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Editorial

Transcranial cerebral oximetry, transcranial Doppler sonography,
and heart rate variability: useful neuromonitoring tools in
anaesthesia and intensive care?

Sophisticated software algorithms and miniaturized
hardware components have opened new non-invasive
vistas to monitor the central nervous system. Electro-
physiological modalities (electroencephalography
(EEG), evoked potentials) can be used to assess the
integrity (or compromise) of neuronal structures at
different levels. Spectroscopic methods are used 
to evaluate oxygen metabolism in the brain and 
ultrasound techniques can depict cerebral perfusion.
Quantifying oscillations of the heart-rate sequence
sheds light on the regulatory systems governing com-
plex autonomic feedback loops.

Transcranial cerebral oximetry

Transcranial near infra-red spectroscopy (NIRS) is 
a fascinating technique that promises to provide infor-
mation on the balance between oxygen supply and
demand in the brain through the intact skull. It can
detect situations in which the oxygen status of the
brain can change dangerously and where the peri-
pheral systemic haemodynamics and oxygen saturation
would not predict the changes.

Transcranial NIRS is a technique based on the Beer-
Lambert Law [1,2]. The values obtained with cere-
bral oximetry depict primarily the oxygen status of
the chromophores (haemoglobin-deoxyhaemoglobin)
in the venous compartment (75%) [3] and on the
intracellular redox state (cytochrome aa3) [4]. NIRS
monitoring is used in a number of surgical proce-
dures (e.g., carotid, neuroendovascular, open heart and
aortic arch surgery) [5–10]. It is also applied in the
critical care setting for detecting cerebral hypoxia in
patients with severe brain injury [11–17], aneurysmal
subarachnoid haemorrhage [18,19], low cardiac out-
put states, pulmonary and vascular diseases, sepsis and
anaemia [20]. Unfortunately the appealing prospect

of simply placing a sensor on the forehead and
obtaining a numeric readout of the oxygen status of
the brain has led to over simplifications and prema-
ture expectations that could not be fulfilled. NIRS
data have to be interpreted in the context of the
underlying pathophysiology. Information is required
on systemic arterial pressure, peripheral oxygen satu-
ration, oxygen carrying capacity, body temperature,
carbon dioxide, cerebral arterial or venous obstruc-
tion, and cerebral seizures. Mistakes by the user (e.g.,
insufficient light shielding, ineffective probe fixation
and incorrect positioning of optodes) affect the
results [21]. The problem of NIRS is the hydra-like
quality of the technique: NIRS can have remarkably
high sensitivity for minimal physiological [22] or
pathophysiological [23] shifts and therapeutic effects
[21]. By the same token the technique is limited by
its reach: the saturation values are representative only
of the region directly beneath the sensor and may not
be sensitive to changes in other locations. Further-
more, the computational algorithms used in several
NIRS devices assume that the infra-red signal exclu-
sively reflects intravascular haemoglobin. Admixture
of this signal with that obtained from a stagnant pool
of deoxygenated blood can result in values of no clin-
ical significance. The spatial orientation of the optode
to the underlying healthy or abnormal anatomical
structures is critical [24]. Measurements over regions
of infarct or absent brain tissue can produce spurious
readings. Metal plates implanted after craniotomy
make monitoring impossible and the absence of
frontal bone can result in overscale reflected signals.

A further methodological problem with NIRS 
is the extracerebral contribution to cerebral oximetry.
Results from carotid surgery show that the contri-
bution of the extracranial circulation to the mea-
sured oxygen values is insignificant [25]. In contrast,
changes in scalp oxygenation or in extracerebral per-
fusion of the head have a significant effect on NIRS
readings [26–29]. Numerous studies show a close 
correlation between changes in cerebral oxygenation
assessed with NIRS and other monitoring modalities
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under varying clinical conditions. But correlation
does not prove causation, and many studies have not
controlled for potential changes in extracerebral
attenuation [30].

