since dynamic shifts are symmetries of NG but not of
NCT, the latter has in effect “removed” these symmetries from the theory. This stands
in contrast to the move from Newtonian to Galilean spacetime in response to the
kinematic shift. In Galilean spacetime, kinematic shifts remain symmetries of
the theory; the difference is that they are now also spacetime symmetries. As we will
see below, the move to Galilean spacetime is more similar to the move to Maxwell
spacetime in this respect.

5. Maxwell gravitation
Recently, Maxwell gravitation (MG) has been put forward as an alternative to NCT.10

Unlike NCT, MG does not geometrize spacetime. Instead, MG weakens the structure of
spacetime to contain a standard of rotation without a standard of linear acceleration.
Instead of a covariant derivative r, Maxwell spacetime has an equivalence class of
“rotationally equivalent” derivative operators r� �: For any r;r0 2 r� � and any unit
timelike field θa, r�aθb� � 0 if and only if r0�aθb� � 0.11 Following Weatherall (2016),
I will assume that the KPMs of MG are of the form hM; tab; hab; r� �; ρ; ξaf gi, and that the
dynamics are as follows: hM; tab; hab; r� �; ρ; ξaf gi is a DPM of MG if and ony if, for all
r 2 r� �, there exist some ϕr such that (1)–(3) are satisfied for ρ, ξ, r, and ϕr.12 In
particular, note that ϕ is not itself included in the theory’s models. This is possible
because one can show that, for any r 2 r� �, an appropriate ϕr always exists
(Weatherall 2016, 88). In this sense, the traditional lesson of (passive) dynamic
shifts—that the gravity/inertia split is arbitrary—is carried over to MG.

Just as models of NG have a geometrization, so they have a “de-acceleration.”
If hM; tab; hab;r; ϕ; ρ; ξaf gi is a model of NG, then its de-acceleration is hM; tab; hab;
r� �; ρ; ξaf gi, where r� � is the closure of r under rotational equivalence. On the one
hand, it is obvious from the dynamics specified above that the de-acceleration of a
solution of NG is a solution of MG. Conversely, one can recover models of NG from
models of MG: If hM; tab; hab; r� �; ρ; ξaf gi is a solution of MG, then its recoveries form
an equivalence class of models hM; tab; hab;r; ϕr; ρ; ξaf gi such that (1)–(3) are
satisfied. In particular, just as in NCT, any pair of models hM; tab; hab;r; ϕ; ρ; ξaf gi and

10 For discussion, see Saunders (2013), Knox (2014), Weatherall (2016), Dewar (2018), and Wallace (2020).
11 Weatherall (2018) offers a more “intrinsic” definition of such a standard of rotation.
12 Dewar (2018) offers another account of MG. For ease of comparison I will not consider Dewar’s

account here, but I suspect that analogues of Propositions 4 and 5 will hold for it.
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hM; tab; hab;r0; ϕ0; ρ; ξaf gi for which (i) and (ii) are satisfied have the same de-
acceleration.

We can now prove propositions analogous to Propositions 2 and 3.

Proposition 4. Where M and Mdyn are related by an active dynamic shift, their de-
accelerations M and Mdyn are distinct but isomorphic.

Proof. We have M � hM; tab; hab; r� �; ρ; ξaf gi and Mdyn � hM; tab; hab; r� �; δ�ρ; δ�ξaf gi.
For distinctness, it once again suffices to note that generally δ�ρ≠ ρ. But unlike in
Proposition 2, the underlying Maxwell spacetimes of M and Mdyn are clearly
identical.

For isomorphism, we only need to show that δ�r �� �r� �. This follows directly from
the claim that d is a spacetime symmetry, which is proven in Proposition 5. QED

Proposition 5. Active dynamic shifts are both dynamical symmetries and spacetime
symmetries of MG.

Proof. To show that δ is a dynamical symmetry, we need to show that
hM; tab; hab; r� �; ρ; ξaf gi is a solution if and only if hM; tab; hab; r� �; δ�ρ; δ�ξaf gi is.
hM; tab; hab; r� �; ρ; ξaf gi is a solution if and only if, for all r 2 r� �, there exists a ϕ such
that hM; tab; hab;r; ϕr; ρ; ξaf gi satisfies (1)–(3). From Proposition 1, the latter is the
case if and only if hM; tab; hab;r; δ�ϕ0r; δ�ρ; δ�ξaf gi satisfies (1)–(3). But since this
holds for all r, it is true if and only if hM; tab; hab; r� �; δ�ρ; δ�ξaf gi is a solution.
Therefore, δ is a dynamical symmetry.

