ON ARITHMETIC PROPERTIES OF THE TAYLOR
SERIES OF RATIONAL FUNCTIONS

DAVID G. CANTOR

Pélya (3) has shown that if b, is a sequence of algebraic integers and
> n=onb,g*isarational function, then so is >, —¢b,2" This result was generalized
by Uchiyama (5) who showed that one may replace the assumption that the
b, are algebraic integers by the assumption that the b, lie in a finitely generated
submodule of the complex numbers, and by the author (1) who showed that if
p is a non-zero polynomial with complex coefficients and if b, is a sequence
of algebraic integers such that > ._op(n)b,2" is a rational function, then so is
Y n=0b,2" Our aim in this note is to give a common generalization of all of these
theorems.

Let R be the integral closure, in the field of complex numbers C, of a finitely
generated subring of C.

THEOREM. Suppose that b, is a sequence of elements of R and that p is a non-
zero polynomial with complex coefficients. If 3 n—o p (n)b,g" is a rational function,
then so 1s 3 _n—0b,2".

Note that the theorem proved in (1) is the special case of the above theorem
for which R is the ring of algebraic integers and that Uchiyama’s theorem is
obtained from the case p(rn) = n by observing that a module generated by
X1, X2, . . . , &, 18 contained in the integral closure of the ring generated by
X1, X2, « v oy Xpyo

If K is an algebraic number field and S is a finite set of valuations of K
containing all Archimedian valuations, we shall say, as usual, that x € K is
an S-integer of K if |x|, = 1 for all valuations v of K not in S. The following is a
slightly stronger version of (1, Lemma 2).

LeMMA 1. Suppose that o € K is not a non-negative integer and b, is a sequence
of S-integers of K. Suppose that there exist S-integers do, dy, ds, . . . , d, of K such
thatdy = 1,d, # 0, and

> dyn—j—a)b; =0
7=0
for all integersn = r. Then

E A d]bn—j = O
=
for all integersn = r.
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Proof. 1t is immediate that

. n_ C()
(1) ngo (n - a)bnz = D(Z) ’

where

n

din —j — a)b,,_j>z".
0

The degree of C(2) is less than 7, the degree of D(z), and hence we can write
the partial fraction expansion

D(z) = Z: diz’ and C(z) = TZ_:I (

n=0 Jj=

C(z J Ci(z
@) e _ 5 Gl

D(Z) =1 (1 - 012) '
where 1/61,1/8,,...,1/6, are the distinct roots of D(z) with multiplicities
e, e, . .., e, respectively, and the C;(2) are polynomials of degree less than

e, respectively. Now
1 — (ei+n— 1> o
3 = < 6;2".
®) (1 — 62)% nz=;> ei— 1 '

—1

Suppose that C;(z) = X/ ¢cy2°. Then

C 2 ad n_n
(1*_1(0%27,- = 20 Ai(n)6;"2",
where

e;—1 N
() = 2 cu<ei Ty 1) 6,

=0 e; — 1
is a polynomial in # with algebraic coefficients of degree less than e;. Thus,
we can expand the right-hand side of (2) and obtain

Ce _ v+ v nn

4) D) 7;) ;1 Ni(n)0"2".
Let L be an algebraic number field which includes K and contains all of the
coefficients of the \; and all of the 6;. Let T be a finite set of valuations of L
containing all valuations of L which extend valuations in .S, and such that the

non-zero coefficients of the \;, the 8, the differences ; — 6,, where 7 # j, are
T-units of L.

By (1, Lemma 1), there exist infinitely many pairs (k, P), where k is an
integer and P is a prime ideal of L such that 8 — o € P. Let (k, P) be such a
pair with P not corresponding to a valuation in 7. Suppose that the norm of
P is p/, where p is a rational prime. Combining (1) and (4) we obtain

(5) (n -_ O{)bn = ;1 )\1(’”)01’%.
We substitute » = & + jp7 in (5) and obtain

k + jp’ — a)b, = ;1 M(E + ip)o ke
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Reducing modulo P we obtain

S

(6) 2 M@)o =0 (P).
The determinant of the homogeneous linear equations in the A;(a), obtained
from (6) by substituting successively j = 0,1,2,...,s — 1,is II;_,6* times
the Vandermonde determinant ||6,||, and hence is not congruent to 0 (P). It
follows that each X;(e) is congruent to 0 (P). Since this last congruence holds
for infinitely many prime ideals P, we see that each X\;(@) = 0. Thus, we can
write

N(n) = (n — a)ui(n),

where each u;(n) is a polynomial of lower degree than \;(n). Since n — « is
not 0 for n = 0, we obtain from (5) that

§

(7) b, = Z #1(")0?‘

i=1

Since for each integer £ = 0, the function

© k
Z wo .l = <z g;) 1 — 027"

is rational, it follows from (3) and (7) that >_,—¢b,%" can be written in the form

B(z)/D(z), where B(z) is a polynomial of degree less than 7, and hence
> i—0db_; = 0 for all n = 7.