NIRS has been used in patients with severe head
trauma. Successful early identification of intracranial
haematomas has been reported [11–16]. However,
false-negative results are possible in patients with scalp
haematoma, bilateral haematoma, or deep intracranial
haematoma [11]. Changes in NIRS readings seem to be
sensitive indicators of desaturation events in patients
with severe head injury so that this monitoring could
be useful to detect intracranial haemodynamic changes.
In contrast, some authors question the usefulness of
NIRS to detect ischaemic events in patients with head
injuries [29,31–35]. Dramatic intracranial volume
shifts such as those occurring during transtentorial
herniation are not adequately reflected by NIRS in all
patients [36]. In a comparison of NIRS and invasive
oxygen tension monitoring of cerebral tissue, which 
is also locally limited, the latter technique provided
significantly more valid data [32].

It is difficult to classify and interpret individual
data readings provided by NIRS. Values in the range
of the normal population have been recorded in brain
dead subjects, cadavers after cardiocirculatory arrest
and even after removal of the brain at autopsy [33,37].
This means that valid conclusions cannot be drawn
from single readings of absolute NIRS values alone.
In contrast, continuous monitoring with NIRS can
document minimal dynamic changes. Although
drops up to 25–30% in cerebral oxygen saturation
seem to be associated with reversible neurological
dysfunction, at the moment we do not have clinically
useful intervention thresholds.

The use of NIRS to provide continuous, real time
imaging of tissue oxygenation at the bedside is con-
ceptually very appealing. Cerebral oximeters should
be equipped with an indicator of signal quality 
and strength to distinguish physiological declines
from artefacts. In the future, the ability to detect and
observe the progress of cerebral events as they occur
will require NIRS devices that can accurately meas-
ure photon path length [20] and integrate data from
multiple detectors [38] into tomographic images.
When the technical problems are solved, NIRS
devices promise to become valuable tools in moni-
toring intracranial oxygen saturation in patients at
cerebral risk.

Transcranial Doppler sonography

Transcranial Doppler sonography (TCD), introduced
in 1982 by Aaslid and colleagues [39], has become
one of the most useful non-invasive methods to exam-
ine cerebral haemodynamics. If the limitations of the

technology are recognized (e.g., lack of a means for
fixing the ultrasound probe in position), the infor-
mation on the cerebral circulation can be used peri-
operatively and during critical care of patients at risk
of cerebral ischaemia [40].

Transcranial Doppler sonography has numerous
clinical applications in anaesthesia and critical care.
It is used to monitor patients during cardiopul-
monary bypass, controlled hypotension and carotid
endarterectomy [41–43]. Additional software algo-
rithms and electronic elements (e.g., Hanning win-
dow, multirange technique) [44] have improved the
validity of TCD for detecting emboli.

The quantification of the degree of vasospasm after
subarachnoid haemorrhage is an important applica-
tion of TCD. Recording cerebral blood flow velocity
in critical care patients could provide information for
the treatment of patients with meningitis, head
injury, or ischaemic–anoxic conditions [41,43].

Transcranial Doppler sonography is also used to
document cerebral circulatory arrest [45–47] and has
been incorporated into a number of national guide-
lines for determining brain death. The essential
requirements are systolic spikes, oscillating flow or
loss of signals in any cerebral artery in patients with-
out ventricular drains or large craniotomy. In patients
with severe head injuries it is important to obtain an
initial recording as soon as possible so as to then be
able to document later changes and especially the 
loss of signals. For example, loss of signals cannot 
be documented in patients without a sonographic
window for anatomical reasons. Therefore ‘neurosono-
logic silence’ has to be interpreted with caution.
Furthermore, vessel diameters cannot be assumed to
be constant – neither during surgery nor in the criti-
cal care setting. Therefore by TCD alone you cannot
distinguish between central changes due to increased
intracranial pressure and vasoconstriction of whatever
aetiology. So the usefulness of TCD depends on the
skill and clinical experience of the examiner.