To show that δ is a spacetime symmetry, we need to show that δ�r �� �r� �.
We will use the fact that r;r0 2 r� � if and only if r0 � r; tbcraϕ� � for some ϕ such
that rarbϕ � 0 [Dewar(2018), Proposition 1]. Recall that r0 � r; tbcraϕ� � if and only
if r0 � δ�r for some δ; it follows that δ�r �� �r� �. Therefore, δ is a spacetime
symmetry. QED

Like Proposition 2 showed for NCT, Proposition 4 shows that MG effectively
removes the surplus spacetime structure of NG. Like Proposition 3, Proposition 5
confirms that the theory satisfies Earman’s symmetry principles. But whereas
passive dynamic shifts are neither spacetime nor dynamical symmetries of NCT,
they are both for MG. In this sense, the move from Galilean to Maxwellian spacetime
is akin to the move from Newtonian to Galilean spacetime. In both cases,
spacetime structure is weakened, and as a result the class of spacetime symmetries
broadened.

6. Close
The propositions concerning active dynamic shifts reveal some interesting
similarities and dissimilarities between NCT and MG.

Consider the similarities first. For both theories, there is a one-to-one
correspondence between models of NG related by an active dynamic shift on the
one hand, and geometrized or de-accelerated models of NCT and MG on the other.
Moreover, while such models are not isomorphic in NG, they are in both NCT and MG.
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It is widely agreed that one can—or even ought to—interpret isomorphic models as
representing the same state of affairs. If we follow this route, both NCT and MG
successfully avoid the underdetermination of NG revealed by such shifts.

However, the way they do so is different. In MG, we have removed spacetime
structure by replacing r with r� �. As a result, Maxwell spacetime has more symmetries
than Galilean spacetime. This broader class of spacetime symmetries now matches the
theory’s dynamical symmetries. Compare this with the move from Newtonian to
Galilean spacetime: By removing the standard of rest one removes spacetime structure
in order to match the theory’s dynamical structure. NCT, on the other hand, has
removed the dynamical symmetries themselves from the theory. In NCT, active
dynamic shifts are neither dynamical nor spacetime symmetries. In particular, this
means that the latter theory has a different class of spacetime symmetries.

This puts some pressure on recent claims that NCT and MG are theoretically
equivalent (Weatherall 2016; Dewar 2018; Wallace 2020). The considerations above
suggest that these theories differ in both their dynamical and their spacetime
structure. On the dynamical side, consider what happens when we apply an active
dynamic shift to models of MG and NCT respectively. In the former case, we obtain
another dynamically possible model: one that differently describes the very same
state of affairs. But in the latter case, we obtain a model that is not a solution. This
means that MG and NCT differ over their modal profiles. For the former theory, it is
true that if we were to accelerate all matter, the laws of nature would remain
satisfied; for the latter theory, this is false. Arguably, this is a real physical difference
between these theories.

With respect to spacetime symmetries, the fact is that Newton–Cartan spacetime
and Maxwellian spacetime have different symmetries, and hence different
structures.13 In particular, Newton–Cartan spacetime comes attached with an
absolute standard of acceleration in the form of r̃, while Maxwellian spacetime only
has an equivalence class r� � that determines a unique standard of rotation. However,
there is a sense in which MG also has an absolute standard of acceleration: From any
solution of MG in which ρ does not vanish, one can uniquely define a covariant
derivative r̃ such that all particle trajectories ξa are geodesics of r̃ (Weatherall 2016,
Proposition 4; Dewar 2018, Proposition 6). This claim seems to stand in tension with
the fact that active dynamic shifts are symmetries of Maxwell spacetime. But note
(as Dewar also points out) that one can only recover r̃ from a model of MG when that
model satisfies the equations of motion. In other words, one cannot recover r̃ from the
structure of Maxwell spacetime alone, but one also requires dynamical structure in
the form of the set of dynamically allowed particle trajectories. In that sense, Maxwell
spacetime by itself has no standard of acceleration. Again, this seems a real physical
difference between NCT and MG.

What, then, has led some to suggest that these are equivalent theories after all?
This claim is motivated by the fact that there exists a one-to-one correspondence
between solutions of Newton–Cartan theory and Maxwell gravitation. But a theory is
more than its solutions, or DPMs: one also has the kinematically possible models to
reckon with.14 The latter reveal the difference between Newton–Cartan theory and

13 For the connection between symmetries and (amount of) structure, see Barrett (2015).
14 For a convincing case for the importance of kinematical structure, see Curiel (2016).
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Maxwell gravitation. In the case of dynamical symmetries, Newton–Cartan theory
distinguishes itself from Maxwell gravitation in that active dynamic shifts can move
us outside the space of DPMs in the former but not in the latter theory. In the case of
spacetime symmetries, the fact that one cannot recover a unique standard of
acceleration from any KPM of Maxwell gravitation means that that theory has less
spacetime structure than Newton–Cartan theory. These differences are only apparent
when we consider the full space of KPMs. The claim that Newton–Cartan theory and
Maxwell gravitation are theoretically equivalent results from paying too much
attention to a theory’s space of solutions, and too little to the entire space of models.
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