LEMMA 2. Suppose that « € G and b, is a sequence of elements of R. If

2., (n— a)bs"
n=0

s a rational function, then so is

2",

n=0

Proof. We first prove the lemma under the additional assumption that «
is not a non-negative integer. We can write Y .—o(# — a)b,2" in the form
A(z) + C(2)/D(z), where 4 (z), C(z), and D(z) are polynomials with complex
coefficients, the degree of C(z) is less than d, the degree of D(z), and D(0) = 1.
By changing a finite number of the b,, if necessary, we may assume that
A(z) = 0. By enlarging R, if necessary, we may assume that «, the coefficients
of C, the coefficients of D, and 1 are contained in R.

Suppose that ¢ is a homomorphism of R into Q, the field of algebraic
numbers. Write

C@) = > ciz' and D() = 2 dg
=0 =0
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Thendy = 1andd, # 0. Now

) Zl di(n — i — &)bpy =0

if w = 7. Applying ¢ to (8) shows that

i $(n — @) d(b,)"

is a rational function and that all of the ¢(b,) lie in the field K; generated by
¢ (), the ¢(d;), and ¢(bo), (1), ..., ¢(b,—1). Suppose that R is the integral
closure in C of the ring Ry = Z[xy, %3, . . . , %] and K is the field generated by
the ¢(x;) over K;. Let S be a finite set of valuations of the algebraic number
field K containing all Archimedean valuations, and such that each ¢(x,) is an
S-integer of K. Each b, satisfies a monic polynomial with coefficients in R;,
and hence each ¢(b,) satisfies a monic polynomial whose coefficients are
S-integers of K. It is immediate that each ¢(b,) is an S-integer of K. If
A(z) = Y i_¢az'is any polynomial with coefficients in R, we write

$(4)(z) = Z,O #(as)s’.
Now,

> . $(O))

Now, suppose that ¢ satisfies the additional hypotheses that ¢(d,) % 0 and
¢ () is not a non-negative integer. Then by Lemma 1, 3_,_¢(b,)2" isarational
function and can be written in the form A44(2)/¢ (D) (2), where 44 is a poly-
nomial with algebraic coefficients of degree less than ». Put B, = det(b.,),
0 =<4,j=<mn; B, is a Hankel determinant, and by Kronecker's theorem
(4, p. 5), ¢(B,) = 0 for n = r. We now show that B, = 0 for n = . Suppose
not, and that B,, # 0, where n, Z r. We may suppose that the x; are non-zero
and are chosen so that xy, s, . . ., x, form a transcendence basis for R, and,
if @ is transcendental, that x; = «. The quantities x,41, %32, - - - , %4, &, and
B,, all satisfy irreducible polynomials with coefficients in Z[xy, xs, . . ., %,].
Let g(x1, 2, . . ., %,) be the product of the leading terms and constant terms
of these polynomials. If B, 8 ...,8, are algebraic numbers such that
g(B1, By - . ., By) # 0, then the homomorphism of Z[xy, %2, . . ., %,] into the
field of algebraic numbers, given by x; — 8;,1 = ¢ £ g, can be extended to
a homomorphism ¢,: R — 6; see (2). Furthermore, ¢o(d,) and ¢o(B,,) satisfy
polynomials with non-zero constant terms, hence are not 0. If « is algebraic,
then ¢¢(e) = a, and hence ¢q(a) is not a non-negative integer, while if « is
transcendental, then @ = x; and ¢¢(e) = B1. It is possible to choose $8; such
that B8; is not a non-negative integer and ¢(By, 2, . . . , %,) is not the 0 poly-
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nomial. Then B, ..., 8, can be chosen so that ¢(81, B2, ..., 8;) # 0. Thus,
we have constructed a homomorphism ¢o: R — Q such that
¢0(Bn0) #= Oy d’O(dT) #= Oy

and such that ¢q(a) is not a non-negative integer. This contradicts what we
proved earlier and shows that B,, = 0. Thus,

Br=B,+1=Br+2=...=0.

By Kronecker’s theorem (4, p. 5), > .n=0by2" is a rational function. It remains
to prove the lemma when « is a non-negative integer. In this case, put

o = —1landb,’ = byja41;itis clear that
D (m—a)b'd" = Y, (n— a)bg
n=>0 n=a+1

is a rational function. By what we have already proved, >_,-0b,’2" is arational
function, and hence so is >_,—0 02"

Proof of theorem. Without loss of generality, we may assume that p(n) is
monic and factor it as I1i_;(» — «;). Put

=

b, = b, H (n —a;) and g,z) = D, b, 2",
i=1

n=0

where 0 < s < ¢. Applying the hypothesis that g,(z) is rational and using
Lemma 2 repeatedly we find successively that

g2i-1(2), g1—2(2), . . . ,go(z) = ZO ba2"
—
are rational functions.
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