Multidirectional ultrasound probe holders have
recently been designed [48,49]. This equipment is
suitable for continuous and simultaneous monitor-
ing of extracerebral and intracerebral arteries under
conditions such as intensive care or acupuncture
research (Fig. 1) [50].

We have also constructed a multifunctional hel-
met apparatus to hold TCD robotic probes, near
infra-red spectroscopy sensors and active electrodes
for measuring bioelectric neural activity. This appa-
ratus can simultaneously record a variety of signals
over longer periods of time [48,51]. However, the
sonic energy emitted from the probes may hypothet-
ically produce local warming of tissue during pro-
longed monitoring, the relevance of which still has
not been clarified in detail.
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The brain is the most complex organ and we need
more knowledge about the interactions of different
signals and parameters, especially when normal func-
tion is disturbed. It is also necessary to keep in mind
that monitoring half a brain (Fig. 1) is not enough
[48]. Biomedical engineers, clinicians and manufac-
turers working in close collaboration should develop
and improve technological solutions and prototypes.

Heart rate variability

Heart rate variability (HRV) describes fluctuations
in the intervals between heart beats in an ECG. It is
distinct from the mean heart rate: two subjects can
have the same mean heart rate but very different
HRVs. While the raw data are easily obtained from
the ECG, complex computerized algorithms are nec-
essary to analyse the ECG recordings. However, a
number of different algorithms are in use and these
are not standardized. Accordingly, results obtained
with different techniques are thus difficult to com-
pare with one another [52].

Heart rate variability is a result of rhythmic and
stochastic components. It reflects the complex modu-
lation of the heart rate by the autonomic nervous sys-
tem and other physiological regulatory mechanisms.
HRV reflects the dynamic response to a number of
feedback mechanisms which exert an effect on the
sinus node via neural, humoral, metabolic and thermo-
regulatory influences. HRV is mediated primarily via
parasympathetic pathways and only to a slight degree
by the sympathetic nervous system [53,54]. The
structures responsible for regulating HRV are the

medullary circulatory centres (nucleus tractus soli-
tarii, nucleus ambiguus) [55]. Peripheral afferents
from stretch receptors in the lungs and from the great
vessels interact with the central control systems [56].
Modulation occurs by the limbic system up to the
neocortex [57,58].

Heart rate variability abnormalities can result
from abnormal reflex afferents or efferents, abnormal
central modulation between afferent and efferent
impulses, central supramedullary influences, central
neural transmission, or abnormalities of the recep-
tors, or the heart itself as effector [59].

Heart rate variability can be analysed in a number
of different ways: in the time domain, by non-linear
and frequency domain methods [60–62]. In the time
domain the standard deviation of the duration of the
RR intervals of the electrocardiogram (parameter of
total variability) or the differences between consecu-
tive RR intervals have been used. This results in a
number of differing HRV parameters [61,62].

Three frequency ranges can be distinguished by
spectral analysis within the power spectrum.
Oscillations at very low frequencies (to approxi-
mately 0.05 Hz) are probably regulated via the effects
of the renin–angiotensin system, temperature regula-
tion and metabolic processes [53,63]. At low frequen-
cies (about 0.05–0.15 Hz) the regulatory oscillations
seem to be mediated by both vagal and sympathetic
influences but its relevance to the quantification of
sympathetic tone is controversial [64–66]. The regu-
latory mechanism appears to be the intrinsic rhythm
of the neurons of the lower brainstem that govern the
cardiovascular system and modifications thereof by
the intrinsic vasomotor rhythms and feedback from
baroreceptors [57]. The high frequency range of the
power spectrum (0.15–0.5 Hz) is generated primarily
by central respiratory control systems and by interac-
tions with pulmonary afferents [56,67] and reflects
the modulation of parasympathetic influences on the
heart.

Assuming that HRV shows complex fractal 
components [68] and is thus a chaotic system, non-
linear methods were developed to characterize them.
However, these are not yet established in clinical
practice.

In the critical care setting HRV analysis provides
valuable information for the detection of myocardial
ischaemia and helps predict cardiac problems after
acute myocardial infarction. Reduced HRV has been
reported to predict an unfavourable course [69]. After
heart transplantation the HRV factor, a time domain
parameter for quantifying the overall variability, is
suppressed because the autonomic pathways are
interrupted [70]. HRV is markedly suppressed in all
frequency ranges, especially in the low-frequency
range.
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Figure 1.
Multidirectional ultrasound probe holder construction for simul-
taneous non-invasive monitoring of transcranial Doppler signals in
different arteries of the brain (STA: supratrochlear artery; OA: 
ophthalmic artery; MCA: middle cerebral artery). Supported by the
Jubiläumsfonds der Oesterreichischen Nationalbank (Project 8134).
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Very similar HRV patterns with minimal residual
variability are seen in brain dead subjects [71], both
children [72] and adults [73]. After an initial auto-
nomic storm, HRV is diminished both in the time
domain and in spectral analysis [74]. Although a sta-
tistically defined limit of the variability coefficient 
is not exceeded in brain dead subjects, unfortunately
variability is also diminished in comatose patients
without clinical or electrophysiological features of
brain death [71]. Concomitant conditions such as
diabetes [75], renal failure [76], myocardial disease
[69], alcoholic polyneuropathy [77], age [78] and
medications used in the management of patients
with severe head injuries (e.g., thiopental, propofol,
benzodiazepines) [79] can markedly suppress HRV.
Thus HRV has low specificity in the determination
of brain death because markedly diminished HRV is
not only found in brain death. Conversely, physio-
logical HRV in a patient being suspected for brain
death should prompt a careful reassessment.

Narcotic agents reduce the overall variability of
HRV [79–82]. This has led to speculation that HRV
could be used to monitor the depth of anaesthesia,
and particularly to avoid superficial levels of anaes-
thesia [83]. This idea is supported by the increase in
HRV that is seen with surgical stimuli or intubation
and at the end of anaesthesia [84–86]. But these
results have been interpreted in different ways. HRV
is influenced by a number of factors in addition to
the depth of anaesthesia. These include preoperative
medications [73], concomitant medical conditions,
and the positioning of the patient [87]. Also, HRV
can be reduced in patients even without premedica-
tion immediately before surgery and the induction
of anaesthesia (e.g., with propofol) causes a further
reduction on total variability and in all components
of the spectral analysis [88].

The respiratory rate is another factor that has a
considerable effect on the power spectrum of HRV. 
A respiratory rate which is too low can shift the high
frequency components of the power spectrum into
the low frequency range so that the two ranges can
be nearly impossible to distinguish. Thus, for intra-
operative monitoring of ventilated patients, the res-
piratory rate setting should be noted [60].

A problem is that there is little consensus on which
analytic process is the most appropriate. Because there
is no standardization, the results reported by different
groups cannot really be compared. There are no nor-
mal values for the whole perioperative period. The
accuracy of measurements of the RR interval is incon-
sistent. The acquisition frequency measurement of the
RR intervals which should be as high as possible is
not uniform. The methods by which R waves are
detected and artefacts eliminated and how data are
interpolated are also inconsistent [64]. In the future

better data acquisition and analysis should provide a
methodological basis for validated data. Expansion of
the analysis spectrum such as approximative entropy,
which as in the EEG is a measure of the regularity of
the oscillations, may be a further step toward making
HRV more meaningful [89]. Standardized methods
and large randomized studies will be needed to eval-
uate the role of HRV in the perioperative phase of
anaesthesia care.

In conclusion, transcranial cerebral oximetry can
be expected to provide important insights into the
non-invasive evaluation of cerebral oxygen meta-
bolism. Transcranial Doppler sonography is already an
established technique for specific issues and assess-
ing HRV may complement established techniques.
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